aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/tools/python3/src/Lib/dataclasses.py
blob: 105a95b95540ebf4e388a44640e99edff821ce70 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
import re
import sys
import copy
import types
import inspect
import keyword
import builtins
import functools
import abc
import _thread
from types import FunctionType, GenericAlias


__all__ = ['dataclass',
           'field',
           'Field',
           'FrozenInstanceError',
           'InitVar',
           'KW_ONLY',
           'MISSING',

           # Helper functions.
           'fields',
           'asdict',
           'astuple',
           'make_dataclass',
           'replace',
           'is_dataclass',
           ]

# Conditions for adding methods.  The boxes indicate what action the
# dataclass decorator takes.  For all of these tables, when I talk
# about init=, repr=, eq=, order=, unsafe_hash=, or frozen=, I'm
# referring to the arguments to the @dataclass decorator.  When
# checking if a dunder method already exists, I mean check for an
# entry in the class's __dict__.  I never check to see if an attribute
# is defined in a base class.

# Key:
# +=========+=========================================+
# + Value   | Meaning                                 |
# +=========+=========================================+
# | <blank> | No action: no method is added.          |
# +---------+-----------------------------------------+
# | add     | Generated method is added.              |
# +---------+-----------------------------------------+
# | raise   | TypeError is raised.                    |
# +---------+-----------------------------------------+
# | None    | Attribute is set to None.               |
# +=========+=========================================+

# __init__
#
#   +--- init= parameter
#   |
#   v     |       |       |
#         |  no   |  yes  |  <--- class has __init__ in __dict__?
# +=======+=======+=======+
# | False |       |       |
# +-------+-------+-------+
# | True  | add   |       |  <- the default
# +=======+=======+=======+

# __repr__
#
#    +--- repr= parameter
#    |
#    v    |       |       |
#         |  no   |  yes  |  <--- class has __repr__ in __dict__?
# +=======+=======+=======+
# | False |       |       |
# +-------+-------+-------+
# | True  | add   |       |  <- the default
# +=======+=======+=======+


# __setattr__
# __delattr__
#
#    +--- frozen= parameter
#    |
#    v    |       |       |
#         |  no   |  yes  |  <--- class has __setattr__ or __delattr__ in __dict__?
# +=======+=======+=======+
# | False |       |       |  <- the default
# +-------+-------+-------+
# | True  | add   | raise |
# +=======+=======+=======+
# Raise because not adding these methods would break the "frozen-ness"
# of the class.

# __eq__
#
#    +--- eq= parameter
#    |
#    v    |       |       |
#         |  no   |  yes  |  <--- class has __eq__ in __dict__?
# +=======+=======+=======+
# | False |       |       |
# +-------+-------+-------+
# | True  | add   |       |  <- the default
# +=======+=======+=======+

# __lt__
# __le__
# __gt__
# __ge__
#
#    +--- order= parameter
#    |
#    v    |       |       |
#         |  no   |  yes  |  <--- class has any comparison method in __dict__?
# +=======+=======+=======+
# | False |       |       |  <- the default
# +-------+-------+-------+
# | True  | add   | raise |
# +=======+=======+=======+
# Raise because to allow this case would interfere with using
# functools.total_ordering.

# __hash__

#    +------------------- unsafe_hash= parameter
#    |       +----------- eq= parameter
#    |       |       +--- frozen= parameter
#    |       |       |
#    v       v       v    |        |        |
#                         |   no   |  yes   |  <--- class has explicitly defined __hash__
# +=======+=======+=======+========+========+
# | False | False | False |        |        | No __eq__, use the base class __hash__
# +-------+-------+-------+--------+--------+
# | False | False | True  |        |        | No __eq__, use the base class __hash__
# +-------+-------+-------+--------+--------+
# | False | True  | False | None   |        | <-- the default, not hashable
# +-------+-------+-------+--------+--------+
# | False | True  | True  | add    |        | Frozen, so hashable, allows override
# +-------+-------+-------+--------+--------+
# | True  | False | False | add    | raise  | Has no __eq__, but hashable
# +-------+-------+-------+--------+--------+
# | True  | False | True  | add    | raise  | Has no __eq__, but hashable
# +-------+-------+-------+--------+--------+
# | True  | True  | False | add    | raise  | Not frozen, but hashable
# +-------+-------+-------+--------+--------+
# | True  | True  | True  | add    | raise  | Frozen, so hashable
# +=======+=======+=======+========+========+
# For boxes that are blank, __hash__ is untouched and therefore
# inherited from the base class.  If the base is object, then
# id-based hashing is used.
#
# Note that a class may already have __hash__=None if it specified an
# __eq__ method in the class body (not one that was created by
# @dataclass).
#
# See _hash_action (below) for a coded version of this table.

# __match_args__
#
#    +--- match_args= parameter
#    |
#    v    |       |       |
#         |  no   |  yes  |  <--- class has __match_args__ in __dict__?
# +=======+=======+=======+
# | False |       |       |
# +-------+-------+-------+
# | True  | add   |       |  <- the default
# +=======+=======+=======+
# __match_args__ is always added unless the class already defines it. It is a
# tuple of __init__ parameter names; non-init fields must be matched by keyword.


# Raised when an attempt is made to modify a frozen class.
class FrozenInstanceError(AttributeError): pass

# A sentinel object for default values to signal that a default
# factory will be used.  This is given a nice repr() which will appear
# in the function signature of dataclasses' constructors.
class _HAS_DEFAULT_FACTORY_CLASS:
    def __repr__(self):
        return '<factory>'
_HAS_DEFAULT_FACTORY = _HAS_DEFAULT_FACTORY_CLASS()

# A sentinel object to detect if a parameter is supplied or not.  Use
# a class to give it a better repr.
class _MISSING_TYPE:
    pass
MISSING = _MISSING_TYPE()

# A sentinel object to indicate that following fields are keyword-only by
# default.  Use a class to give it a better repr.
class _KW_ONLY_TYPE:
    pass
KW_ONLY = _KW_ONLY_TYPE()

# Since most per-field metadata will be unused, create an empty
# read-only proxy that can be shared among all fields.
_EMPTY_METADATA = types.MappingProxyType({})

# Markers for the various kinds of fields and pseudo-fields.
class _FIELD_BASE:
    def __init__(self, name):
        self.name = name
    def __repr__(self):
        return self.name
_FIELD = _FIELD_BASE('_FIELD')
_FIELD_CLASSVAR = _FIELD_BASE('_FIELD_CLASSVAR')
_FIELD_INITVAR = _FIELD_BASE('_FIELD_INITVAR')

# The name of an attribute on the class where we store the Field
# objects.  Also used to check if a class is a Data Class.
_FIELDS = '__dataclass_fields__'

# The name of an attribute on the class that stores the parameters to
# @dataclass.
_PARAMS = '__dataclass_params__'

# The name of the function, that if it exists, is called at the end of
# __init__.
_POST_INIT_NAME = '__post_init__'

# String regex that string annotations for ClassVar or InitVar must match.
# Allows "identifier.identifier[" or "identifier[".
# https://bugs.python.org/issue33453 for details.
_MODULE_IDENTIFIER_RE = re.compile(r'^(?:\s*(\w+)\s*\.)?\s*(\w+)')

class InitVar:
    __slots__ = ('type', )

    def __init__(self, type):
        self.type = type

    def __repr__(self):
        if isinstance(self.type, type) and not isinstance(self.type, GenericAlias):
            type_name = self.type.__name__
        else:
            # typing objects, e.g. List[int]
            type_name = repr(self.type)
        return f'dataclasses.InitVar[{type_name}]'

    def __class_getitem__(cls, type):
        return InitVar(type)

# Instances of Field are only ever created from within this module,
# and only from the field() function, although Field instances are
# exposed externally as (conceptually) read-only objects.
#
# name and type are filled in after the fact, not in __init__.
# They're not known at the time this class is instantiated, but it's
# convenient if they're available later.
#
# When cls._FIELDS is filled in with a list of Field objects, the name
# and type fields will have been populated.
class Field:
    __slots__ = ('name',
                 'type',
                 'default',
                 'default_factory',
                 'repr',
                 'hash',
                 'init',
                 'compare',
                 'metadata',
                 'kw_only',
                 '_field_type',  # Private: not to be used by user code.
                 )

    def __init__(self, default, default_factory, init, repr, hash, compare,
                 metadata, kw_only):
        self.name = None
        self.type = None
        self.default = default
        self.default_factory = default_factory
        self.init = init
        self.repr = repr
        self.hash = hash
        self.compare = compare
        self.metadata = (_EMPTY_METADATA
                         if metadata is None else
                         types.MappingProxyType(metadata))
        self.kw_only = kw_only
        self._field_type = None

    def __repr__(self):
        return ('Field('
                f'name={self.name!r},'
                f'type={self.type!r},'
                f'default={self.default!r},'
                f'default_factory={self.default_factory!r},'
                f'init={self.init!r},'
                f'repr={self.repr!r},'
                f'hash={self.hash!r},'
                f'compare={self.compare!r},'
                f'metadata={self.metadata!r},'
                f'kw_only={self.kw_only!r},'
                f'_field_type={self._field_type}'
                ')')

    # This is used to support the PEP 487 __set_name__ protocol in the
    # case where we're using a field that contains a descriptor as a
    # default value.  For details on __set_name__, see
    # https://www.python.org/dev/peps/pep-0487/#implementation-details.
    #
    # Note that in _process_class, this Field object is overwritten
    # with the default value, so the end result is a descriptor that
    # had __set_name__ called on it at the right time.
    def __set_name__(self, owner, name):
        func = getattr(type(self.default), '__set_name__', None)
        if func:
            # There is a __set_name__ method on the descriptor, call
            # it.
            func(self.default, owner, name)

    __class_getitem__ = classmethod(GenericAlias)


class _DataclassParams:
    __slots__ = ('init',
                 'repr',
                 'eq',
                 'order',
                 'unsafe_hash',
                 'frozen',
                 )

    def __init__(self, init, repr, eq, order, unsafe_hash, frozen):
        self.init = init
        self.repr = repr
        self.eq = eq
        self.order = order
        self.unsafe_hash = unsafe_hash
        self.frozen = frozen

    def __repr__(self):
        return ('_DataclassParams('
                f'init={self.init!r},'
                f'repr={self.repr!r},'
                f'eq={self.eq!r},'
                f'order={self.order!r},'
                f'unsafe_hash={self.unsafe_hash!r},'
                f'frozen={self.frozen!r}'
                ')')


# This function is used instead of exposing Field creation directly,
# so that a type checker can be told (via overloads) that this is a
# function whose type depends on its parameters.
def field(*, default=MISSING, default_factory=MISSING, init=True, repr=True,
          hash=None, compare=True, metadata=None, kw_only=MISSING):
    """Return an object to identify dataclass fields.

    default is the default value of the field.  default_factory is a
    0-argument function called to initialize a field's value.  If init
    is true, the field will be a parameter to the class's __init__()
    function.  If repr is true, the field will be included in the
    object's repr().  If hash is true, the field will be included in the
    object's hash().  If compare is true, the field will be used in
    comparison functions.  metadata, if specified, must be a mapping
    which is stored but not otherwise examined by dataclass.  If kw_only
    is true, the field will become a keyword-only parameter to
    __init__().

    It is an error to specify both default and default_factory.
    """

    if default is not MISSING and default_factory is not MISSING:
        raise ValueError('cannot specify both default and default_factory')
    return Field(default, default_factory, init, repr, hash, compare,
                 metadata, kw_only)


def _fields_in_init_order(fields):
    # Returns the fields as __init__ will output them.  It returns 2 tuples:
    # the first for normal args, and the second for keyword args.

    return (tuple(f for f in fields if f.init and not f.kw_only),
            tuple(f for f in fields if f.init and f.kw_only)
            )


def _tuple_str(obj_name, fields):
    # Return a string representing each field of obj_name as a tuple
    # member.  So, if fields is ['x', 'y'] and obj_name is "self",
    # return "(self.x,self.y)".

    # Special case for the 0-tuple.
    if not fields:
        return '()'
    # Note the trailing comma, needed if this turns out to be a 1-tuple.
    return f'({",".join([f"{obj_name}.{f.name}" for f in fields])},)'


# This function's logic is copied from "recursive_repr" function in
# reprlib module to avoid dependency.
def _recursive_repr(user_function):
    # Decorator to make a repr function return "..." for a recursive
    # call.
    repr_running = set()

    @functools.wraps(user_function)
    def wrapper(self):
        key = id(self), _thread.get_ident()
        if key in repr_running:
            return '...'
        repr_running.add(key)
        try:
            result = user_function(self)
        finally:
            repr_running.discard(key)
        return result
    return wrapper


def _create_fn(name, args, body, *, globals=None, locals=None,
               return_type=MISSING):
    # Note that we mutate locals when exec() is called.  Caller
    # beware!  The only callers are internal to this module, so no
    # worries about external callers.
    if locals is None:
        locals = {}
    if 'BUILTINS' not in locals:
        locals['BUILTINS'] = builtins
    return_annotation = ''
    if return_type is not MISSING:
        locals['_return_type'] = return_type
        return_annotation = '->_return_type'
    args = ','.join(args)
    body = '\n'.join(f'  {b}' for b in body)

    # Compute the text of the entire function.
    txt = f' def {name}({args}){return_annotation}:\n{body}'

    local_vars = ', '.join(locals.keys())
    txt = f"def __create_fn__({local_vars}):\n{txt}\n return {name}"
    ns = {}
    exec(txt, globals, ns)
    return ns['__create_fn__'](**locals)


def _field_assign(frozen, name, value, self_name):
    # If we're a frozen class, then assign to our fields in __init__
    # via object.__setattr__.  Otherwise, just use a simple
    # assignment.
    #
    # self_name is what "self" is called in this function: don't
    # hard-code "self", since that might be a field name.
    if frozen:
        return f'BUILTINS.object.__setattr__({self_name},{name!r},{value})'
    return f'{self_name}.{name}={value}'


def _field_init(f, frozen, globals, self_name, slots):
    # Return the text of the line in the body of __init__ that will
    # initialize this field.

    default_name = f'_dflt_{f.name}'
    if f.default_factory is not MISSING:
        if f.init:
            # This field has a default factory.  If a parameter is
            # given, use it.  If not, call the factory.
            globals[default_name] = f.default_factory
            value = (f'{default_name}() '
                     f'if {f.name} is _HAS_DEFAULT_FACTORY '
                     f'else {f.name}')
        else:
            # This is a field that's not in the __init__ params, but
            # has a default factory function.  It needs to be
            # initialized here by calling the factory function,
            # because there's no other way to initialize it.

            # For a field initialized with a default=defaultvalue, the
            # class dict just has the default value
            # (cls.fieldname=defaultvalue).  But that won't work for a
            # default factory, the factory must be called in __init__
            # and we must assign that to self.fieldname.  We can't
            # fall back to the class dict's value, both because it's
            # not set, and because it might be different per-class
            # (which, after all, is why we have a factory function!).

            globals[default_name] = f.default_factory
            value = f'{default_name}()'
    else:
        # No default factory.
        if f.init:
            if f.default is MISSING:
                # There's no default, just do an assignment.
                value = f.name
            elif f.default is not MISSING:
                globals[default_name] = f.default
                value = f.name
        else:
            # If the class has slots, then initialize this field.
            if slots and f.default is not MISSING:
                globals[default_name] = f.default
                value = default_name
            else:
                # This field does not need initialization: reading from it will
                # just use the class attribute that contains the default.
                # Signify that to the caller by returning None.
                return None

    # Only test this now, so that we can create variables for the
    # default.  However, return None to signify that we're not going
    # to actually do the assignment statement for InitVars.
    if f._field_type is _FIELD_INITVAR:
        return None

    # Now, actually generate the field assignment.
    return _field_assign(frozen, f.name, value, self_name)


def _init_param(f):
    # Return the __init__ parameter string for this field.  For
    # example, the equivalent of 'x:int=3' (except instead of 'int',
    # reference a variable set to int, and instead of '3', reference a
    # variable set to 3).
    if f.default is MISSING and f.default_factory is MISSING:
        # There's no default, and no default_factory, just output the
        # variable name and type.
        default = ''
    elif f.default is not MISSING:
        # There's a default, this will be the name that's used to look
        # it up.
        default = f'=_dflt_{f.name}'
    elif f.default_factory is not MISSING:
        # There's a factory function.  Set a marker.
        default = '=_HAS_DEFAULT_FACTORY'
    return f'{f.name}:_type_{f.name}{default}'


def _init_fn(fields, std_fields, kw_only_fields, frozen, has_post_init,
             self_name, globals, slots):
    # fields contains both real fields and InitVar pseudo-fields.

    # Make sure we don't have fields without defaults following fields
    # with defaults.  This actually would be caught when exec-ing the
    # function source code, but catching it here gives a better error
    # message, and future-proofs us in case we build up the function
    # using ast.

    seen_default = False
    for f in std_fields:
        # Only consider the non-kw-only fields in the __init__ call.
        if f.init:
            if not (f.default is MISSING and f.default_factory is MISSING):
                seen_default = True
            elif seen_default:
                raise TypeError(f'non-default argument {f.name!r} '
                                'follows default argument')

    locals = {f'_type_{f.name}': f.type for f in fields}
    locals.update({
        'MISSING': MISSING,
        '_HAS_DEFAULT_FACTORY': _HAS_DEFAULT_FACTORY,
    })

    body_lines = []
    for f in fields:
        line = _field_init(f, frozen, locals, self_name, slots)
        # line is None means that this field doesn't require
        # initialization (it's a pseudo-field).  Just skip it.
        if line:
            body_lines.append(line)

    # Does this class have a post-init function?
    if has_post_init:
        params_str = ','.join(f.name for f in fields
                              if f._field_type is _FIELD_INITVAR)
        body_lines.append(f'{self_name}.{_POST_INIT_NAME}({params_str})')

    # If no body lines, use 'pass'.
    if not body_lines:
        body_lines = ['pass']

    _init_params = [_init_param(f) for f in std_fields]
    if kw_only_fields:
        # Add the keyword-only args.  Because the * can only be added if
        # there's at least one keyword-only arg, there needs to be a test here
        # (instead of just concatenting the lists together).
        _init_params += ['*']
        _init_params += [_init_param(f) for f in kw_only_fields]
    return _create_fn('__init__',
                      [self_name] + _init_params,
                      body_lines,
                      locals=locals,
                      globals=globals,
                      return_type=None)


def _repr_fn(fields, globals):
    fn = _create_fn('__repr__',
                    ('self',),
                    ['return self.__class__.__qualname__ + f"(' +
                     ', '.join([f"{f.name}={{self.{f.name}!r}}"
                                for f in fields]) +
                     ')"'],
                     globals=globals)
    return _recursive_repr(fn)


def _frozen_get_del_attr(cls, fields, globals):
    locals = {'cls': cls,
              'FrozenInstanceError': FrozenInstanceError}
    if fields:
        fields_str = '(' + ','.join(repr(f.name) for f in fields) + ',)'
    else:
        # Special case for the zero-length tuple.
        fields_str = '()'
    return (_create_fn('__setattr__',
                      ('self', 'name', 'value'),
                      (f'if type(self) is cls or name in {fields_str}:',
                        ' raise FrozenInstanceError(f"cannot assign to field {name!r}")',
                       f'super(cls, self).__setattr__(name, value)'),
                       locals=locals,
                       globals=globals),
            _create_fn('__delattr__',
                      ('self', 'name'),
                      (f'if type(self) is cls or name in {fields_str}:',
                        ' raise FrozenInstanceError(f"cannot delete field {name!r}")',
                       f'super(cls, self).__delattr__(name)'),
                       locals=locals,
                       globals=globals),
            )


def _cmp_fn(name, op, self_tuple, other_tuple, globals):
    # Create a comparison function.  If the fields in the object are
    # named 'x' and 'y', then self_tuple is the string
    # '(self.x,self.y)' and other_tuple is the string
    # '(other.x,other.y)'.

    return _create_fn(name,
                      ('self', 'other'),
                      [ 'if other.__class__ is self.__class__:',
                       f' return {self_tuple}{op}{other_tuple}',
                        'return NotImplemented'],
                      globals=globals)


def _hash_fn(fields, globals):
    self_tuple = _tuple_str('self', fields)
    return _create_fn('__hash__',
                      ('self',),
                      [f'return hash({self_tuple})'],
                      globals=globals)


def _is_classvar(a_type, typing):
    # This test uses a typing internal class, but it's the best way to
    # test if this is a ClassVar.
    return (a_type is typing.ClassVar
            or (type(a_type) is typing._GenericAlias
                and a_type.__origin__ is typing.ClassVar))


def _is_initvar(a_type, dataclasses):
    # The module we're checking against is the module we're
    # currently in (dataclasses.py).
    return (a_type is dataclasses.InitVar
            or type(a_type) is dataclasses.InitVar)

def _is_kw_only(a_type, dataclasses):
    return a_type is dataclasses.KW_ONLY


def _is_type(annotation, cls, a_module, a_type, is_type_predicate):
    # Given a type annotation string, does it refer to a_type in
    # a_module?  For example, when checking that annotation denotes a
    # ClassVar, then a_module is typing, and a_type is
    # typing.ClassVar.

    # It's possible to look up a_module given a_type, but it involves
    # looking in sys.modules (again!), and seems like a waste since
    # the caller already knows a_module.

    # - annotation is a string type annotation
    # - cls is the class that this annotation was found in
    # - a_module is the module we want to match
    # - a_type is the type in that module we want to match
    # - is_type_predicate is a function called with (obj, a_module)
    #   that determines if obj is of the desired type.

    # Since this test does not do a local namespace lookup (and
    # instead only a module (global) lookup), there are some things it
    # gets wrong.

    # With string annotations, cv0 will be detected as a ClassVar:
    #   CV = ClassVar
    #   @dataclass
    #   class C0:
    #     cv0: CV

    # But in this example cv1 will not be detected as a ClassVar:
    #   @dataclass
    #   class C1:
    #     CV = ClassVar
    #     cv1: CV

    # In C1, the code in this function (_is_type) will look up "CV" in
    # the module and not find it, so it will not consider cv1 as a
    # ClassVar.  This is a fairly obscure corner case, and the best
    # way to fix it would be to eval() the string "CV" with the
    # correct global and local namespaces.  However that would involve
    # a eval() penalty for every single field of every dataclass
    # that's defined.  It was judged not worth it.

    match = _MODULE_IDENTIFIER_RE.match(annotation)
    if match:
        ns = None
        module_name = match.group(1)
        if not module_name:
            # No module name, assume the class's module did
            # "from dataclasses import InitVar".
            ns = sys.modules.get(cls.__module__).__dict__
        else:
            # Look up module_name in the class's module.
            module = sys.modules.get(cls.__module__)
            if module and module.__dict__.get(module_name) is a_module:
                ns = sys.modules.get(a_type.__module__).__dict__
        if ns and is_type_predicate(ns.get(match.group(2)), a_module):
            return True
    return False


def _get_field(cls, a_name, a_type, default_kw_only):
    # Return a Field object for this field name and type.  ClassVars and
    # InitVars are also returned, but marked as such (see f._field_type).
    # default_kw_only is the value of kw_only to use if there isn't a field()
    # that defines it.

    # If the default value isn't derived from Field, then it's only a
    # normal default value.  Convert it to a Field().
    default = getattr(cls, a_name, MISSING)
    if isinstance(default, Field):
        f = default
    else:
        if isinstance(default, types.MemberDescriptorType):
            # This is a field in __slots__, so it has no default value.
            default = MISSING
        f = field(default=default)

    # Only at this point do we know the name and the type.  Set them.
    f.name = a_name
    f.type = a_type

    # Assume it's a normal field until proven otherwise.  We're next
    # going to decide if it's a ClassVar or InitVar, everything else
    # is just a normal field.
    f._field_type = _FIELD

    # In addition to checking for actual types here, also check for
    # string annotations.  get_type_hints() won't always work for us
    # (see https://github.com/python/typing/issues/508 for example),
    # plus it's expensive and would require an eval for every string
    # annotation.  So, make a best effort to see if this is a ClassVar
    # or InitVar using regex's and checking that the thing referenced
    # is actually of the correct type.

    # For the complete discussion, see https://bugs.python.org/issue33453

    # If typing has not been imported, then it's impossible for any
    # annotation to be a ClassVar.  So, only look for ClassVar if
    # typing has been imported by any module (not necessarily cls's
    # module).
    typing = sys.modules.get('typing')
    if typing:
        if (_is_classvar(a_type, typing)
            or (isinstance(f.type, str)
                and _is_type(f.type, cls, typing, typing.ClassVar,
                             _is_classvar))):
            f._field_type = _FIELD_CLASSVAR

    # If the type is InitVar, or if it's a matching string annotation,
    # then it's an InitVar.
    if f._field_type is _FIELD:
        # The module we're checking against is the module we're
        # currently in (dataclasses.py).
        dataclasses = sys.modules[__name__]
        if (_is_initvar(a_type, dataclasses)
            or (isinstance(f.type, str)
                and _is_type(f.type, cls, dataclasses, dataclasses.InitVar,
                             _is_initvar))):
            f._field_type = _FIELD_INITVAR

    # Validations for individual fields.  This is delayed until now,
    # instead of in the Field() constructor, since only here do we
    # know the field name, which allows for better error reporting.

    # Special restrictions for ClassVar and InitVar.
    if f._field_type in (_FIELD_CLASSVAR, _FIELD_INITVAR):
        if f.default_factory is not MISSING:
            raise TypeError(f'field {f.name} cannot have a '
                            'default factory')
        # Should I check for other field settings? default_factory
        # seems the most serious to check for.  Maybe add others.  For
        # example, how about init=False (or really,
        # init=<not-the-default-init-value>)?  It makes no sense for
        # ClassVar and InitVar to specify init=<anything>.

    # kw_only validation and assignment.
    if f._field_type in (_FIELD, _FIELD_INITVAR):
        # For real and InitVar fields, if kw_only wasn't specified use the
        # default value.
        if f.kw_only is MISSING:
            f.kw_only = default_kw_only
    else:
        # Make sure kw_only isn't set for ClassVars
        assert f._field_type is _FIELD_CLASSVAR
        if f.kw_only is not MISSING:
            raise TypeError(f'field {f.name} is a ClassVar but specifies '
                            'kw_only')

    # For real fields, disallow mutable defaults for known types.
    if f._field_type is _FIELD and isinstance(f.default, (list, dict, set)):
        raise ValueError(f'mutable default {type(f.default)} for field '
                         f'{f.name} is not allowed: use default_factory')

    return f

def _set_qualname(cls, value):
    # Ensure that the functions returned from _create_fn uses the proper
    # __qualname__ (the class they belong to).
    if isinstance(value, FunctionType):
        value.__qualname__ = f"{cls.__qualname__}.{value.__name__}"
    return value

def _set_new_attribute(cls, name, value):
    # Never overwrites an existing attribute.  Returns True if the
    # attribute already exists.
    if name in cls.__dict__:
        return True
    _set_qualname(cls, value)
    setattr(cls, name, value)
    return False


# Decide if/how we're going to create a hash function.  Key is
# (unsafe_hash, eq, frozen, does-hash-exist).  Value is the action to
# take.  The common case is to do nothing, so instead of providing a
# function that is a no-op, use None to signify that.

def _hash_set_none(cls, fields, globals):
    return None

def _hash_add(cls, fields, globals):
    flds = [f for f in fields if (f.compare if f.hash is None else f.hash)]
    return _set_qualname(cls, _hash_fn(flds, globals))

def _hash_exception(cls, fields, globals):
    # Raise an exception.
    raise TypeError(f'Cannot overwrite attribute __hash__ '
                    f'in class {cls.__name__}')

#
#                +-------------------------------------- unsafe_hash?
#                |      +------------------------------- eq?
#                |      |      +------------------------ frozen?
#                |      |      |      +----------------  has-explicit-hash?
#                |      |      |      |
#                |      |      |      |        +-------  action
#                |      |      |      |        |
#                v      v      v      v        v
_hash_action = {(False, False, False, False): None,
                (False, False, False, True ): None,
                (False, False, True,  False): None,
                (False, False, True,  True ): None,
                (False, True,  False, False): _hash_set_none,
                (False, True,  False, True ): None,
                (False, True,  True,  False): _hash_add,
                (False, True,  True,  True ): None,
                (True,  False, False, False): _hash_add,
                (True,  False, False, True ): _hash_exception,
                (True,  False, True,  False): _hash_add,
                (True,  False, True,  True ): _hash_exception,
                (True,  True,  False, False): _hash_add,
                (True,  True,  False, True ): _hash_exception,
                (True,  True,  True,  False): _hash_add,
                (True,  True,  True,  True ): _hash_exception,
                }
# See https://bugs.python.org/issue32929#msg312829 for an if-statement
# version of this table.


def _process_class(cls, init, repr, eq, order, unsafe_hash, frozen,
                   match_args, kw_only, slots):
    # Now that dicts retain insertion order, there's no reason to use
    # an ordered dict.  I am leveraging that ordering here, because
    # derived class fields overwrite base class fields, but the order
    # is defined by the base class, which is found first.
    fields = {}

    if cls.__module__ in sys.modules:
        globals = sys.modules[cls.__module__].__dict__
    else:
        # Theoretically this can happen if someone writes
        # a custom string to cls.__module__.  In which case
        # such dataclass won't be fully introspectable
        # (w.r.t. typing.get_type_hints) but will still function
        # correctly.
        globals = {}

    setattr(cls, _PARAMS, _DataclassParams(init, repr, eq, order,
                                           unsafe_hash, frozen))

    # Find our base classes in reverse MRO order, and exclude
    # ourselves.  In reversed order so that more derived classes
    # override earlier field definitions in base classes.  As long as
    # we're iterating over them, see if any are frozen.
    any_frozen_base = False
    has_dataclass_bases = False
    for b in cls.__mro__[-1:0:-1]:
        # Only process classes that have been processed by our
        # decorator.  That is, they have a _FIELDS attribute.
        base_fields = getattr(b, _FIELDS, None)
        if base_fields is not None:
            has_dataclass_bases = True
            for f in base_fields.values():
                fields[f.name] = f
            if getattr(b, _PARAMS).frozen:
                any_frozen_base = True

    # Annotations that are defined in this class (not in base
    # classes).  If __annotations__ isn't present, then this class
    # adds no new annotations.  We use this to compute fields that are
    # added by this class.
    #
    # Fields are found from cls_annotations, which is guaranteed to be
    # ordered.  Default values are from class attributes, if a field
    # has a default.  If the default value is a Field(), then it
    # contains additional info beyond (and possibly including) the
    # actual default value.  Pseudo-fields ClassVars and InitVars are
    # included, despite the fact that they're not real fields.  That's
    # dealt with later.
    cls_annotations = cls.__dict__.get('__annotations__', {})

    # Now find fields in our class.  While doing so, validate some
    # things, and set the default values (as class attributes) where
    # we can.
    cls_fields = []
    # Get a reference to this module for the _is_kw_only() test.
    KW_ONLY_seen = False
    dataclasses = sys.modules[__name__]
    for name, type in cls_annotations.items():
        # See if this is a marker to change the value of kw_only.
        if (_is_kw_only(type, dataclasses)
            or (isinstance(type, str)
                and _is_type(type, cls, dataclasses, dataclasses.KW_ONLY,
                             _is_kw_only))):
            # Switch the default to kw_only=True, and ignore this
            # annotation: it's not a real field.
            if KW_ONLY_seen:
                raise TypeError(f'{name!r} is KW_ONLY, but KW_ONLY '
                                'has already been specified')
            KW_ONLY_seen = True
            kw_only = True
        else:
            # Otherwise it's a field of some type.
            cls_fields.append(_get_field(cls, name, type, kw_only))

    for f in cls_fields:
        fields[f.name] = f

        # If the class attribute (which is the default value for this
        # field) exists and is of type 'Field', replace it with the
        # real default.  This is so that normal class introspection
        # sees a real default value, not a Field.
        if isinstance(getattr(cls, f.name, None), Field):
            if f.default is MISSING:
                # If there's no default, delete the class attribute.
                # This happens if we specify field(repr=False), for
                # example (that is, we specified a field object, but
                # no default value).  Also if we're using a default
                # factory.  The class attribute should not be set at
                # all in the post-processed class.
                delattr(cls, f.name)
            else:
                setattr(cls, f.name, f.default)

    # Do we have any Field members that don't also have annotations?
    for name, value in cls.__dict__.items():
        if isinstance(value, Field) and not name in cls_annotations:
            raise TypeError(f'{name!r} is a field but has no type annotation')

    # Check rules that apply if we are derived from any dataclasses.
    if has_dataclass_bases:
        # Raise an exception if any of our bases are frozen, but we're not.
        if any_frozen_base and not frozen:
            raise TypeError('cannot inherit non-frozen dataclass from a '
                            'frozen one')

        # Raise an exception if we're frozen, but none of our bases are.
        if not any_frozen_base and frozen:
            raise TypeError('cannot inherit frozen dataclass from a '
                            'non-frozen one')

    # Remember all of the fields on our class (including bases).  This
    # also marks this class as being a dataclass.
    setattr(cls, _FIELDS, fields)

    # Was this class defined with an explicit __hash__?  Note that if
    # __eq__ is defined in this class, then python will automatically
    # set __hash__ to None.  This is a heuristic, as it's possible
    # that such a __hash__ == None was not auto-generated, but it
    # close enough.
    class_hash = cls.__dict__.get('__hash__', MISSING)
    has_explicit_hash = not (class_hash is MISSING or
                             (class_hash is None and '__eq__' in cls.__dict__))

    # If we're generating ordering methods, we must be generating the
    # eq methods.
    if order and not eq:
        raise ValueError('eq must be true if order is true')

    # Include InitVars and regular fields (so, not ClassVars).  This is
    # initialized here, outside of the "if init:" test, because std_init_fields
    # is used with match_args, below.
    all_init_fields = [f for f in fields.values()
                       if f._field_type in (_FIELD, _FIELD_INITVAR)]
    (std_init_fields,
     kw_only_init_fields) = _fields_in_init_order(all_init_fields)

    if init:
        # Does this class have a post-init function?
        has_post_init = hasattr(cls, _POST_INIT_NAME)

        _set_new_attribute(cls, '__init__',
                           _init_fn(all_init_fields,
                                    std_init_fields,
                                    kw_only_init_fields,
                                    frozen,
                                    has_post_init,
                                    # The name to use for the "self"
                                    # param in __init__.  Use "self"
                                    # if possible.
                                    '__dataclass_self__' if 'self' in fields
                                            else 'self',
                                    globals,
                                    slots,
                          ))

    # Get the fields as a list, and include only real fields.  This is
    # used in all of the following methods.
    field_list = [f for f in fields.values() if f._field_type is _FIELD]

    if repr:
        flds = [f for f in field_list if f.repr]
        _set_new_attribute(cls, '__repr__', _repr_fn(flds, globals))

    if eq:
        # Create __eq__ method.  There's no need for a __ne__ method,
        # since python will call __eq__ and negate it.
        flds = [f for f in field_list if f.compare]
        self_tuple = _tuple_str('self', flds)
        other_tuple = _tuple_str('other', flds)
        _set_new_attribute(cls, '__eq__',
                           _cmp_fn('__eq__', '==',
                                   self_tuple, other_tuple,
                                   globals=globals))

    if order:
        # Create and set the ordering methods.
        flds = [f for f in field_list if f.compare]
        self_tuple = _tuple_str('self', flds)
        other_tuple = _tuple_str('other', flds)
        for name, op in [('__lt__', '<'),
                         ('__le__', '<='),
                         ('__gt__', '>'),
                         ('__ge__', '>='),
                         ]:
            if _set_new_attribute(cls, name,
                                  _cmp_fn(name, op, self_tuple, other_tuple,
                                          globals=globals)):
                raise TypeError(f'Cannot overwrite attribute {name} '
                                f'in class {cls.__name__}. Consider using '
                                'functools.total_ordering')

    if frozen:
        for fn in _frozen_get_del_attr(cls, field_list, globals):
            if _set_new_attribute(cls, fn.__name__, fn):
                raise TypeError(f'Cannot overwrite attribute {fn.__name__} '
                                f'in class {cls.__name__}')

    # Decide if/how we're going to create a hash function.
    hash_action = _hash_action[bool(unsafe_hash),
                               bool(eq),
                               bool(frozen),
                               has_explicit_hash]
    if hash_action:
        # No need to call _set_new_attribute here, since by the time
        # we're here the overwriting is unconditional.
        cls.__hash__ = hash_action(cls, field_list, globals)

    if not getattr(cls, '__doc__'):
        # Create a class doc-string.
        cls.__doc__ = (cls.__name__ +
                       str(inspect.signature(cls)).replace(' -> None', ''))

    if match_args:
        # I could probably compute this once
        _set_new_attribute(cls, '__match_args__',
                           tuple(f.name for f in std_init_fields))

    if slots:
        cls = _add_slots(cls, frozen)

    abc.update_abstractmethods(cls)

    return cls


# _dataclass_getstate and _dataclass_setstate are needed for pickling frozen
# classes with slots.  These could be slighly more performant if we generated
# the code instead of iterating over fields.  But that can be a project for
# another day, if performance becomes an issue.
def _dataclass_getstate(self):
    return [getattr(self, f.name) for f in fields(self)]


def _dataclass_setstate(self, state):
    for field, value in zip(fields(self), state):
        # use setattr because dataclass may be frozen
        object.__setattr__(self, field.name, value)


def _add_slots(cls, is_frozen):
    # Need to create a new class, since we can't set __slots__
    #  after a class has been created.

    # Make sure __slots__ isn't already set.
    if '__slots__' in cls.__dict__:
        raise TypeError(f'{cls.__name__} already specifies __slots__')

    # Create a new dict for our new class.
    cls_dict = dict(cls.__dict__)
    field_names = tuple(f.name for f in fields(cls))
    cls_dict['__slots__'] = field_names
    for field_name in field_names:
        # Remove our attributes, if present. They'll still be
        #  available in _MARKER.
        cls_dict.pop(field_name, None)

    # Remove __dict__ itself.
    cls_dict.pop('__dict__', None)

    # And finally create the class.
    qualname = getattr(cls, '__qualname__', None)
    cls = type(cls)(cls.__name__, cls.__bases__, cls_dict)
    if qualname is not None:
        cls.__qualname__ = qualname

    if is_frozen:
        # Need this for pickling frozen classes with slots.
        cls.__getstate__ = _dataclass_getstate
        cls.__setstate__ = _dataclass_setstate

    return cls


def dataclass(cls=None, /, *, init=True, repr=True, eq=True, order=False,
              unsafe_hash=False, frozen=False, match_args=True,
              kw_only=False, slots=False):
    """Returns the same class as was passed in, with dunder methods
    added based on the fields defined in the class.

    Examines PEP 526 __annotations__ to determine fields.

    If init is true, an __init__() method is added to the class. If
    repr is true, a __repr__() method is added. If order is true, rich
    comparison dunder methods are added. If unsafe_hash is true, a
    __hash__() method function is added. If frozen is true, fields may
    not be assigned to after instance creation. If match_args is true,
    the __match_args__ tuple is added. If kw_only is true, then by
    default all fields are keyword-only. If slots is true, an
    __slots__ attribute is added.
    """

    def wrap(cls):
        return _process_class(cls, init, repr, eq, order, unsafe_hash,
                              frozen, match_args, kw_only, slots)

    # See if we're being called as @dataclass or @dataclass().
    if cls is None:
        # We're called with parens.
        return wrap

    # We're called as @dataclass without parens.
    return wrap(cls)


def fields(class_or_instance):
    """Return a tuple describing the fields of this dataclass.

    Accepts a dataclass or an instance of one. Tuple elements are of
    type Field.
    """

    # Might it be worth caching this, per class?
    try:
        fields = getattr(class_or_instance, _FIELDS)
    except AttributeError:
        raise TypeError('must be called with a dataclass type or instance')

    # Exclude pseudo-fields.  Note that fields is sorted by insertion
    # order, so the order of the tuple is as the fields were defined.
    return tuple(f for f in fields.values() if f._field_type is _FIELD)


def _is_dataclass_instance(obj):
    """Returns True if obj is an instance of a dataclass."""
    return hasattr(type(obj), _FIELDS)


def is_dataclass(obj):
    """Returns True if obj is a dataclass or an instance of a
    dataclass."""
    cls = obj if isinstance(obj, type) and not isinstance(obj, GenericAlias) else type(obj)
    return hasattr(cls, _FIELDS)


def asdict(obj, *, dict_factory=dict):
    """Return the fields of a dataclass instance as a new dictionary mapping
    field names to field values.

    Example usage:

      @dataclass
      class C:
          x: int
          y: int

      c = C(1, 2)
      assert asdict(c) == {'x': 1, 'y': 2}

    If given, 'dict_factory' will be used instead of built-in dict.
    The function applies recursively to field values that are
    dataclass instances. This will also look into built-in containers:
    tuples, lists, and dicts.
    """
    if not _is_dataclass_instance(obj):
        raise TypeError("asdict() should be called on dataclass instances")
    return _asdict_inner(obj, dict_factory)


def _asdict_inner(obj, dict_factory):
    if _is_dataclass_instance(obj):
        result = []
        for f in fields(obj):
            value = _asdict_inner(getattr(obj, f.name), dict_factory)
            result.append((f.name, value))
        return dict_factory(result)
    elif isinstance(obj, tuple) and hasattr(obj, '_fields'):
        # obj is a namedtuple.  Recurse into it, but the returned
        # object is another namedtuple of the same type.  This is
        # similar to how other list- or tuple-derived classes are
        # treated (see below), but we just need to create them
        # differently because a namedtuple's __init__ needs to be
        # called differently (see bpo-34363).

        # I'm not using namedtuple's _asdict()
        # method, because:
        # - it does not recurse in to the namedtuple fields and
        #   convert them to dicts (using dict_factory).
        # - I don't actually want to return a dict here.  The main
        #   use case here is json.dumps, and it handles converting
        #   namedtuples to lists.  Admittedly we're losing some
        #   information here when we produce a json list instead of a
        #   dict.  Note that if we returned dicts here instead of
        #   namedtuples, we could no longer call asdict() on a data
        #   structure where a namedtuple was used as a dict key.

        return type(obj)(*[_asdict_inner(v, dict_factory) for v in obj])
    elif isinstance(obj, (list, tuple)):
        # Assume we can create an object of this type by passing in a
        # generator (which is not true for namedtuples, handled
        # above).
        return type(obj)(_asdict_inner(v, dict_factory) for v in obj)
    elif isinstance(obj, dict):
        return type(obj)((_asdict_inner(k, dict_factory),
                          _asdict_inner(v, dict_factory))
                         for k, v in obj.items())
    else:
        return copy.deepcopy(obj)


def astuple(obj, *, tuple_factory=tuple):
    """Return the fields of a dataclass instance as a new tuple of field values.

    Example usage::

      @dataclass
      class C:
          x: int
          y: int

    c = C(1, 2)
    assert astuple(c) == (1, 2)

    If given, 'tuple_factory' will be used instead of built-in tuple.
    The function applies recursively to field values that are
    dataclass instances. This will also look into built-in containers:
    tuples, lists, and dicts.
    """

    if not _is_dataclass_instance(obj):
        raise TypeError("astuple() should be called on dataclass instances")
    return _astuple_inner(obj, tuple_factory)


def _astuple_inner(obj, tuple_factory):
    if _is_dataclass_instance(obj):
        result = []
        for f in fields(obj):
            value = _astuple_inner(getattr(obj, f.name), tuple_factory)
            result.append(value)
        return tuple_factory(result)
    elif isinstance(obj, tuple) and hasattr(obj, '_fields'):
        # obj is a namedtuple.  Recurse into it, but the returned
        # object is another namedtuple of the same type.  This is
        # similar to how other list- or tuple-derived classes are
        # treated (see below), but we just need to create them
        # differently because a namedtuple's __init__ needs to be
        # called differently (see bpo-34363).
        return type(obj)(*[_astuple_inner(v, tuple_factory) for v in obj])
    elif isinstance(obj, (list, tuple)):
        # Assume we can create an object of this type by passing in a
        # generator (which is not true for namedtuples, handled
        # above).
        return type(obj)(_astuple_inner(v, tuple_factory) for v in obj)
    elif isinstance(obj, dict):
        return type(obj)((_astuple_inner(k, tuple_factory), _astuple_inner(v, tuple_factory))
                          for k, v in obj.items())
    else:
        return copy.deepcopy(obj)


def make_dataclass(cls_name, fields, *, bases=(), namespace=None, init=True,
                   repr=True, eq=True, order=False, unsafe_hash=False,
                   frozen=False, match_args=True, kw_only=False, slots=False):
    """Return a new dynamically created dataclass.

    The dataclass name will be 'cls_name'.  'fields' is an iterable
    of either (name), (name, type) or (name, type, Field) objects. If type is
    omitted, use the string 'typing.Any'.  Field objects are created by
    the equivalent of calling 'field(name, type [, Field-info])'.

      C = make_dataclass('C', ['x', ('y', int), ('z', int, field(init=False))], bases=(Base,))

    is equivalent to:

      @dataclass
      class C(Base):
          x: 'typing.Any'
          y: int
          z: int = field(init=False)

    For the bases and namespace parameters, see the builtin type() function.

    The parameters init, repr, eq, order, unsafe_hash, and frozen are passed to
    dataclass().
    """

    if namespace is None:
        namespace = {}

    # While we're looking through the field names, validate that they
    # are identifiers, are not keywords, and not duplicates.
    seen = set()
    annotations = {}
    defaults = {}
    for item in fields:
        if isinstance(item, str):
            name = item
            tp = 'typing.Any'
        elif len(item) == 2:
            name, tp, = item
        elif len(item) == 3:
            name, tp, spec = item
            defaults[name] = spec
        else:
            raise TypeError(f'Invalid field: {item!r}')

        if not isinstance(name, str) or not name.isidentifier():
            raise TypeError(f'Field names must be valid identifiers: {name!r}')
        if keyword.iskeyword(name):
            raise TypeError(f'Field names must not be keywords: {name!r}')
        if name in seen:
            raise TypeError(f'Field name duplicated: {name!r}')

        seen.add(name)
        annotations[name] = tp

    # Update 'ns' with the user-supplied namespace plus our calculated values.
    def exec_body_callback(ns):
        ns.update(namespace)
        ns.update(defaults)
        ns['__annotations__'] = annotations

    # We use `types.new_class()` instead of simply `type()` to allow dynamic creation
    # of generic dataclasses.
    cls = types.new_class(cls_name, bases, {}, exec_body_callback)

    # Apply the normal decorator.
    return dataclass(cls, init=init, repr=repr, eq=eq, order=order,
                     unsafe_hash=unsafe_hash, frozen=frozen,
                     match_args=match_args, kw_only=kw_only, slots=slots)


def replace(obj, /, **changes):
    """Return a new object replacing specified fields with new values.

    This is especially useful for frozen classes.  Example usage:

      @dataclass(frozen=True)
      class C:
          x: int
          y: int

      c = C(1, 2)
      c1 = replace(c, x=3)
      assert c1.x == 3 and c1.y == 2
      """

    # We're going to mutate 'changes', but that's okay because it's a
    # new dict, even if called with 'replace(obj, **my_changes)'.

    if not _is_dataclass_instance(obj):
        raise TypeError("replace() should be called on dataclass instances")

    # It's an error to have init=False fields in 'changes'.
    # If a field is not in 'changes', read its value from the provided obj.

    for f in getattr(obj, _FIELDS).values():
        # Only consider normal fields or InitVars.
        if f._field_type is _FIELD_CLASSVAR:
            continue

        if not f.init:
            # Error if this field is specified in changes.
            if f.name in changes:
                raise ValueError(f'field {f.name} is declared with '
                                 'init=False, it cannot be specified with '
                                 'replace()')
            continue

        if f.name not in changes:
            if f._field_type is _FIELD_INITVAR and f.default is MISSING:
                raise ValueError(f"InitVar {f.name!r} "
                                 'must be specified with replace()')
            changes[f.name] = getattr(obj, f.name)

    # Create the new object, which calls __init__() and
    # __post_init__() (if defined), using all of the init fields we've
    # added and/or left in 'changes'.  If there are values supplied in
    # changes that aren't fields, this will correctly raise a
    # TypeError.
    return obj.__class__(**changes)