1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
|
'''This module implements specialized container datatypes providing
alternatives to Python's general purpose built-in containers, dict,
list, set, and tuple.
* namedtuple factory function for creating tuple subclasses with named fields
* deque list-like container with fast appends and pops on either end
* ChainMap dict-like class for creating a single view of multiple mappings
* Counter dict subclass for counting hashable objects
* OrderedDict dict subclass that remembers the order entries were added
* defaultdict dict subclass that calls a factory function to supply missing values
* UserDict wrapper around dictionary objects for easier dict subclassing
* UserList wrapper around list objects for easier list subclassing
* UserString wrapper around string objects for easier string subclassing
'''
__all__ = [
'ChainMap',
'Counter',
'OrderedDict',
'UserDict',
'UserList',
'UserString',
'defaultdict',
'deque',
'namedtuple',
]
import _collections_abc
import heapq as _heapq
import sys as _sys
from itertools import chain as _chain
from itertools import repeat as _repeat
from itertools import starmap as _starmap
from keyword import iskeyword as _iskeyword
from operator import eq as _eq
from operator import itemgetter as _itemgetter
from reprlib import recursive_repr as _recursive_repr
from _weakref import proxy as _proxy
try:
from _collections import deque
except ImportError:
pass
else:
_collections_abc.MutableSequence.register(deque)
try:
from _collections import defaultdict
except ImportError:
pass
def __getattr__(name):
# For backwards compatibility, continue to make the collections ABCs
# through Python 3.6 available through the collections module.
# Note, no new collections ABCs were added in Python 3.7
if name in _collections_abc.__all__:
obj = getattr(_collections_abc, name)
import warnings
warnings.warn("Using or importing the ABCs from 'collections' instead "
"of from 'collections.abc' is deprecated since Python 3.3, "
"and in 3.10 it will stop working",
DeprecationWarning, stacklevel=2)
globals()[name] = obj
return obj
raise AttributeError(f'module {__name__!r} has no attribute {name!r}')
################################################################################
### OrderedDict
################################################################################
class _OrderedDictKeysView(_collections_abc.KeysView):
def __reversed__(self):
yield from reversed(self._mapping)
class _OrderedDictItemsView(_collections_abc.ItemsView):
def __reversed__(self):
for key in reversed(self._mapping):
yield (key, self._mapping[key])
class _OrderedDictValuesView(_collections_abc.ValuesView):
def __reversed__(self):
for key in reversed(self._mapping):
yield self._mapping[key]
class _Link(object):
__slots__ = 'prev', 'next', 'key', '__weakref__'
class OrderedDict(dict):
'Dictionary that remembers insertion order'
# An inherited dict maps keys to values.
# The inherited dict provides __getitem__, __len__, __contains__, and get.
# The remaining methods are order-aware.
# Big-O running times for all methods are the same as regular dictionaries.
# The internal self.__map dict maps keys to links in a doubly linked list.
# The circular doubly linked list starts and ends with a sentinel element.
# The sentinel element never gets deleted (this simplifies the algorithm).
# The sentinel is in self.__hardroot with a weakref proxy in self.__root.
# The prev links are weakref proxies (to prevent circular references).
# Individual links are kept alive by the hard reference in self.__map.
# Those hard references disappear when a key is deleted from an OrderedDict.
def __init__(self, other=(), /, **kwds):
'''Initialize an ordered dictionary. The signature is the same as
regular dictionaries. Keyword argument order is preserved.
'''
try:
self.__root
except AttributeError:
self.__hardroot = _Link()
self.__root = root = _proxy(self.__hardroot)
root.prev = root.next = root
self.__map = {}
self.__update(other, **kwds)
def __setitem__(self, key, value,
dict_setitem=dict.__setitem__, proxy=_proxy, Link=_Link):
'od.__setitem__(i, y) <==> od[i]=y'
# Setting a new item creates a new link at the end of the linked list,
# and the inherited dictionary is updated with the new key/value pair.
if key not in self:
self.__map[key] = link = Link()
root = self.__root
last = root.prev
link.prev, link.next, link.key = last, root, key
last.next = link
root.prev = proxy(link)
dict_setitem(self, key, value)
def __delitem__(self, key, dict_delitem=dict.__delitem__):
'od.__delitem__(y) <==> del od[y]'
# Deleting an existing item uses self.__map to find the link which gets
# removed by updating the links in the predecessor and successor nodes.
dict_delitem(self, key)
link = self.__map.pop(key)
link_prev = link.prev
link_next = link.next
link_prev.next = link_next
link_next.prev = link_prev
link.prev = None
link.next = None
def __iter__(self):
'od.__iter__() <==> iter(od)'
# Traverse the linked list in order.
root = self.__root
curr = root.next
while curr is not root:
yield curr.key
curr = curr.next
def __reversed__(self):
'od.__reversed__() <==> reversed(od)'
# Traverse the linked list in reverse order.
root = self.__root
curr = root.prev
while curr is not root:
yield curr.key
curr = curr.prev
def clear(self):
'od.clear() -> None. Remove all items from od.'
root = self.__root
root.prev = root.next = root
self.__map.clear()
dict.clear(self)
def popitem(self, last=True):
'''Remove and return a (key, value) pair from the dictionary.
Pairs are returned in LIFO order if last is true or FIFO order if false.
'''
if not self:
raise KeyError('dictionary is empty')
root = self.__root
if last:
link = root.prev
link_prev = link.prev
link_prev.next = root
root.prev = link_prev
else:
link = root.next
link_next = link.next
root.next = link_next
link_next.prev = root
key = link.key
del self.__map[key]
value = dict.pop(self, key)
return key, value
def move_to_end(self, key, last=True):
'''Move an existing element to the end (or beginning if last is false).
Raise KeyError if the element does not exist.
'''
link = self.__map[key]
link_prev = link.prev
link_next = link.next
soft_link = link_next.prev
link_prev.next = link_next
link_next.prev = link_prev
root = self.__root
if last:
last = root.prev
link.prev = last
link.next = root
root.prev = soft_link
last.next = link
else:
first = root.next
link.prev = root
link.next = first
first.prev = soft_link
root.next = link
def __sizeof__(self):
sizeof = _sys.getsizeof
n = len(self) + 1 # number of links including root
size = sizeof(self.__dict__) # instance dictionary
size += sizeof(self.__map) * 2 # internal dict and inherited dict
size += sizeof(self.__hardroot) * n # link objects
size += sizeof(self.__root) * n # proxy objects
return size
update = __update = _collections_abc.MutableMapping.update
def keys(self):
"D.keys() -> a set-like object providing a view on D's keys"
return _OrderedDictKeysView(self)
def items(self):
"D.items() -> a set-like object providing a view on D's items"
return _OrderedDictItemsView(self)
def values(self):
"D.values() -> an object providing a view on D's values"
return _OrderedDictValuesView(self)
__ne__ = _collections_abc.MutableMapping.__ne__
__marker = object()
def pop(self, key, default=__marker):
'''od.pop(k[,d]) -> v, remove specified key and return the corresponding
value. If key is not found, d is returned if given, otherwise KeyError
is raised.
'''
if key in self:
result = self[key]
del self[key]
return result
if default is self.__marker:
raise KeyError(key)
return default
def setdefault(self, key, default=None):
'''Insert key with a value of default if key is not in the dictionary.
Return the value for key if key is in the dictionary, else default.
'''
if key in self:
return self[key]
self[key] = default
return default
@_recursive_repr()
def __repr__(self):
'od.__repr__() <==> repr(od)'
if not self:
return '%s()' % (self.__class__.__name__,)
return '%s(%r)' % (self.__class__.__name__, list(self.items()))
def __reduce__(self):
'Return state information for pickling'
inst_dict = vars(self).copy()
for k in vars(OrderedDict()):
inst_dict.pop(k, None)
return self.__class__, (), inst_dict or None, None, iter(self.items())
def copy(self):
'od.copy() -> a shallow copy of od'
return self.__class__(self)
@classmethod
def fromkeys(cls, iterable, value=None):
'''Create a new ordered dictionary with keys from iterable and values set to value.
'''
self = cls()
for key in iterable:
self[key] = value
return self
def __eq__(self, other):
'''od.__eq__(y) <==> od==y. Comparison to another OD is order-sensitive
while comparison to a regular mapping is order-insensitive.
'''
if isinstance(other, OrderedDict):
return dict.__eq__(self, other) and all(map(_eq, self, other))
return dict.__eq__(self, other)
def __ior__(self, other):
self.update(other)
return self
def __or__(self, other):
if not isinstance(other, dict):
return NotImplemented
new = self.__class__(self)
new.update(other)
return new
def __ror__(self, other):
if not isinstance(other, dict):
return NotImplemented
new = self.__class__(other)
new.update(self)
return new
try:
from _collections import OrderedDict
except ImportError:
# Leave the pure Python version in place.
pass
################################################################################
### namedtuple
################################################################################
try:
from _collections import _tuplegetter
except ImportError:
_tuplegetter = lambda index, doc: property(_itemgetter(index), doc=doc)
def namedtuple(typename, field_names, *, rename=False, defaults=None, module=None):
"""Returns a new subclass of tuple with named fields.
>>> Point = namedtuple('Point', ['x', 'y'])
>>> Point.__doc__ # docstring for the new class
'Point(x, y)'
>>> p = Point(11, y=22) # instantiate with positional args or keywords
>>> p[0] + p[1] # indexable like a plain tuple
33
>>> x, y = p # unpack like a regular tuple
>>> x, y
(11, 22)
>>> p.x + p.y # fields also accessible by name
33
>>> d = p._asdict() # convert to a dictionary
>>> d['x']
11
>>> Point(**d) # convert from a dictionary
Point(x=11, y=22)
>>> p._replace(x=100) # _replace() is like str.replace() but targets named fields
Point(x=100, y=22)
"""
# Validate the field names. At the user's option, either generate an error
# message or automatically replace the field name with a valid name.
if isinstance(field_names, str):
field_names = field_names.replace(',', ' ').split()
field_names = list(map(str, field_names))
typename = _sys.intern(str(typename))
if rename:
seen = set()
for index, name in enumerate(field_names):
if (not name.isidentifier()
or _iskeyword(name)
or name.startswith('_')
or name in seen):
field_names[index] = f'_{index}'
seen.add(name)
for name in [typename] + field_names:
if type(name) is not str:
raise TypeError('Type names and field names must be strings')
if not name.isidentifier():
raise ValueError('Type names and field names must be valid '
f'identifiers: {name!r}')
if _iskeyword(name):
raise ValueError('Type names and field names cannot be a '
f'keyword: {name!r}')
seen = set()
for name in field_names:
if name.startswith('_') and not rename:
raise ValueError('Field names cannot start with an underscore: '
f'{name!r}')
if name in seen:
raise ValueError(f'Encountered duplicate field name: {name!r}')
seen.add(name)
field_defaults = {}
if defaults is not None:
defaults = tuple(defaults)
if len(defaults) > len(field_names):
raise TypeError('Got more default values than field names')
field_defaults = dict(reversed(list(zip(reversed(field_names),
reversed(defaults)))))
# Variables used in the methods and docstrings
field_names = tuple(map(_sys.intern, field_names))
num_fields = len(field_names)
arg_list = ', '.join(field_names)
if num_fields == 1:
arg_list += ','
repr_fmt = '(' + ', '.join(f'{name}=%r' for name in field_names) + ')'
tuple_new = tuple.__new__
_dict, _tuple, _len, _map, _zip = dict, tuple, len, map, zip
# Create all the named tuple methods to be added to the class namespace
namespace = {
'_tuple_new': tuple_new,
'__builtins__': {},
'__name__': f'namedtuple_{typename}',
}
code = f'lambda _cls, {arg_list}: _tuple_new(_cls, ({arg_list}))'
__new__ = eval(code, namespace)
__new__.__name__ = '__new__'
__new__.__doc__ = f'Create new instance of {typename}({arg_list})'
if defaults is not None:
__new__.__defaults__ = defaults
@classmethod
def _make(cls, iterable):
result = tuple_new(cls, iterable)
if _len(result) != num_fields:
raise TypeError(f'Expected {num_fields} arguments, got {len(result)}')
return result
_make.__func__.__doc__ = (f'Make a new {typename} object from a sequence '
'or iterable')
def _replace(self, /, **kwds):
result = self._make(_map(kwds.pop, field_names, self))
if kwds:
raise ValueError(f'Got unexpected field names: {list(kwds)!r}')
return result
_replace.__doc__ = (f'Return a new {typename} object replacing specified '
'fields with new values')
def __repr__(self):
'Return a nicely formatted representation string'
return self.__class__.__name__ + repr_fmt % self
def _asdict(self):
'Return a new dict which maps field names to their values.'
return _dict(_zip(self._fields, self))
def __getnewargs__(self):
'Return self as a plain tuple. Used by copy and pickle.'
return _tuple(self)
# Modify function metadata to help with introspection and debugging
for method in (
__new__,
_make.__func__,
_replace,
__repr__,
_asdict,
__getnewargs__,
):
method.__qualname__ = f'{typename}.{method.__name__}'
# Build-up the class namespace dictionary
# and use type() to build the result class
class_namespace = {
'__doc__': f'{typename}({arg_list})',
'__slots__': (),
'_fields': field_names,
'_field_defaults': field_defaults,
'__new__': __new__,
'_make': _make,
'_replace': _replace,
'__repr__': __repr__,
'_asdict': _asdict,
'__getnewargs__': __getnewargs__,
}
for index, name in enumerate(field_names):
doc = _sys.intern(f'Alias for field number {index}')
class_namespace[name] = _tuplegetter(index, doc)
result = type(typename, (tuple,), class_namespace)
# For pickling to work, the __module__ variable needs to be set to the frame
# where the named tuple is created. Bypass this step in environments where
# sys._getframe is not defined (Jython for example) or sys._getframe is not
# defined for arguments greater than 0 (IronPython), or where the user has
# specified a particular module.
if module is None:
try:
module = _sys._getframe(1).f_globals.get('__name__', '__main__')
except (AttributeError, ValueError):
pass
if module is not None:
result.__module__ = module
return result
########################################################################
### Counter
########################################################################
def _count_elements(mapping, iterable):
'Tally elements from the iterable.'
mapping_get = mapping.get
for elem in iterable:
mapping[elem] = mapping_get(elem, 0) + 1
try: # Load C helper function if available
from _collections import _count_elements
except ImportError:
pass
class Counter(dict):
'''Dict subclass for counting hashable items. Sometimes called a bag
or multiset. Elements are stored as dictionary keys and their counts
are stored as dictionary values.
>>> c = Counter('abcdeabcdabcaba') # count elements from a string
>>> c.most_common(3) # three most common elements
[('a', 5), ('b', 4), ('c', 3)]
>>> sorted(c) # list all unique elements
['a', 'b', 'c', 'd', 'e']
>>> ''.join(sorted(c.elements())) # list elements with repetitions
'aaaaabbbbcccdde'
>>> sum(c.values()) # total of all counts
15
>>> c['a'] # count of letter 'a'
5
>>> for elem in 'shazam': # update counts from an iterable
... c[elem] += 1 # by adding 1 to each element's count
>>> c['a'] # now there are seven 'a'
7
>>> del c['b'] # remove all 'b'
>>> c['b'] # now there are zero 'b'
0
>>> d = Counter('simsalabim') # make another counter
>>> c.update(d) # add in the second counter
>>> c['a'] # now there are nine 'a'
9
>>> c.clear() # empty the counter
>>> c
Counter()
Note: If a count is set to zero or reduced to zero, it will remain
in the counter until the entry is deleted or the counter is cleared:
>>> c = Counter('aaabbc')
>>> c['b'] -= 2 # reduce the count of 'b' by two
>>> c.most_common() # 'b' is still in, but its count is zero
[('a', 3), ('c', 1), ('b', 0)]
'''
# References:
# http://en.wikipedia.org/wiki/Multiset
# http://www.gnu.org/software/smalltalk/manual-base/html_node/Bag.html
# http://www.demo2s.com/Tutorial/Cpp/0380__set-multiset/Catalog0380__set-multiset.htm
# http://code.activestate.com/recipes/259174/
# Knuth, TAOCP Vol. II section 4.6.3
def __init__(self, iterable=None, /, **kwds):
'''Create a new, empty Counter object. And if given, count elements
from an input iterable. Or, initialize the count from another mapping
of elements to their counts.
>>> c = Counter() # a new, empty counter
>>> c = Counter('gallahad') # a new counter from an iterable
>>> c = Counter({'a': 4, 'b': 2}) # a new counter from a mapping
>>> c = Counter(a=4, b=2) # a new counter from keyword args
'''
super().__init__()
self.update(iterable, **kwds)
def __missing__(self, key):
'The count of elements not in the Counter is zero.'
# Needed so that self[missing_item] does not raise KeyError
return 0
def most_common(self, n=None):
'''List the n most common elements and their counts from the most
common to the least. If n is None, then list all element counts.
>>> Counter('abracadabra').most_common(3)
[('a', 5), ('b', 2), ('r', 2)]
'''
# Emulate Bag.sortedByCount from Smalltalk
if n is None:
return sorted(self.items(), key=_itemgetter(1), reverse=True)
return _heapq.nlargest(n, self.items(), key=_itemgetter(1))
def elements(self):
'''Iterator over elements repeating each as many times as its count.
>>> c = Counter('ABCABC')
>>> sorted(c.elements())
['A', 'A', 'B', 'B', 'C', 'C']
# Knuth's example for prime factors of 1836: 2**2 * 3**3 * 17**1
>>> prime_factors = Counter({2: 2, 3: 3, 17: 1})
>>> product = 1
>>> for factor in prime_factors.elements(): # loop over factors
... product *= factor # and multiply them
>>> product
1836
Note, if an element's count has been set to zero or is a negative
number, elements() will ignore it.
'''
# Emulate Bag.do from Smalltalk and Multiset.begin from C++.
return _chain.from_iterable(_starmap(_repeat, self.items()))
# Override dict methods where necessary
@classmethod
def fromkeys(cls, iterable, v=None):
# There is no equivalent method for counters because the semantics
# would be ambiguous in cases such as Counter.fromkeys('aaabbc', v=2).
# Initializing counters to zero values isn't necessary because zero
# is already the default value for counter lookups. Initializing
# to one is easily accomplished with Counter(set(iterable)). For
# more exotic cases, create a dictionary first using a dictionary
# comprehension or dict.fromkeys().
raise NotImplementedError(
'Counter.fromkeys() is undefined. Use Counter(iterable) instead.')
def update(self, iterable=None, /, **kwds):
'''Like dict.update() but add counts instead of replacing them.
Source can be an iterable, a dictionary, or another Counter instance.
>>> c = Counter('which')
>>> c.update('witch') # add elements from another iterable
>>> d = Counter('watch')
>>> c.update(d) # add elements from another counter
>>> c['h'] # four 'h' in which, witch, and watch
4
'''
# The regular dict.update() operation makes no sense here because the
# replace behavior results in the some of original untouched counts
# being mixed-in with all of the other counts for a mismash that
# doesn't have a straight-forward interpretation in most counting
# contexts. Instead, we implement straight-addition. Both the inputs
# and outputs are allowed to contain zero and negative counts.
if iterable is not None:
if isinstance(iterable, _collections_abc.Mapping):
if self:
self_get = self.get
for elem, count in iterable.items():
self[elem] = count + self_get(elem, 0)
else:
# fast path when counter is empty
super().update(iterable)
else:
_count_elements(self, iterable)
if kwds:
self.update(kwds)
def subtract(self, iterable=None, /, **kwds):
'''Like dict.update() but subtracts counts instead of replacing them.
Counts can be reduced below zero. Both the inputs and outputs are
allowed to contain zero and negative counts.
Source can be an iterable, a dictionary, or another Counter instance.
>>> c = Counter('which')
>>> c.subtract('witch') # subtract elements from another iterable
>>> c.subtract(Counter('watch')) # subtract elements from another counter
>>> c['h'] # 2 in which, minus 1 in witch, minus 1 in watch
0
>>> c['w'] # 1 in which, minus 1 in witch, minus 1 in watch
-1
'''
if iterable is not None:
self_get = self.get
if isinstance(iterable, _collections_abc.Mapping):
for elem, count in iterable.items():
self[elem] = self_get(elem, 0) - count
else:
for elem in iterable:
self[elem] = self_get(elem, 0) - 1
if kwds:
self.subtract(kwds)
def copy(self):
'Return a shallow copy.'
return self.__class__(self)
def __reduce__(self):
return self.__class__, (dict(self),)
def __delitem__(self, elem):
'Like dict.__delitem__() but does not raise KeyError for missing values.'
if elem in self:
super().__delitem__(elem)
def __repr__(self):
if not self:
return f'{self.__class__.__name__}()'
try:
# dict() preserves the ordering returned by most_common()
d = dict(self.most_common())
except TypeError:
# handle case where values are not orderable
d = dict(self)
return f'{self.__class__.__name__}({d!r})'
# Multiset-style mathematical operations discussed in:
# Knuth TAOCP Volume II section 4.6.3 exercise 19
# and at http://en.wikipedia.org/wiki/Multiset
#
# Outputs guaranteed to only include positive counts.
#
# To strip negative and zero counts, add-in an empty counter:
# c += Counter()
#
# Rich comparison operators for multiset subset and superset tests
# are deliberately omitted due to semantic conflicts with the
# existing inherited dict equality method. Subset and superset
# semantics ignore zero counts and require that p≤q ∧ p≥q → p=q;
# however, that would not be the case for p=Counter(a=1, b=0)
# and q=Counter(a=1) where the dictionaries are not equal.
def __add__(self, other):
'''Add counts from two counters.
>>> Counter('abbb') + Counter('bcc')
Counter({'b': 4, 'c': 2, 'a': 1})
'''
if not isinstance(other, Counter):
return NotImplemented
result = Counter()
for elem, count in self.items():
newcount = count + other[elem]
if newcount > 0:
result[elem] = newcount
for elem, count in other.items():
if elem not in self and count > 0:
result[elem] = count
return result
def __sub__(self, other):
''' Subtract count, but keep only results with positive counts.
>>> Counter('abbbc') - Counter('bccd')
Counter({'b': 2, 'a': 1})
'''
if not isinstance(other, Counter):
return NotImplemented
result = Counter()
for elem, count in self.items():
newcount = count - other[elem]
if newcount > 0:
result[elem] = newcount
for elem, count in other.items():
if elem not in self and count < 0:
result[elem] = 0 - count
return result
def __or__(self, other):
'''Union is the maximum of value in either of the input counters.
>>> Counter('abbb') | Counter('bcc')
Counter({'b': 3, 'c': 2, 'a': 1})
'''
if not isinstance(other, Counter):
return NotImplemented
result = Counter()
for elem, count in self.items():
other_count = other[elem]
newcount = other_count if count < other_count else count
if newcount > 0:
result[elem] = newcount
for elem, count in other.items():
if elem not in self and count > 0:
result[elem] = count
return result
def __and__(self, other):
''' Intersection is the minimum of corresponding counts.
>>> Counter('abbb') & Counter('bcc')
Counter({'b': 1})
'''
if not isinstance(other, Counter):
return NotImplemented
result = Counter()
for elem, count in self.items():
other_count = other[elem]
newcount = count if count < other_count else other_count
if newcount > 0:
result[elem] = newcount
return result
def __pos__(self):
'Adds an empty counter, effectively stripping negative and zero counts'
result = Counter()
for elem, count in self.items():
if count > 0:
result[elem] = count
return result
def __neg__(self):
'''Subtracts from an empty counter. Strips positive and zero counts,
and flips the sign on negative counts.
'''
result = Counter()
for elem, count in self.items():
if count < 0:
result[elem] = 0 - count
return result
def _keep_positive(self):
'''Internal method to strip elements with a negative or zero count'''
nonpositive = [elem for elem, count in self.items() if not count > 0]
for elem in nonpositive:
del self[elem]
return self
def __iadd__(self, other):
'''Inplace add from another counter, keeping only positive counts.
>>> c = Counter('abbb')
>>> c += Counter('bcc')
>>> c
Counter({'b': 4, 'c': 2, 'a': 1})
'''
for elem, count in other.items():
self[elem] += count
return self._keep_positive()
def __isub__(self, other):
'''Inplace subtract counter, but keep only results with positive counts.
>>> c = Counter('abbbc')
>>> c -= Counter('bccd')
>>> c
Counter({'b': 2, 'a': 1})
'''
for elem, count in other.items():
self[elem] -= count
return self._keep_positive()
def __ior__(self, other):
'''Inplace union is the maximum of value from either counter.
>>> c = Counter('abbb')
>>> c |= Counter('bcc')
>>> c
Counter({'b': 3, 'c': 2, 'a': 1})
'''
for elem, other_count in other.items():
count = self[elem]
if other_count > count:
self[elem] = other_count
return self._keep_positive()
def __iand__(self, other):
'''Inplace intersection is the minimum of corresponding counts.
>>> c = Counter('abbb')
>>> c &= Counter('bcc')
>>> c
Counter({'b': 1})
'''
for elem, count in self.items():
other_count = other[elem]
if other_count < count:
self[elem] = other_count
return self._keep_positive()
########################################################################
### ChainMap
########################################################################
class ChainMap(_collections_abc.MutableMapping):
''' A ChainMap groups multiple dicts (or other mappings) together
to create a single, updateable view.
The underlying mappings are stored in a list. That list is public and can
be accessed or updated using the *maps* attribute. There is no other
state.
Lookups search the underlying mappings successively until a key is found.
In contrast, writes, updates, and deletions only operate on the first
mapping.
'''
def __init__(self, *maps):
'''Initialize a ChainMap by setting *maps* to the given mappings.
If no mappings are provided, a single empty dictionary is used.
'''
self.maps = list(maps) or [{}] # always at least one map
def __missing__(self, key):
raise KeyError(key)
def __getitem__(self, key):
for mapping in self.maps:
try:
return mapping[key] # can't use 'key in mapping' with defaultdict
except KeyError:
pass
return self.__missing__(key) # support subclasses that define __missing__
def get(self, key, default=None):
return self[key] if key in self else default
def __len__(self):
return len(set().union(*self.maps)) # reuses stored hash values if possible
def __iter__(self):
d = {}
for mapping in reversed(self.maps):
d.update(dict.fromkeys(mapping)) # reuses stored hash values if possible
return iter(d)
def __contains__(self, key):
return any(key in m for m in self.maps)
def __bool__(self):
return any(self.maps)
@_recursive_repr()
def __repr__(self):
return f'{self.__class__.__name__}({", ".join(map(repr, self.maps))})'
@classmethod
def fromkeys(cls, iterable, *args):
'Create a ChainMap with a single dict created from the iterable.'
return cls(dict.fromkeys(iterable, *args))
def copy(self):
'New ChainMap or subclass with a new copy of maps[0] and refs to maps[1:]'
return self.__class__(self.maps[0].copy(), *self.maps[1:])
__copy__ = copy
def new_child(self, m=None): # like Django's Context.push()
'''New ChainMap with a new map followed by all previous maps.
If no map is provided, an empty dict is used.
'''
if m is None:
m = {}
return self.__class__(m, *self.maps)
@property
def parents(self): # like Django's Context.pop()
'New ChainMap from maps[1:].'
return self.__class__(*self.maps[1:])
def __setitem__(self, key, value):
self.maps[0][key] = value
def __delitem__(self, key):
try:
del self.maps[0][key]
except KeyError:
raise KeyError(f'Key not found in the first mapping: {key!r}')
def popitem(self):
'Remove and return an item pair from maps[0]. Raise KeyError is maps[0] is empty.'
try:
return self.maps[0].popitem()
except KeyError:
raise KeyError('No keys found in the first mapping.')
def pop(self, key, *args):
'Remove *key* from maps[0] and return its value. Raise KeyError if *key* not in maps[0].'
try:
return self.maps[0].pop(key, *args)
except KeyError:
raise KeyError(f'Key not found in the first mapping: {key!r}')
def clear(self):
'Clear maps[0], leaving maps[1:] intact.'
self.maps[0].clear()
def __ior__(self, other):
self.maps[0].update(other)
return self
def __or__(self, other):
if not isinstance(other, _collections_abc.Mapping):
return NotImplemented
m = self.copy()
m.maps[0].update(other)
return m
def __ror__(self, other):
if not isinstance(other, _collections_abc.Mapping):
return NotImplemented
m = dict(other)
for child in reversed(self.maps):
m.update(child)
return self.__class__(m)
################################################################################
### UserDict
################################################################################
class UserDict(_collections_abc.MutableMapping):
# Start by filling-out the abstract methods
def __init__(self, dict=None, /, **kwargs):
self.data = {}
if dict is not None:
self.update(dict)
if kwargs:
self.update(kwargs)
def __len__(self):
return len(self.data)
def __getitem__(self, key):
if key in self.data:
return self.data[key]
if hasattr(self.__class__, "__missing__"):
return self.__class__.__missing__(self, key)
raise KeyError(key)
def __setitem__(self, key, item):
self.data[key] = item
def __delitem__(self, key):
del self.data[key]
def __iter__(self):
return iter(self.data)
# Modify __contains__ to work correctly when __missing__ is present
def __contains__(self, key):
return key in self.data
# Now, add the methods in dicts but not in MutableMapping
def __repr__(self):
return repr(self.data)
def __or__(self, other):
if isinstance(other, UserDict):
return self.__class__(self.data | other.data)
if isinstance(other, dict):
return self.__class__(self.data | other)
return NotImplemented
def __ror__(self, other):
if isinstance(other, UserDict):
return self.__class__(other.data | self.data)
if isinstance(other, dict):
return self.__class__(other | self.data)
return NotImplemented
def __ior__(self, other):
if isinstance(other, UserDict):
self.data |= other.data
else:
self.data |= other
return self
def __copy__(self):
inst = self.__class__.__new__(self.__class__)
inst.__dict__.update(self.__dict__)
# Create a copy and avoid triggering descriptors
inst.__dict__["data"] = self.__dict__["data"].copy()
return inst
def copy(self):
if self.__class__ is UserDict:
return UserDict(self.data.copy())
import copy
data = self.data
try:
self.data = {}
c = copy.copy(self)
finally:
self.data = data
c.update(self)
return c
@classmethod
def fromkeys(cls, iterable, value=None):
d = cls()
for key in iterable:
d[key] = value
return d
################################################################################
### UserList
################################################################################
class UserList(_collections_abc.MutableSequence):
"""A more or less complete user-defined wrapper around list objects."""
def __init__(self, initlist=None):
self.data = []
if initlist is not None:
# XXX should this accept an arbitrary sequence?
if type(initlist) == type(self.data):
self.data[:] = initlist
elif isinstance(initlist, UserList):
self.data[:] = initlist.data[:]
else:
self.data = list(initlist)
def __repr__(self):
return repr(self.data)
def __lt__(self, other):
return self.data < self.__cast(other)
def __le__(self, other):
return self.data <= self.__cast(other)
def __eq__(self, other):
return self.data == self.__cast(other)
def __gt__(self, other):
return self.data > self.__cast(other)
def __ge__(self, other):
return self.data >= self.__cast(other)
def __cast(self, other):
return other.data if isinstance(other, UserList) else other
def __contains__(self, item):
return item in self.data
def __len__(self):
return len(self.data)
def __getitem__(self, i):
if isinstance(i, slice):
return self.__class__(self.data[i])
else:
return self.data[i]
def __setitem__(self, i, item):
self.data[i] = item
def __delitem__(self, i):
del self.data[i]
def __add__(self, other):
if isinstance(other, UserList):
return self.__class__(self.data + other.data)
elif isinstance(other, type(self.data)):
return self.__class__(self.data + other)
return self.__class__(self.data + list(other))
def __radd__(self, other):
if isinstance(other, UserList):
return self.__class__(other.data + self.data)
elif isinstance(other, type(self.data)):
return self.__class__(other + self.data)
return self.__class__(list(other) + self.data)
def __iadd__(self, other):
if isinstance(other, UserList):
self.data += other.data
elif isinstance(other, type(self.data)):
self.data += other
else:
self.data += list(other)
return self
def __mul__(self, n):
return self.__class__(self.data * n)
__rmul__ = __mul__
def __imul__(self, n):
self.data *= n
return self
def __copy__(self):
inst = self.__class__.__new__(self.__class__)
inst.__dict__.update(self.__dict__)
# Create a copy and avoid triggering descriptors
inst.__dict__["data"] = self.__dict__["data"][:]
return inst
def append(self, item):
self.data.append(item)
def insert(self, i, item):
self.data.insert(i, item)
def pop(self, i=-1):
return self.data.pop(i)
def remove(self, item):
self.data.remove(item)
def clear(self):
self.data.clear()
def copy(self):
return self.__class__(self)
def count(self, item):
return self.data.count(item)
def index(self, item, *args):
return self.data.index(item, *args)
def reverse(self):
self.data.reverse()
def sort(self, /, *args, **kwds):
self.data.sort(*args, **kwds)
def extend(self, other):
if isinstance(other, UserList):
self.data.extend(other.data)
else:
self.data.extend(other)
################################################################################
### UserString
################################################################################
class UserString(_collections_abc.Sequence):
def __init__(self, seq):
if isinstance(seq, str):
self.data = seq
elif isinstance(seq, UserString):
self.data = seq.data[:]
else:
self.data = str(seq)
def __str__(self):
return str(self.data)
def __repr__(self):
return repr(self.data)
def __int__(self):
return int(self.data)
def __float__(self):
return float(self.data)
def __complex__(self):
return complex(self.data)
def __hash__(self):
return hash(self.data)
def __getnewargs__(self):
return (self.data[:],)
def __eq__(self, string):
if isinstance(string, UserString):
return self.data == string.data
return self.data == string
def __lt__(self, string):
if isinstance(string, UserString):
return self.data < string.data
return self.data < string
def __le__(self, string):
if isinstance(string, UserString):
return self.data <= string.data
return self.data <= string
def __gt__(self, string):
if isinstance(string, UserString):
return self.data > string.data
return self.data > string
def __ge__(self, string):
if isinstance(string, UserString):
return self.data >= string.data
return self.data >= string
def __contains__(self, char):
if isinstance(char, UserString):
char = char.data
return char in self.data
def __len__(self):
return len(self.data)
def __getitem__(self, index):
return self.__class__(self.data[index])
def __add__(self, other):
if isinstance(other, UserString):
return self.__class__(self.data + other.data)
elif isinstance(other, str):
return self.__class__(self.data + other)
return self.__class__(self.data + str(other))
def __radd__(self, other):
if isinstance(other, str):
return self.__class__(other + self.data)
return self.__class__(str(other) + self.data)
def __mul__(self, n):
return self.__class__(self.data * n)
__rmul__ = __mul__
def __mod__(self, args):
return self.__class__(self.data % args)
def __rmod__(self, template):
return self.__class__(str(template) % self)
# the following methods are defined in alphabetical order:
def capitalize(self):
return self.__class__(self.data.capitalize())
def casefold(self):
return self.__class__(self.data.casefold())
def center(self, width, *args):
return self.__class__(self.data.center(width, *args))
def count(self, sub, start=0, end=_sys.maxsize):
if isinstance(sub, UserString):
sub = sub.data
return self.data.count(sub, start, end)
def removeprefix(self, prefix, /):
if isinstance(prefix, UserString):
prefix = prefix.data
return self.__class__(self.data.removeprefix(prefix))
def removesuffix(self, suffix, /):
if isinstance(suffix, UserString):
suffix = suffix.data
return self.__class__(self.data.removesuffix(suffix))
def encode(self, encoding='utf-8', errors='strict'):
encoding = 'utf-8' if encoding is None else encoding
errors = 'strict' if errors is None else errors
return self.data.encode(encoding, errors)
def endswith(self, suffix, start=0, end=_sys.maxsize):
return self.data.endswith(suffix, start, end)
def expandtabs(self, tabsize=8):
return self.__class__(self.data.expandtabs(tabsize))
def find(self, sub, start=0, end=_sys.maxsize):
if isinstance(sub, UserString):
sub = sub.data
return self.data.find(sub, start, end)
def format(self, /, *args, **kwds):
return self.data.format(*args, **kwds)
def format_map(self, mapping):
return self.data.format_map(mapping)
def index(self, sub, start=0, end=_sys.maxsize):
return self.data.index(sub, start, end)
def isalpha(self):
return self.data.isalpha()
def isalnum(self):
return self.data.isalnum()
def isascii(self):
return self.data.isascii()
def isdecimal(self):
return self.data.isdecimal()
def isdigit(self):
return self.data.isdigit()
def isidentifier(self):
return self.data.isidentifier()
def islower(self):
return self.data.islower()
def isnumeric(self):
return self.data.isnumeric()
def isprintable(self):
return self.data.isprintable()
def isspace(self):
return self.data.isspace()
def istitle(self):
return self.data.istitle()
def isupper(self):
return self.data.isupper()
def join(self, seq):
return self.data.join(seq)
def ljust(self, width, *args):
return self.__class__(self.data.ljust(width, *args))
def lower(self):
return self.__class__(self.data.lower())
def lstrip(self, chars=None):
return self.__class__(self.data.lstrip(chars))
maketrans = str.maketrans
def partition(self, sep):
return self.data.partition(sep)
def replace(self, old, new, maxsplit=-1):
if isinstance(old, UserString):
old = old.data
if isinstance(new, UserString):
new = new.data
return self.__class__(self.data.replace(old, new, maxsplit))
def rfind(self, sub, start=0, end=_sys.maxsize):
if isinstance(sub, UserString):
sub = sub.data
return self.data.rfind(sub, start, end)
def rindex(self, sub, start=0, end=_sys.maxsize):
return self.data.rindex(sub, start, end)
def rjust(self, width, *args):
return self.__class__(self.data.rjust(width, *args))
def rpartition(self, sep):
return self.data.rpartition(sep)
def rstrip(self, chars=None):
return self.__class__(self.data.rstrip(chars))
def split(self, sep=None, maxsplit=-1):
return self.data.split(sep, maxsplit)
def rsplit(self, sep=None, maxsplit=-1):
return self.data.rsplit(sep, maxsplit)
def splitlines(self, keepends=False):
return self.data.splitlines(keepends)
def startswith(self, prefix, start=0, end=_sys.maxsize):
return self.data.startswith(prefix, start, end)
def strip(self, chars=None):
return self.__class__(self.data.strip(chars))
def swapcase(self):
return self.__class__(self.data.swapcase())
def title(self):
return self.__class__(self.data.title())
def translate(self, *args):
return self.__class__(self.data.translate(*args))
def upper(self):
return self.__class__(self.data.upper())
def zfill(self, width):
return self.__class__(self.data.zfill(width))
|