aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/tools/python3/Python/flowgraph.c
blob: fbbe053ae58e9732ad3ed2682ac3cdaec2ea3a61 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
#include <stdbool.h>

#include "Python.h"
#include "pycore_flowgraph.h"
#include "pycore_compile.h"
#include "pycore_pymem.h"         // _PyMem_IsPtrFreed()

#include "pycore_opcode_utils.h"
#define NEED_OPCODE_METADATA
#include "opcode_metadata.h"      // _PyOpcode_opcode_metadata, _PyOpcode_num_popped/pushed
#undef NEED_OPCODE_METADATA


#undef SUCCESS
#undef ERROR
#define SUCCESS 0
#define ERROR -1

#define RETURN_IF_ERROR(X)  \
    if ((X) == -1) {        \
        return ERROR;       \
    }

#define DEFAULT_BLOCK_SIZE 16

typedef _PyCompilerSrcLocation location;
typedef _PyCfgJumpTargetLabel jump_target_label;
typedef _PyCfgBasicblock basicblock;
typedef _PyCfgBuilder cfg_builder;
typedef _PyCfgInstruction cfg_instr;

static const jump_target_label NO_LABEL = {-1};

#define SAME_LABEL(L1, L2) ((L1).id == (L2).id)
#define IS_LABEL(L) (!SAME_LABEL((L), (NO_LABEL)))


static inline int
is_block_push(cfg_instr *i)
{
    return IS_BLOCK_PUSH_OPCODE(i->i_opcode);
}

static inline int
is_jump(cfg_instr *i)
{
    return IS_JUMP_OPCODE(i->i_opcode);
}

/* One arg*/
#define INSTR_SET_OP1(I, OP, ARG) \
    do { \
        assert(HAS_ARG(OP)); \
        _PyCfgInstruction *_instr__ptr_ = (I); \
        _instr__ptr_->i_opcode = (OP); \
        _instr__ptr_->i_oparg = (ARG); \
    } while (0);

/* No args*/
#define INSTR_SET_OP0(I, OP) \
    do { \
        assert(!HAS_ARG(OP)); \
        _PyCfgInstruction *_instr__ptr_ = (I); \
        _instr__ptr_->i_opcode = (OP); \
        _instr__ptr_->i_oparg = 0; \
    } while (0);

/***** Blocks *****/

/* Returns the offset of the next instruction in the current block's
   b_instr array.  Resizes the b_instr as necessary.
   Returns -1 on failure.
*/
static int
basicblock_next_instr(basicblock *b)
{
    assert(b != NULL);
    RETURN_IF_ERROR(
        _PyCompile_EnsureArrayLargeEnough(
            b->b_iused + 1,
            (void**)&b->b_instr,
            &b->b_ialloc,
            DEFAULT_BLOCK_SIZE,
            sizeof(cfg_instr)));
    return b->b_iused++;
}

/* Allocate a new block and return a pointer to it.
   Returns NULL on error.
*/

static basicblock *
cfg_builder_new_block(cfg_builder *g)
{
    basicblock *b = (basicblock *)PyObject_Calloc(1, sizeof(basicblock));
    if (b == NULL) {
        PyErr_NoMemory();
        return NULL;
    }
    /* Extend the singly linked list of blocks with new block. */
    b->b_list = g->g_block_list;
    g->g_block_list = b;
    b->b_label = NO_LABEL;
    return b;
}

static int
basicblock_addop(basicblock *b, int opcode, int oparg, location loc)
{
    assert(IS_WITHIN_OPCODE_RANGE(opcode));
    assert(!IS_ASSEMBLER_OPCODE(opcode));
    assert(HAS_ARG(opcode) || HAS_TARGET(opcode) || oparg == 0);
    assert(0 <= oparg && oparg < (1 << 30));

    int off = basicblock_next_instr(b);
    if (off < 0) {
        return ERROR;
    }
    cfg_instr *i = &b->b_instr[off];
    i->i_opcode = opcode;
    i->i_oparg = oparg;
    i->i_target = NULL;
    i->i_loc = loc;

    return SUCCESS;
}

static inline int
basicblock_append_instructions(basicblock *target, basicblock *source)
{
    for (int i = 0; i < source->b_iused; i++) {
        int n = basicblock_next_instr(target);
        if (n < 0) {
            return ERROR;
        }
        target->b_instr[n] = source->b_instr[i];
    }
    return SUCCESS;
}

static basicblock *
copy_basicblock(cfg_builder *g, basicblock *block)
{
    /* Cannot copy a block if it has a fallthrough, since
     * a block can only have one fallthrough predecessor.
     */
    assert(BB_NO_FALLTHROUGH(block));
    basicblock *result = cfg_builder_new_block(g);
    if (result == NULL) {
        return NULL;
    }
    if (basicblock_append_instructions(result, block) < 0) {
        return NULL;
    }
    return result;
}

int
_PyBasicblock_InsertInstruction(basicblock *block, int pos, cfg_instr *instr) {
    RETURN_IF_ERROR(basicblock_next_instr(block));
    for (int i = block->b_iused - 1; i > pos; i--) {
        block->b_instr[i] = block->b_instr[i-1];
    }
    block->b_instr[pos] = *instr;
    return SUCCESS;
}

static int
instr_size(cfg_instr *instruction)
{
    return _PyCompile_InstrSize(instruction->i_opcode, instruction->i_oparg);
}

static int
blocksize(basicblock *b)
{
    int size = 0;
    for (int i = 0; i < b->b_iused; i++) {
        size += instr_size(&b->b_instr[i]);
    }
    return size;
}

/* For debugging purposes only */
#if 0
static void
dump_instr(cfg_instr *i)
{
    const char *jump = is_jump(i) ? "jump " : "";

    char arg[128];

    *arg = '\0';
    if (HAS_ARG(i->i_opcode)) {
        sprintf(arg, "arg: %d ", i->i_oparg);
    }
    if (HAS_TARGET(i->i_opcode)) {
        sprintf(arg, "target: %p [%d] ", i->i_target, i->i_oparg);
    }
    fprintf(stderr, "line: %d, opcode: %d %s%s\n",
                    i->i_loc.lineno, i->i_opcode, arg, jump);
}

static inline int
basicblock_returns(const basicblock *b) {
    cfg_instr *last = _PyCfg_BasicblockLastInstr(b);
    return last && (last->i_opcode == RETURN_VALUE || last->i_opcode == RETURN_CONST);
}

static void
dump_basicblock(const basicblock *b)
{
    const char *b_return = basicblock_returns(b) ? "return " : "";
    fprintf(stderr, "%d: [EH=%d CLD=%d WRM=%d NO_FT=%d %p] used: %d, depth: %d, offset: %d %s\n",
        b->b_label.id, b->b_except_handler, b->b_cold, b->b_warm, BB_NO_FALLTHROUGH(b), b, b->b_iused,
        b->b_startdepth, b->b_offset, b_return);
    if (b->b_instr) {
        int i;
        for (i = 0; i < b->b_iused; i++) {
            fprintf(stderr, "  [%02d] ", i);
            dump_instr(b->b_instr + i);
        }
    }
}

void
_PyCfgBuilder_DumpGraph(const basicblock *entryblock)
{
    for (const basicblock *b = entryblock; b != NULL; b = b->b_next) {
        dump_basicblock(b);
    }
}

#endif


/***** CFG construction and modification *****/

static basicblock *
cfg_builder_use_next_block(cfg_builder *g, basicblock *block)
{
    assert(block != NULL);
    g->g_curblock->b_next = block;
    g->g_curblock = block;
    return block;
}

cfg_instr *
_PyCfg_BasicblockLastInstr(const basicblock *b) {
    assert(b->b_iused >= 0);
    if (b->b_iused > 0) {
        assert(b->b_instr != NULL);
        return &b->b_instr[b->b_iused - 1];
    }
    return NULL;
}

static inline int
basicblock_exits_scope(const basicblock *b) {
    cfg_instr *last = _PyCfg_BasicblockLastInstr(b);
    return last && IS_SCOPE_EXIT_OPCODE(last->i_opcode);
}

static bool
cfg_builder_current_block_is_terminated(cfg_builder *g)
{
    cfg_instr *last = _PyCfg_BasicblockLastInstr(g->g_curblock);
    if (last && IS_TERMINATOR_OPCODE(last->i_opcode)) {
        return true;
    }
    if (IS_LABEL(g->g_current_label)) {
        if (last || IS_LABEL(g->g_curblock->b_label)) {
            return true;
        }
        else {
            /* current block is empty, label it */
            g->g_curblock->b_label = g->g_current_label;
            g->g_current_label = NO_LABEL;
        }
    }
    return false;
}

static int
cfg_builder_maybe_start_new_block(cfg_builder *g)
{
    if (cfg_builder_current_block_is_terminated(g)) {
        basicblock *b = cfg_builder_new_block(g);
        if (b == NULL) {
            return ERROR;
        }
        b->b_label = g->g_current_label;
        g->g_current_label = NO_LABEL;
        cfg_builder_use_next_block(g, b);
    }
    return SUCCESS;
}

#ifndef NDEBUG
static bool
cfg_builder_check(cfg_builder *g)
{
    assert(g->g_entryblock->b_iused > 0);
    for (basicblock *block = g->g_block_list; block != NULL; block = block->b_list) {
        assert(!_PyMem_IsPtrFreed(block));
        if (block->b_instr != NULL) {
            assert(block->b_ialloc > 0);
            assert(block->b_iused >= 0);
            assert(block->b_ialloc >= block->b_iused);
        }
        else {
            assert (block->b_iused == 0);
            assert (block->b_ialloc == 0);
        }
    }
    return true;
}
#endif

int
_PyCfgBuilder_Init(cfg_builder *g)
{
    g->g_block_list = NULL;
    basicblock *block = cfg_builder_new_block(g);
    if (block == NULL) {
        return ERROR;
    }
    g->g_curblock = g->g_entryblock = block;
    g->g_current_label = NO_LABEL;
    return SUCCESS;
}

void
_PyCfgBuilder_Fini(cfg_builder* g)
{
    assert(cfg_builder_check(g));
    basicblock *b = g->g_block_list;
    while (b != NULL) {
        if (b->b_instr) {
            PyObject_Free((void *)b->b_instr);
        }
        basicblock *next = b->b_list;
        PyObject_Free((void *)b);
        b = next;
    }
}

int
_PyCfgBuilder_UseLabel(cfg_builder *g, jump_target_label lbl)
{
    g->g_current_label = lbl;
    return cfg_builder_maybe_start_new_block(g);
}

int
_PyCfgBuilder_Addop(cfg_builder *g, int opcode, int oparg, location loc)
{
    RETURN_IF_ERROR(cfg_builder_maybe_start_new_block(g));
    return basicblock_addop(g->g_curblock, opcode, oparg, loc);
}


/***** debugging helpers *****/

#ifndef NDEBUG
static int remove_redundant_nops(basicblock *bb);

/*
static bool
no_redundant_nops(cfg_builder *g) {
    for (basicblock *b = g->g_entryblock; b != NULL; b = b->b_next) {
        if (remove_redundant_nops(b) != 0) {
            return false;
        }
    }
    return true;
}
*/

static bool
no_empty_basic_blocks(cfg_builder *g) {
    for (basicblock *b = g->g_entryblock; b != NULL; b = b->b_next) {
        if (b->b_iused == 0) {
            return false;
        }
    }
    return true;
}

static bool
no_redundant_jumps(cfg_builder *g) {
    for (basicblock *b = g->g_entryblock; b != NULL; b = b->b_next) {
        cfg_instr *last = _PyCfg_BasicblockLastInstr(b);
        if (last != NULL) {
            if (IS_UNCONDITIONAL_JUMP_OPCODE(last->i_opcode)) {
                assert(last->i_target != b->b_next);
                if (last->i_target == b->b_next) {
                    return false;
                }
            }
        }
    }
    return true;
}

#endif

/***** CFG preprocessing (jump targets and exceptions) *****/

static int
normalize_jumps_in_block(cfg_builder *g, basicblock *b) {
    cfg_instr *last = _PyCfg_BasicblockLastInstr(b);
    if (last == NULL || !is_jump(last)) {
        return SUCCESS;
    }
    assert(!IS_ASSEMBLER_OPCODE(last->i_opcode));
    bool is_forward = last->i_target->b_visited == 0;
    switch(last->i_opcode) {
        case JUMP:
            last->i_opcode = is_forward ? JUMP_FORWARD : JUMP_BACKWARD;
            return SUCCESS;
        case JUMP_NO_INTERRUPT:
            last->i_opcode = is_forward ?
                JUMP_FORWARD : JUMP_BACKWARD_NO_INTERRUPT;
            return SUCCESS;
    }
    int reversed_opcode = 0;
    switch(last->i_opcode) {
        case POP_JUMP_IF_NOT_NONE:
            reversed_opcode = POP_JUMP_IF_NONE;
            break;
        case POP_JUMP_IF_NONE:
            reversed_opcode = POP_JUMP_IF_NOT_NONE;
            break;
        case POP_JUMP_IF_FALSE:
            reversed_opcode = POP_JUMP_IF_TRUE;
            break;
        case POP_JUMP_IF_TRUE:
            reversed_opcode = POP_JUMP_IF_FALSE;
            break;
    }
    if (is_forward) {
        return SUCCESS;
    }
    /* transform 'conditional jump T' to
     * 'reversed_jump b_next' followed by 'jump_backwards T'
     */

    basicblock *target = last->i_target;
    basicblock *backwards_jump = cfg_builder_new_block(g);
    if (backwards_jump == NULL) {
        return ERROR;
    }
    basicblock_addop(backwards_jump, JUMP, target->b_label.id, last->i_loc);
    backwards_jump->b_instr[0].i_target = target;
    last->i_opcode = reversed_opcode;
    last->i_target = b->b_next;

    backwards_jump->b_cold = b->b_cold;
    backwards_jump->b_next = b->b_next;
    b->b_next = backwards_jump;
    return SUCCESS;
}


static int
normalize_jumps(_PyCfgBuilder *g)
{
    basicblock *entryblock = g->g_entryblock;
    for (basicblock *b = entryblock; b != NULL; b = b->b_next) {
        b->b_visited = 0;
    }
    for (basicblock *b = entryblock; b != NULL; b = b->b_next) {
        b->b_visited = 1;
        RETURN_IF_ERROR(normalize_jumps_in_block(g, b));
    }
    return SUCCESS;
}

static void
resolve_jump_offsets(basicblock *entryblock)
{
    int bsize, totsize, extended_arg_recompile;

    /* Compute the size of each block and fixup jump args.
       Replace block pointer with position in bytecode. */
    do {
        totsize = 0;
        for (basicblock *b = entryblock; b != NULL; b = b->b_next) {
            bsize = blocksize(b);
            b->b_offset = totsize;
            totsize += bsize;
        }
        extended_arg_recompile = 0;
        for (basicblock *b = entryblock; b != NULL; b = b->b_next) {
            bsize = b->b_offset;
            for (int i = 0; i < b->b_iused; i++) {
                cfg_instr *instr = &b->b_instr[i];
                int isize = instr_size(instr);
                /* jump offsets are computed relative to
                 * the instruction pointer after fetching
                 * the jump instruction.
                 */
                bsize += isize;
                if (is_jump(instr)) {
                    instr->i_oparg = instr->i_target->b_offset;
                    if (instr->i_oparg < bsize) {
                        assert(IS_BACKWARDS_JUMP_OPCODE(instr->i_opcode));
                        instr->i_oparg = bsize - instr->i_oparg;
                    }
                    else {
                        assert(!IS_BACKWARDS_JUMP_OPCODE(instr->i_opcode));
                        instr->i_oparg -= bsize;
                    }
                    if (instr_size(instr) != isize) {
                        extended_arg_recompile = 1;
                    }
                }
            }
        }

    /* XXX: This is an awful hack that could hurt performance, but
        on the bright side it should work until we come up
        with a better solution.

        The issue is that in the first loop blocksize() is called
        which calls instr_size() which requires i_oparg be set
        appropriately. There is a bootstrap problem because
        i_oparg is calculated in the second loop above.

        So we loop until we stop seeing new EXTENDED_ARGs.
        The only EXTENDED_ARGs that could be popping up are
        ones in jump instructions.  So this should converge
        fairly quickly.
    */
    } while (extended_arg_recompile);
}

int
_PyCfg_ResolveJumps(_PyCfgBuilder *g)
{
    RETURN_IF_ERROR(normalize_jumps(g));
    assert(no_redundant_jumps(g));
    resolve_jump_offsets(g->g_entryblock);
    return SUCCESS;
}

static int
check_cfg(cfg_builder *g) {
    for (basicblock *b = g->g_entryblock; b != NULL; b = b->b_next) {
        /* Raise SystemError if jump or exit is not last instruction in the block. */
        for (int i = 0; i < b->b_iused; i++) {
            int opcode = b->b_instr[i].i_opcode;
            assert(!IS_ASSEMBLER_OPCODE(opcode));
            if (IS_TERMINATOR_OPCODE(opcode)) {
                if (i != b->b_iused - 1) {
                    PyErr_SetString(PyExc_SystemError, "malformed control flow graph.");
                    return ERROR;
                }
            }
        }
    }
    return SUCCESS;
}

static int
get_max_label(basicblock *entryblock)
{
    int lbl = -1;
    for (basicblock *b = entryblock; b != NULL; b = b->b_next) {
        if (b->b_label.id > lbl) {
            lbl = b->b_label.id;
        }
    }
    return lbl;
}

/* Calculate the actual jump target from the target_label */
static int
translate_jump_labels_to_targets(basicblock *entryblock)
{
    int max_label = get_max_label(entryblock);
    size_t mapsize = sizeof(basicblock *) * (max_label + 1);
    basicblock **label2block = (basicblock **)PyMem_Malloc(mapsize);
    if (!label2block) {
        PyErr_NoMemory();
        return ERROR;
    }
    memset(label2block, 0, mapsize);
    for (basicblock *b = entryblock; b != NULL; b = b->b_next) {
        if (b->b_label.id >= 0) {
            label2block[b->b_label.id] = b;
        }
    }
    for (basicblock *b = entryblock; b != NULL; b = b->b_next) {
        for (int i = 0; i < b->b_iused; i++) {
            cfg_instr *instr = &b->b_instr[i];
            assert(instr->i_target == NULL);
            if (HAS_TARGET(instr->i_opcode)) {
                int lbl = instr->i_oparg;
                assert(lbl >= 0 && lbl <= max_label);
                instr->i_target = label2block[lbl];
                assert(instr->i_target != NULL);
                assert(instr->i_target->b_label.id == lbl);
            }
        }
    }
    PyMem_Free(label2block);
    return SUCCESS;
}

int
_PyCfg_JumpLabelsToTargets(basicblock *entryblock)
{
    return translate_jump_labels_to_targets(entryblock);
}

static int
mark_except_handlers(basicblock *entryblock) {
#ifndef NDEBUG
    for (basicblock *b = entryblock; b != NULL; b = b->b_next) {
        assert(!b->b_except_handler);
    }
#endif
    for (basicblock *b = entryblock; b != NULL; b = b->b_next) {
        for (int i=0; i < b->b_iused; i++) {
            cfg_instr *instr = &b->b_instr[i];
            if (is_block_push(instr)) {
                instr->i_target->b_except_handler = 1;
            }
        }
    }
    return SUCCESS;
}


typedef _PyCfgExceptStack ExceptStack;

static basicblock *
push_except_block(ExceptStack *stack, cfg_instr *setup) {
    assert(is_block_push(setup));
    int opcode = setup->i_opcode;
    basicblock * target = setup->i_target;
    if (opcode == SETUP_WITH || opcode == SETUP_CLEANUP) {
        target->b_preserve_lasti = 1;
    }
    assert(stack->depth <= CO_MAXBLOCKS);
    stack->handlers[++stack->depth] = target;
    return target;
}

static basicblock *
pop_except_block(ExceptStack *stack) {
    assert(stack->depth > 0);
    return stack->handlers[--stack->depth];
}

static basicblock *
except_stack_top(ExceptStack *stack) {
    return stack->handlers[stack->depth];
}

static ExceptStack *
make_except_stack(void) {
    ExceptStack *new = PyMem_Malloc(sizeof(ExceptStack));
    if (new == NULL) {
        PyErr_NoMemory();
        return NULL;
    }
    new->depth = 0;
    new->handlers[0] = NULL;
    return new;
}

static ExceptStack *
copy_except_stack(ExceptStack *stack) {
    ExceptStack *copy = PyMem_Malloc(sizeof(ExceptStack));
    if (copy == NULL) {
        PyErr_NoMemory();
        return NULL;
    }
    memcpy(copy, stack, sizeof(ExceptStack));
    return copy;
}

static basicblock**
make_cfg_traversal_stack(basicblock *entryblock) {
    int nblocks = 0;
    for (basicblock *b = entryblock; b != NULL; b = b->b_next) {
        b->b_visited = 0;
        nblocks++;
    }
    basicblock **stack = (basicblock **)PyMem_Malloc(sizeof(basicblock *) * nblocks);
    if (!stack) {
        PyErr_NoMemory();
    }
    return stack;
}

Py_LOCAL_INLINE(void)
stackdepth_push(basicblock ***sp, basicblock *b, int depth)
{
    assert(b->b_startdepth < 0 || b->b_startdepth == depth);
    if (b->b_startdepth < depth && b->b_startdepth < 100) {
        assert(b->b_startdepth < 0);
        b->b_startdepth = depth;
        *(*sp)++ = b;
    }
}

/* Find the flow path that needs the largest stack.  We assume that
 * cycles in the flow graph have no net effect on the stack depth.
 */
int
_PyCfg_Stackdepth(basicblock *entryblock, int code_flags)
{
    for (basicblock *b = entryblock; b != NULL; b = b->b_next) {
        b->b_startdepth = INT_MIN;
    }
    basicblock **stack = make_cfg_traversal_stack(entryblock);
    if (!stack) {
        return ERROR;
    }

    int maxdepth = 0;
    basicblock **sp = stack;
    if (code_flags & (CO_GENERATOR | CO_COROUTINE | CO_ASYNC_GENERATOR)) {
        stackdepth_push(&sp, entryblock, 1);
    } else {
        stackdepth_push(&sp, entryblock, 0);
    }

    while (sp != stack) {
        basicblock *b = *--sp;
        int depth = b->b_startdepth;
        assert(depth >= 0);
        basicblock *next = b->b_next;
        for (int i = 0; i < b->b_iused; i++) {
            cfg_instr *instr = &b->b_instr[i];
            int effect = PyCompile_OpcodeStackEffectWithJump(instr->i_opcode, instr->i_oparg, 0);
            if (effect == PY_INVALID_STACK_EFFECT) {
                PyErr_Format(PyExc_SystemError,
                             "compiler PyCompile_OpcodeStackEffectWithJump(opcode=%d, arg=%i) failed",
                             instr->i_opcode, instr->i_oparg);
                return ERROR;
            }
            int new_depth = depth + effect;
            assert(new_depth >= 0); /* invalid code or bug in stackdepth() */
            if (new_depth > maxdepth) {
                maxdepth = new_depth;
            }
            if (HAS_TARGET(instr->i_opcode)) {
                effect = PyCompile_OpcodeStackEffectWithJump(instr->i_opcode, instr->i_oparg, 1);
                assert(effect != PY_INVALID_STACK_EFFECT);
                int target_depth = depth + effect;
                assert(target_depth >= 0); /* invalid code or bug in stackdepth() */
                if (target_depth > maxdepth) {
                    maxdepth = target_depth;
                }
                stackdepth_push(&sp, instr->i_target, target_depth);
            }
            depth = new_depth;
            assert(!IS_ASSEMBLER_OPCODE(instr->i_opcode));
            if (IS_UNCONDITIONAL_JUMP_OPCODE(instr->i_opcode) ||
                IS_SCOPE_EXIT_OPCODE(instr->i_opcode))
            {
                /* remaining code is dead */
                next = NULL;
                break;
            }
        }
        if (next != NULL) {
            assert(BB_HAS_FALLTHROUGH(b));
            stackdepth_push(&sp, next, depth);
        }
    }
    PyMem_Free(stack);
    return maxdepth;
}

static int
label_exception_targets(basicblock *entryblock) {
    basicblock **todo_stack = make_cfg_traversal_stack(entryblock);
    if (todo_stack == NULL) {
        return ERROR;
    }
    ExceptStack *except_stack = make_except_stack();
    if (except_stack == NULL) {
        PyMem_Free(todo_stack);
        PyErr_NoMemory();
        return ERROR;
    }
    except_stack->depth = 0;
    todo_stack[0] = entryblock;
    entryblock->b_visited = 1;
    entryblock->b_exceptstack = except_stack;
    basicblock **todo = &todo_stack[1];
    basicblock *handler = NULL;
    while (todo > todo_stack) {
        todo--;
        basicblock *b = todo[0];
        assert(b->b_visited == 1);
        except_stack = b->b_exceptstack;
        assert(except_stack != NULL);
        b->b_exceptstack = NULL;
        handler = except_stack_top(except_stack);
        for (int i = 0; i < b->b_iused; i++) {
            cfg_instr *instr = &b->b_instr[i];
            if (is_block_push(instr)) {
                if (!instr->i_target->b_visited) {
                    ExceptStack *copy = copy_except_stack(except_stack);
                    if (copy == NULL) {
                        goto error;
                    }
                    instr->i_target->b_exceptstack = copy;
                    todo[0] = instr->i_target;
                    instr->i_target->b_visited = 1;
                    todo++;
                }
                handler = push_except_block(except_stack, instr);
            }
            else if (instr->i_opcode == POP_BLOCK) {
                handler = pop_except_block(except_stack);
            }
            else if (is_jump(instr)) {
                instr->i_except = handler;
                assert(i == b->b_iused -1);
                if (!instr->i_target->b_visited) {
                    if (BB_HAS_FALLTHROUGH(b)) {
                        ExceptStack *copy = copy_except_stack(except_stack);
                        if (copy == NULL) {
                            goto error;
                        }
                        instr->i_target->b_exceptstack = copy;
                    }
                    else {
                        instr->i_target->b_exceptstack = except_stack;
                        except_stack = NULL;
                    }
                    todo[0] = instr->i_target;
                    instr->i_target->b_visited = 1;
                    todo++;
                }
            }
            else {
                if (instr->i_opcode == YIELD_VALUE) {
                    instr->i_oparg = except_stack->depth;
                }
                instr->i_except = handler;
            }
        }
        if (BB_HAS_FALLTHROUGH(b) && !b->b_next->b_visited) {
            assert(except_stack != NULL);
            b->b_next->b_exceptstack = except_stack;
            todo[0] = b->b_next;
            b->b_next->b_visited = 1;
            todo++;
        }
        else if (except_stack != NULL) {
           PyMem_Free(except_stack);
        }
    }
#ifdef Py_DEBUG
    for (basicblock *b = entryblock; b != NULL; b = b->b_next) {
        assert(b->b_exceptstack == NULL);
    }
#endif
    PyMem_Free(todo_stack);
    return SUCCESS;
error:
    PyMem_Free(todo_stack);
    PyMem_Free(except_stack);
    return ERROR;
}

/***** CFG optimizations *****/

static int
mark_reachable(basicblock *entryblock) {
    basicblock **stack = make_cfg_traversal_stack(entryblock);
    if (stack == NULL) {
        return ERROR;
    }
    basicblock **sp = stack;
    entryblock->b_predecessors = 1;
    *sp++ = entryblock;
    while (sp > stack) {
        basicblock *b = *(--sp);
        b->b_visited = 1;
        if (b->b_next && BB_HAS_FALLTHROUGH(b)) {
            if (!b->b_next->b_visited) {
                assert(b->b_next->b_predecessors == 0);
                *sp++ = b->b_next;
            }
            b->b_next->b_predecessors++;
        }
        for (int i = 0; i < b->b_iused; i++) {
            basicblock *target;
            cfg_instr *instr = &b->b_instr[i];
            if (is_jump(instr) || is_block_push(instr)) {
                target = instr->i_target;
                if (!target->b_visited) {
                    assert(target->b_predecessors == 0 || target == b->b_next);
                    *sp++ = target;
                }
                target->b_predecessors++;
            }
        }
    }
    PyMem_Free(stack);
    return SUCCESS;
}

static void
eliminate_empty_basic_blocks(cfg_builder *g) {
    /* Eliminate empty blocks */
    for (basicblock *b = g->g_entryblock; b != NULL; b = b->b_next) {
        basicblock *next = b->b_next;
        while (next && next->b_iused == 0) {
            next = next->b_next;
        }
        b->b_next = next;
    }
    while(g->g_entryblock && g->g_entryblock->b_iused == 0) {
        g->g_entryblock = g->g_entryblock->b_next;
    }
    int next_lbl = get_max_label(g->g_entryblock) + 1;
    for (basicblock *b = g->g_entryblock; b != NULL; b = b->b_next) {
        assert(b->b_iused > 0);
        for (int i = 0; i < b->b_iused; i++) {
            cfg_instr *instr = &b->b_instr[i];
            if (HAS_TARGET(instr->i_opcode)) {
                basicblock *target = instr->i_target;
                while (target->b_iused == 0) {
                    target = target->b_next;
                }
                if (instr->i_target != target) {
                    if (!IS_LABEL(target->b_label)) {
                        target->b_label.id = next_lbl++;
                    }
                    instr->i_target = target;
                    instr->i_oparg = target->b_label.id;
                }
                assert(instr->i_target && instr->i_target->b_iused > 0);
            }
        }
    }
}

static int
remove_redundant_nops(basicblock *bb) {
    /* Remove NOPs when legal to do so. */
    int dest = 0;
    int prev_lineno = -1;
    for (int src = 0; src < bb->b_iused; src++) {
        int lineno = bb->b_instr[src].i_loc.lineno;
        if (bb->b_instr[src].i_opcode == NOP) {
            /* Eliminate no-op if it doesn't have a line number */
            if (lineno < 0) {
                continue;
            }
            /* or, if the previous instruction had the same line number. */
            if (prev_lineno == lineno) {
                continue;
            }
            /* or, if the next instruction has same line number or no line number */
            if (src < bb->b_iused - 1) {
                int next_lineno = bb->b_instr[src+1].i_loc.lineno;
                if (next_lineno == lineno) {
                    continue;
                }
                if (next_lineno < 0) {
                    bb->b_instr[src+1].i_loc = bb->b_instr[src].i_loc;
                    continue;
                }
            }
            else {
                basicblock* next = bb->b_next;
                while (next && next->b_iused == 0) {
                    next = next->b_next;
                }
                /* or if last instruction in BB and next BB has same line number */
                if (next) {
                    location next_loc = NO_LOCATION;
                    for (int next_i=0; next_i < next->b_iused; next_i++) {
                        cfg_instr *instr = &next->b_instr[next_i];
                        if (instr->i_opcode == NOP && instr->i_loc.lineno == NO_LOCATION.lineno) {
                            /* Skip over NOPs without location, they will be removed */
                            continue;
                        }
                        next_loc = instr->i_loc;
                        break;
                    }
                    if (lineno == next_loc.lineno) {
                        continue;
                    }
                }
            }

        }
        if (dest != src) {
            bb->b_instr[dest] = bb->b_instr[src];
        }
        dest++;
        prev_lineno = lineno;
    }
    assert(dest <= bb->b_iused);
    int num_removed = bb->b_iused - dest;
    bb->b_iused = dest;
    return num_removed;
}

static int
remove_redundant_nops_and_pairs(basicblock *entryblock)
{
    bool done = false;

    while (! done) {
        done = true;
        cfg_instr *prev_instr = NULL;
        cfg_instr *instr = NULL;
        for (basicblock *b = entryblock; b != NULL; b = b->b_next) {
            remove_redundant_nops(b);
            if (IS_LABEL(b->b_label)) {
                /* this block is a jump target, forget instr */
                instr = NULL;
            }
            for (int i = 0; i < b->b_iused; i++) {
                prev_instr = instr;
                instr = &b->b_instr[i];
                int prev_opcode = prev_instr ? prev_instr->i_opcode : 0;
                int prev_oparg = prev_instr ? prev_instr->i_oparg : 0;
                int opcode = instr->i_opcode;
                bool is_redundant_pair = false;
                if (opcode == POP_TOP) {
                   if (prev_opcode == LOAD_CONST) {
                       is_redundant_pair = true;
                   }
                   else if (prev_opcode == COPY && prev_oparg == 1) {
                       is_redundant_pair = true;
                   }
                }
                if (is_redundant_pair) {
                    INSTR_SET_OP0(prev_instr, NOP);
                    INSTR_SET_OP0(instr, NOP);
                    done = false;
                }
            }
            if ((instr && is_jump(instr)) || !BB_HAS_FALLTHROUGH(b)) {
                instr = NULL;
            }
        }
    }
    return SUCCESS;
}

static int
remove_redundant_jumps(cfg_builder *g) {
    /* If a non-empty block ends with a jump instruction, check if the next
     * non-empty block reached through normal flow control is the target
     * of that jump. If it is, then the jump instruction is redundant and
     * can be deleted.
     */
    assert(no_empty_basic_blocks(g));
    for (basicblock *b = g->g_entryblock; b != NULL; b = b->b_next) {
        cfg_instr *last = _PyCfg_BasicblockLastInstr(b);
        assert(last != NULL);
        assert(!IS_ASSEMBLER_OPCODE(last->i_opcode));
        if (IS_UNCONDITIONAL_JUMP_OPCODE(last->i_opcode)) {
            if (last->i_target == NULL) {
                PyErr_SetString(PyExc_SystemError, "jump with NULL target");
                return ERROR;
            }
            if (last->i_target == b->b_next) {
                assert(b->b_next->b_iused);
                INSTR_SET_OP0(last, NOP);
            }
        }
    }
    return SUCCESS;
}

/* Maximum size of basic block that should be copied in optimizer */
#define MAX_COPY_SIZE 4

/* If this block ends with an unconditional jump to a small exit block, then
 * remove the jump and extend this block with the target.
 * Returns 1 if extended, 0 if no change, and -1 on error.
 */
static int
inline_small_exit_blocks(basicblock *bb) {
    cfg_instr *last = _PyCfg_BasicblockLastInstr(bb);
    if (last == NULL) {
        return 0;
    }
    if (!IS_UNCONDITIONAL_JUMP_OPCODE(last->i_opcode)) {
        return 0;
    }
    basicblock *target = last->i_target;
    if (basicblock_exits_scope(target) && target->b_iused <= MAX_COPY_SIZE) {
        INSTR_SET_OP0(last, NOP);
        RETURN_IF_ERROR(basicblock_append_instructions(bb, target));
        return 1;
    }
    return 0;
}

// Attempt to eliminate jumps to jumps by updating inst to jump to
// target->i_target using the provided opcode. Return whether or not the
// optimization was successful.
static bool
jump_thread(cfg_instr *inst, cfg_instr *target, int opcode)
{
    assert(is_jump(inst));
    assert(is_jump(target));
    // bpo-45773: If inst->i_target == target->i_target, then nothing actually
    // changes (and we fall into an infinite loop):
    if ((inst->i_loc.lineno == target->i_loc.lineno || target->i_loc.lineno == -1) &&
        inst->i_target != target->i_target)
    {
        inst->i_target = target->i_target;
        inst->i_opcode = opcode;
        return true;
    }
    return false;
}

static PyObject*
get_const_value(int opcode, int oparg, PyObject *co_consts)
{
    PyObject *constant = NULL;
    assert(HAS_CONST(opcode));
    if (opcode == LOAD_CONST) {
        constant = PyList_GET_ITEM(co_consts, oparg);
    }

    if (constant == NULL) {
        PyErr_SetString(PyExc_SystemError,
                        "Internal error: failed to get value of a constant");
        return NULL;
    }
    return Py_NewRef(constant);
}

/* Replace LOAD_CONST c1, LOAD_CONST c2 ... LOAD_CONST cn, BUILD_TUPLE n
   with    LOAD_CONST (c1, c2, ... cn).
   The consts table must still be in list form so that the
   new constant (c1, c2, ... cn) can be appended.
   Called with codestr pointing to the first LOAD_CONST.
*/
static int
fold_tuple_on_constants(PyObject *const_cache,
                        cfg_instr *inst,
                        int n, PyObject *consts)
{
    /* Pre-conditions */
    assert(PyDict_CheckExact(const_cache));
    assert(PyList_CheckExact(consts));
    assert(inst[n].i_opcode == BUILD_TUPLE);
    assert(inst[n].i_oparg == n);

    for (int i = 0; i < n; i++) {
        if (!HAS_CONST(inst[i].i_opcode)) {
            return SUCCESS;
        }
    }

    /* Buildup new tuple of constants */
    PyObject *newconst = PyTuple_New(n);
    if (newconst == NULL) {
        return ERROR;
    }
    for (int i = 0; i < n; i++) {
        int op = inst[i].i_opcode;
        int arg = inst[i].i_oparg;
        PyObject *constant = get_const_value(op, arg, consts);
        if (constant == NULL) {
            return ERROR;
        }
        PyTuple_SET_ITEM(newconst, i, constant);
    }
    if (_PyCompile_ConstCacheMergeOne(const_cache, &newconst) < 0) {
        Py_DECREF(newconst);
        return ERROR;
    }

    Py_ssize_t index;
    for (index = 0; index < PyList_GET_SIZE(consts); index++) {
        if (PyList_GET_ITEM(consts, index) == newconst) {
            break;
        }
    }
    if (index == PyList_GET_SIZE(consts)) {
        if ((size_t)index >= (size_t)INT_MAX - 1) {
            Py_DECREF(newconst);
            PyErr_SetString(PyExc_OverflowError, "too many constants");
            return ERROR;
        }
        if (PyList_Append(consts, newconst)) {
            Py_DECREF(newconst);
            return ERROR;
        }
    }
    Py_DECREF(newconst);
    for (int i = 0; i < n; i++) {
        INSTR_SET_OP0(&inst[i], NOP);
    }
    INSTR_SET_OP1(&inst[n], LOAD_CONST, (int)index);
    return SUCCESS;
}

#define VISITED (-1)

// Replace an arbitrary run of SWAPs and NOPs with an optimal one that has the
// same effect.
static int
swaptimize(basicblock *block, int *ix)
{
    // NOTE: "./python -m test test_patma" serves as a good, quick stress test
    // for this function. Make sure to blow away cached *.pyc files first!
    assert(*ix < block->b_iused);
    cfg_instr *instructions = &block->b_instr[*ix];
    // Find the length of the current sequence of SWAPs and NOPs, and record the
    // maximum depth of the stack manipulations:
    assert(instructions[0].i_opcode == SWAP);
    int depth = instructions[0].i_oparg;
    int len = 0;
    int more = false;
    int limit = block->b_iused - *ix;
    while (++len < limit) {
        int opcode = instructions[len].i_opcode;
        if (opcode == SWAP) {
            depth = Py_MAX(depth, instructions[len].i_oparg);
            more = true;
        }
        else if (opcode != NOP) {
            break;
        }
    }
    // It's already optimal if there's only one SWAP:
    if (!more) {
        return SUCCESS;
    }
    // Create an array with elements {0, 1, 2, ..., depth - 1}:
    int *stack = PyMem_Malloc(depth * sizeof(int));
    if (stack == NULL) {
        PyErr_NoMemory();
        return ERROR;
    }
    for (int i = 0; i < depth; i++) {
        stack[i] = i;
    }
    // Simulate the combined effect of these instructions by "running" them on
    // our "stack":
    for (int i = 0; i < len; i++) {
        if (instructions[i].i_opcode == SWAP) {
            int oparg = instructions[i].i_oparg;
            int top = stack[0];
            // SWAPs are 1-indexed:
            stack[0] = stack[oparg - 1];
            stack[oparg - 1] = top;
        }
    }
    // Now we can begin! Our approach here is based on a solution to a closely
    // related problem (https://cs.stackexchange.com/a/13938). It's easiest to
    // think of this algorithm as determining the steps needed to efficiently
    // "un-shuffle" our stack. By performing the moves in *reverse* order,
    // though, we can efficiently *shuffle* it! For this reason, we will be
    // replacing instructions starting from the *end* of the run. Since the
    // solution is optimal, we don't need to worry about running out of space:
    int current = len - 1;
    for (int i = 0; i < depth; i++) {
        // Skip items that have already been visited, or just happen to be in
        // the correct location:
        if (stack[i] == VISITED || stack[i] == i) {
            continue;
        }
        // Okay, we've found an item that hasn't been visited. It forms a cycle
        // with other items; traversing the cycle and swapping each item with
        // the next will put them all in the correct place. The weird
        // loop-and-a-half is necessary to insert 0 into every cycle, since we
        // can only swap from that position:
        int j = i;
        while (true) {
            // Skip the actual swap if our item is zero, since swapping the top
            // item with itself is pointless:
            if (j) {
                assert(0 <= current);
                // SWAPs are 1-indexed:
                instructions[current].i_opcode = SWAP;
                instructions[current--].i_oparg = j + 1;
            }
            if (stack[j] == VISITED) {
                // Completed the cycle:
                assert(j == i);
                break;
            }
            int next_j = stack[j];
            stack[j] = VISITED;
            j = next_j;
        }
    }
    // NOP out any unused instructions:
    while (0 <= current) {
        INSTR_SET_OP0(&instructions[current--], NOP);
    }
    PyMem_Free(stack);
    *ix += len - 1;
    return SUCCESS;
}


// This list is pretty small, since it's only okay to reorder opcodes that:
// - can't affect control flow (like jumping or raising exceptions)
// - can't invoke arbitrary code (besides finalizers)
// - only touch the TOS (and pop it when finished)
#define SWAPPABLE(opcode) \
    ((opcode) == STORE_FAST || \
     (opcode) == STORE_FAST_MAYBE_NULL || \
     (opcode) == POP_TOP)

#define STORES_TO(instr) \
    (((instr).i_opcode == STORE_FAST || \
      (instr).i_opcode == STORE_FAST_MAYBE_NULL) \
     ? (instr).i_oparg : -1)

static int
next_swappable_instruction(basicblock *block, int i, int lineno)
{
    while (++i < block->b_iused) {
        cfg_instr *instruction = &block->b_instr[i];
        if (0 <= lineno && instruction->i_loc.lineno != lineno) {
            // Optimizing across this instruction could cause user-visible
            // changes in the names bound between line tracing events!
            return -1;
        }
        if (instruction->i_opcode == NOP) {
            continue;
        }
        if (SWAPPABLE(instruction->i_opcode)) {
            return i;
        }
        return -1;
    }
    return -1;
}

// Attempt to apply SWAPs statically by swapping *instructions* rather than
// stack items. For example, we can replace SWAP(2), POP_TOP, STORE_FAST(42)
// with the more efficient NOP, STORE_FAST(42), POP_TOP.
static void
apply_static_swaps(basicblock *block, int i)
{
    // SWAPs are to our left, and potential swaperands are to our right:
    for (; 0 <= i; i--) {
        assert(i < block->b_iused);
        cfg_instr *swap = &block->b_instr[i];
        if (swap->i_opcode != SWAP) {
            if (swap->i_opcode == NOP || SWAPPABLE(swap->i_opcode)) {
                // Nope, but we know how to handle these. Keep looking:
                continue;
            }
            // We can't reason about what this instruction does. Bail:
            return;
        }
        int j = next_swappable_instruction(block, i, -1);
        if (j < 0) {
            return;
        }
        int k = j;
        int lineno = block->b_instr[j].i_loc.lineno;
        for (int count = swap->i_oparg - 1; 0 < count; count--) {
            k = next_swappable_instruction(block, k, lineno);
            if (k < 0) {
                return;
            }
        }
        // The reordering is not safe if the two instructions to be swapped
        // store to the same location, or if any intervening instruction stores
        // to the same location as either of them.
        int store_j = STORES_TO(block->b_instr[j]);
        int store_k = STORES_TO(block->b_instr[k]);
        if (store_j >= 0 || store_k >= 0) {
            if (store_j == store_k) {
                return;
            }
            for (int idx = j + 1; idx < k; idx++) {
                int store_idx = STORES_TO(block->b_instr[idx]);
                if (store_idx >= 0 && (store_idx == store_j || store_idx == store_k)) {
                    return;
                }
            }
        }

        // Success!
        INSTR_SET_OP0(swap, NOP);
        cfg_instr temp = block->b_instr[j];
        block->b_instr[j] = block->b_instr[k];
        block->b_instr[k] = temp;
    }
}

static int
optimize_basic_block(PyObject *const_cache, basicblock *bb, PyObject *consts)
{
    assert(PyDict_CheckExact(const_cache));
    assert(PyList_CheckExact(consts));
    cfg_instr nop;
    INSTR_SET_OP0(&nop, NOP);
    cfg_instr *target = &nop;
    int opcode = 0;
    int oparg = 0;
    int nextop = 0;
    for (int i = 0; i < bb->b_iused; i++) {
        cfg_instr *inst = &bb->b_instr[i];
        bool is_copy_of_load_const = (opcode == LOAD_CONST &&
                                      inst->i_opcode == COPY &&
                                      inst->i_oparg == 1);
        if (! is_copy_of_load_const) {
            opcode = inst->i_opcode;
            oparg = inst->i_oparg;
            if (HAS_TARGET(opcode)) {
                assert(inst->i_target->b_iused > 0);
                target = &inst->i_target->b_instr[0];
                assert(!IS_ASSEMBLER_OPCODE(target->i_opcode));
            }
            else {
                target = &nop;
            }
        }
        nextop = i+1 < bb->b_iused ? bb->b_instr[i+1].i_opcode : 0;
        assert(!IS_ASSEMBLER_OPCODE(opcode));
        switch (opcode) {
            /* Remove LOAD_CONST const; conditional jump */
            case LOAD_CONST:
            {
                PyObject* cnt;
                int is_true;
                int jump_if_true;
                switch(nextop) {
                    case POP_JUMP_IF_FALSE:
                    case POP_JUMP_IF_TRUE:
                        cnt = get_const_value(opcode, oparg, consts);
                        if (cnt == NULL) {
                            goto error;
                        }
                        is_true = PyObject_IsTrue(cnt);
                        Py_DECREF(cnt);
                        if (is_true == -1) {
                            goto error;
                        }
                        INSTR_SET_OP0(inst, NOP);
                        jump_if_true = nextop == POP_JUMP_IF_TRUE;
                        if (is_true == jump_if_true) {
                            bb->b_instr[i+1].i_opcode = JUMP;
                        }
                        else {
                            INSTR_SET_OP0(&bb->b_instr[i + 1], NOP);
                        }
                        break;
                    case IS_OP:
                        cnt = get_const_value(opcode, oparg, consts);
                        if (cnt == NULL) {
                            goto error;
                        }
                        int jump_op = i+2 < bb->b_iused ? bb->b_instr[i+2].i_opcode : 0;
                        if (Py_IsNone(cnt) && (jump_op == POP_JUMP_IF_FALSE || jump_op == POP_JUMP_IF_TRUE)) {
                            unsigned char nextarg = bb->b_instr[i+1].i_oparg;
                            INSTR_SET_OP0(inst, NOP);
                            INSTR_SET_OP0(&bb->b_instr[i + 1], NOP);
                            bb->b_instr[i+2].i_opcode = nextarg ^ (jump_op == POP_JUMP_IF_FALSE) ?
                                    POP_JUMP_IF_NOT_NONE : POP_JUMP_IF_NONE;
                        }
                        Py_DECREF(cnt);
                        break;
                    case RETURN_VALUE:
                        INSTR_SET_OP0(inst, NOP);
                        INSTR_SET_OP1(&bb->b_instr[++i], RETURN_CONST, oparg);
                        break;
                }
                break;
            }
                /* Try to fold tuples of constants.
                   Skip over BUILD_TUPLE(1) UNPACK_SEQUENCE(1).
                   Replace BUILD_TUPLE(2) UNPACK_SEQUENCE(2) with SWAP(2).
                   Replace BUILD_TUPLE(3) UNPACK_SEQUENCE(3) with SWAP(3). */
            case BUILD_TUPLE:
                if (nextop == UNPACK_SEQUENCE && oparg == bb->b_instr[i+1].i_oparg) {
                    switch(oparg) {
                        case 1:
                            INSTR_SET_OP0(inst, NOP);
                            INSTR_SET_OP0(&bb->b_instr[i + 1], NOP);
                            continue;
                        case 2:
                        case 3:
                            INSTR_SET_OP0(inst, NOP);
                            bb->b_instr[i+1].i_opcode = SWAP;
                            continue;
                    }
                }
                if (i >= oparg) {
                    if (fold_tuple_on_constants(const_cache, inst-oparg, oparg, consts)) {
                        goto error;
                    }
                }
                break;
            case POP_JUMP_IF_NOT_NONE:
            case POP_JUMP_IF_NONE:
                switch (target->i_opcode) {
                    case JUMP:
                        i -= jump_thread(inst, target, inst->i_opcode);
                }
                break;
            case POP_JUMP_IF_FALSE:
                switch (target->i_opcode) {
                    case JUMP:
                        i -= jump_thread(inst, target, POP_JUMP_IF_FALSE);
                }
                break;
            case POP_JUMP_IF_TRUE:
                switch (target->i_opcode) {
                    case JUMP:
                        i -= jump_thread(inst, target, POP_JUMP_IF_TRUE);
                }
                break;
            case JUMP:
                switch (target->i_opcode) {
                    case JUMP:
                        i -= jump_thread(inst, target, JUMP);
                }
                break;
            case FOR_ITER:
                if (target->i_opcode == JUMP) {
                    /* This will not work now because the jump (at target) could
                     * be forward or backward and FOR_ITER only jumps forward. We
                     * can re-enable this if ever we implement a backward version
                     * of FOR_ITER.
                     */
                    /*
                    i -= jump_thread(inst, target, FOR_ITER);
                    */
                }
                break;
            case SWAP:
                if (oparg == 1) {
                    INSTR_SET_OP0(inst, NOP);
                    break;
                }
                if (swaptimize(bb, &i) < 0) {
                    goto error;
                }
                apply_static_swaps(bb, i);
                break;
            case KW_NAMES:
                break;
            case PUSH_NULL:
                if (nextop == LOAD_GLOBAL && (bb->b_instr[i+1].i_oparg & 1) == 0) {
                    INSTR_SET_OP0(inst, NOP);
                    bb->b_instr[i+1].i_oparg |= 1;
                }
                break;
            default:
                /* All HAS_CONST opcodes should be handled with LOAD_CONST */
                assert (!HAS_CONST(inst->i_opcode));
        }
    }
    return SUCCESS;
error:
    return ERROR;
}


/* Perform optimizations on a control flow graph.
   The consts object should still be in list form to allow new constants
   to be appended.

   Code trasnformations that reduce code size initially fill the gaps with
   NOPs.  Later those NOPs are removed.
*/
static int
optimize_cfg(cfg_builder *g, PyObject *consts, PyObject *const_cache)
{
    assert(PyDict_CheckExact(const_cache));
    RETURN_IF_ERROR(check_cfg(g));
    eliminate_empty_basic_blocks(g);
    for (basicblock *b = g->g_entryblock; b != NULL; b = b->b_next) {
        RETURN_IF_ERROR(inline_small_exit_blocks(b));
    }
    assert(no_empty_basic_blocks(g));
    for (basicblock *b = g->g_entryblock; b != NULL; b = b->b_next) {
        RETURN_IF_ERROR(optimize_basic_block(const_cache, b, consts));
        assert(b->b_predecessors == 0);
    }
    RETURN_IF_ERROR(remove_redundant_nops_and_pairs(g->g_entryblock));
    for (basicblock *b = g->g_entryblock; b != NULL; b = b->b_next) {
        RETURN_IF_ERROR(inline_small_exit_blocks(b));
    }
    RETURN_IF_ERROR(mark_reachable(g->g_entryblock));

    /* Delete unreachable instructions */
    for (basicblock *b = g->g_entryblock; b != NULL; b = b->b_next) {
       if (b->b_predecessors == 0) {
            b->b_iused = 0;
       }
    }
    for (basicblock *b = g->g_entryblock; b != NULL; b = b->b_next) {
        remove_redundant_nops(b);
    }
    eliminate_empty_basic_blocks(g);
    /* This assertion fails in an edge case (See gh-109889).
     * Remove it for the release (it's just one more NOP in the
     * bytecode for unlikely code).
     */
    // assert(no_redundant_nops(g));
    RETURN_IF_ERROR(remove_redundant_jumps(g));
    return SUCCESS;
}

// helper functions for add_checks_for_loads_of_unknown_variables
static inline void
maybe_push(basicblock *b, uint64_t unsafe_mask, basicblock ***sp)
{
    // Push b if the unsafe mask is giving us any new information.
    // To avoid overflowing the stack, only allow each block once.
    // Use b->b_visited=1 to mean that b is currently on the stack.
    uint64_t both = b->b_unsafe_locals_mask | unsafe_mask;
    if (b->b_unsafe_locals_mask != both) {
        b->b_unsafe_locals_mask = both;
        // More work left to do.
        if (!b->b_visited) {
            // not on the stack, so push it.
            *(*sp)++ = b;
            b->b_visited = 1;
        }
    }
}

static void
scan_block_for_locals(basicblock *b, basicblock ***sp)
{
    // bit i is set if local i is potentially uninitialized
    uint64_t unsafe_mask = b->b_unsafe_locals_mask;
    for (int i = 0; i < b->b_iused; i++) {
        cfg_instr *instr = &b->b_instr[i];
        assert(instr->i_opcode != EXTENDED_ARG);
        assert(!IS_SUPERINSTRUCTION_OPCODE(instr->i_opcode));
        if (instr->i_except != NULL) {
            maybe_push(instr->i_except, unsafe_mask, sp);
        }
        if (instr->i_oparg >= 64) {
            continue;
        }
        assert(instr->i_oparg >= 0);
        uint64_t bit = (uint64_t)1 << instr->i_oparg;
        switch (instr->i_opcode) {
            case DELETE_FAST:
            case LOAD_FAST_AND_CLEAR:
            case STORE_FAST_MAYBE_NULL:
                unsafe_mask |= bit;
                break;
            case STORE_FAST:
                unsafe_mask &= ~bit;
                break;
            case LOAD_FAST_CHECK:
                // If this doesn't raise, then the local is defined.
                unsafe_mask &= ~bit;
                break;
            case LOAD_FAST:
                if (unsafe_mask & bit) {
                    instr->i_opcode = LOAD_FAST_CHECK;
                }
                unsafe_mask &= ~bit;
                break;
        }
    }
    if (b->b_next && BB_HAS_FALLTHROUGH(b)) {
        maybe_push(b->b_next, unsafe_mask, sp);
    }
    cfg_instr *last = _PyCfg_BasicblockLastInstr(b);
    if (last && is_jump(last)) {
        assert(last->i_target != NULL);
        maybe_push(last->i_target, unsafe_mask, sp);
    }
}

static int
fast_scan_many_locals(basicblock *entryblock, int nlocals)
{
    assert(nlocals > 64);
    Py_ssize_t *states = PyMem_Calloc(nlocals - 64, sizeof(Py_ssize_t));
    if (states == NULL) {
        PyErr_NoMemory();
        return ERROR;
    }
    Py_ssize_t blocknum = 0;
    // state[i - 64] == blocknum if local i is guaranteed to
    // be initialized, i.e., if it has had a previous LOAD_FAST or
    // STORE_FAST within that basicblock (not followed by
    // DELETE_FAST/LOAD_FAST_AND_CLEAR/STORE_FAST_MAYBE_NULL).
    for (basicblock *b = entryblock; b != NULL; b = b->b_next) {
        blocknum++;
        for (int i = 0; i < b->b_iused; i++) {
            cfg_instr *instr = &b->b_instr[i];
            assert(instr->i_opcode != EXTENDED_ARG);
            assert(!IS_SUPERINSTRUCTION_OPCODE(instr->i_opcode));
            int arg = instr->i_oparg;
            if (arg < 64) {
                continue;
            }
            assert(arg >= 0);
            switch (instr->i_opcode) {
                case DELETE_FAST:
                case LOAD_FAST_AND_CLEAR:
                case STORE_FAST_MAYBE_NULL:
                    states[arg - 64] = blocknum - 1;
                    break;
                case STORE_FAST:
                    states[arg - 64] = blocknum;
                    break;
                case LOAD_FAST:
                    if (states[arg - 64] != blocknum) {
                        instr->i_opcode = LOAD_FAST_CHECK;
                    }
                    states[arg - 64] = blocknum;
                    break;
                    Py_UNREACHABLE();
            }
        }
    }
    PyMem_Free(states);
    return SUCCESS;
}

static int
remove_unused_consts(basicblock *entryblock, PyObject *consts)
{
    assert(PyList_CheckExact(consts));
    Py_ssize_t nconsts = PyList_GET_SIZE(consts);
    if (nconsts == 0) {
        return SUCCESS;  /* nothing to do */
    }

    Py_ssize_t *index_map = NULL;
    Py_ssize_t *reverse_index_map = NULL;
    int err = ERROR;

    index_map = PyMem_Malloc(nconsts * sizeof(Py_ssize_t));
    if (index_map == NULL) {
        goto end;
    }
    for (Py_ssize_t i = 1; i < nconsts; i++) {
        index_map[i] = -1;
    }
    // The first constant may be docstring; keep it always.
    index_map[0] = 0;

    /* mark used consts */
    for (basicblock *b = entryblock; b != NULL; b = b->b_next) {
        for (int i = 0; i < b->b_iused; i++) {
            if (HAS_CONST(b->b_instr[i].i_opcode)) {
                int index = b->b_instr[i].i_oparg;
                index_map[index] = index;
            }
        }
    }
    /* now index_map[i] == i if consts[i] is used, -1 otherwise */
    /* condense consts */
    Py_ssize_t n_used_consts = 0;
    for (int i = 0; i < nconsts; i++) {
        if (index_map[i] != -1) {
            assert(index_map[i] == i);
            index_map[n_used_consts++] = index_map[i];
        }
    }
    if (n_used_consts == nconsts) {
        /* nothing to do */
        err = SUCCESS;
        goto end;
    }

    /* move all used consts to the beginning of the consts list */
    assert(n_used_consts < nconsts);
    for (Py_ssize_t i = 0; i < n_used_consts; i++) {
        Py_ssize_t old_index = index_map[i];
        assert(i <= old_index && old_index < nconsts);
        if (i != old_index) {
            PyObject *value = PyList_GET_ITEM(consts, index_map[i]);
            assert(value != NULL);
            PyList_SetItem(consts, i, Py_NewRef(value));
        }
    }

    /* truncate the consts list at its new size */
    if (PyList_SetSlice(consts, n_used_consts, nconsts, NULL) < 0) {
        goto end;
    }
    /* adjust const indices in the bytecode */
    reverse_index_map = PyMem_Malloc(nconsts * sizeof(Py_ssize_t));
    if (reverse_index_map == NULL) {
        goto end;
    }
    for (Py_ssize_t i = 0; i < nconsts; i++) {
        reverse_index_map[i] = -1;
    }
    for (Py_ssize_t i = 0; i < n_used_consts; i++) {
        assert(index_map[i] != -1);
        assert(reverse_index_map[index_map[i]] == -1);
        reverse_index_map[index_map[i]] = i;
    }

    for (basicblock *b = entryblock; b != NULL; b = b->b_next) {
        for (int i = 0; i < b->b_iused; i++) {
            if (HAS_CONST(b->b_instr[i].i_opcode)) {
                int index = b->b_instr[i].i_oparg;
                assert(reverse_index_map[index] >= 0);
                assert(reverse_index_map[index] < n_used_consts);
                b->b_instr[i].i_oparg = (int)reverse_index_map[index];
            }
        }
    }

    err = SUCCESS;
end:
    PyMem_Free(index_map);
    PyMem_Free(reverse_index_map);
    return err;
}



static int
add_checks_for_loads_of_uninitialized_variables(basicblock *entryblock,
                                                int nlocals,
                                                int nparams)
{
    if (nlocals == 0) {
        return SUCCESS;
    }
    if (nlocals > 64) {
        // To avoid O(nlocals**2) compilation, locals beyond the first
        // 64 are only analyzed one basicblock at a time: initialization
        // info is not passed between basicblocks.
        if (fast_scan_many_locals(entryblock, nlocals) < 0) {
            return ERROR;
        }
        nlocals = 64;
    }
    basicblock **stack = make_cfg_traversal_stack(entryblock);
    if (stack == NULL) {
        return ERROR;
    }
    basicblock **sp = stack;

    // First origin of being uninitialized:
    // The non-parameter locals in the entry block.
    uint64_t start_mask = 0;
    for (int i = nparams; i < nlocals; i++) {
        start_mask |= (uint64_t)1 << i;
    }
    maybe_push(entryblock, start_mask, &sp);

    // Second origin of being uninitialized:
    // There could be DELETE_FAST somewhere, so
    // be sure to scan each basicblock at least once.
    for (basicblock *b = entryblock; b != NULL; b = b->b_next) {
        scan_block_for_locals(b, &sp);
    }
    // Now propagate the uncertainty from the origins we found: Use
    // LOAD_FAST_CHECK for any LOAD_FAST where the local could be undefined.
    while (sp > stack) {
        basicblock *b = *--sp;
        // mark as no longer on stack
        b->b_visited = 0;
        scan_block_for_locals(b, &sp);
    }
    PyMem_Free(stack);
    return SUCCESS;
}


static int
mark_warm(basicblock *entryblock) {
    basicblock **stack = make_cfg_traversal_stack(entryblock);
    if (stack == NULL) {
        return ERROR;
    }
    basicblock **sp = stack;

    *sp++ = entryblock;
    entryblock->b_visited = 1;
    while (sp > stack) {
        basicblock *b = *(--sp);
        assert(!b->b_except_handler);
        b->b_warm = 1;
        basicblock *next = b->b_next;
        if (next && BB_HAS_FALLTHROUGH(b) && !next->b_visited) {
            *sp++ = next;
            next->b_visited = 1;
        }
        for (int i=0; i < b->b_iused; i++) {
            cfg_instr *instr = &b->b_instr[i];
            if (is_jump(instr) && !instr->i_target->b_visited) {
                *sp++ = instr->i_target;
                instr->i_target->b_visited = 1;
            }
        }
    }
    PyMem_Free(stack);
    return SUCCESS;
}

static int
mark_cold(basicblock *entryblock) {
    for (basicblock *b = entryblock; b != NULL; b = b->b_next) {
        assert(!b->b_cold && !b->b_warm);
    }
    if (mark_warm(entryblock) < 0) {
        return ERROR;
    }

    basicblock **stack = make_cfg_traversal_stack(entryblock);
    if (stack == NULL) {
        return ERROR;
    }

    basicblock **sp = stack;
    for (basicblock *b = entryblock; b != NULL; b = b->b_next) {
        if (b->b_except_handler) {
            assert(!b->b_warm);
            *sp++ = b;
            b->b_visited = 1;
        }
    }

    while (sp > stack) {
        basicblock *b = *(--sp);
        b->b_cold = 1;
        basicblock *next = b->b_next;
        if (next && BB_HAS_FALLTHROUGH(b)) {
            if (!next->b_warm && !next->b_visited) {
                *sp++ = next;
                next->b_visited = 1;
            }
        }
        for (int i = 0; i < b->b_iused; i++) {
            cfg_instr *instr = &b->b_instr[i];
            if (is_jump(instr)) {
                assert(i == b->b_iused - 1);
                basicblock *target = b->b_instr[i].i_target;
                if (!target->b_warm && !target->b_visited) {
                    *sp++ = target;
                    target->b_visited = 1;
                }
            }
        }
    }
    PyMem_Free(stack);
    return SUCCESS;
}


static int
push_cold_blocks_to_end(cfg_builder *g, int code_flags) {
    basicblock *entryblock = g->g_entryblock;
    if (entryblock->b_next == NULL) {
        /* single basicblock, no need to reorder */
        return SUCCESS;
    }
    RETURN_IF_ERROR(mark_cold(entryblock));

    int next_lbl = get_max_label(g->g_entryblock) + 1;

    /* If we have a cold block with fallthrough to a warm block, add */
    /* an explicit jump instead of fallthrough */
    for (basicblock *b = entryblock; b != NULL; b = b->b_next) {
        if (b->b_cold && BB_HAS_FALLTHROUGH(b) && b->b_next && b->b_next->b_warm) {
            basicblock *explicit_jump = cfg_builder_new_block(g);
            if (explicit_jump == NULL) {
                return ERROR;
            }
            if (!IS_LABEL(b->b_next->b_label)) {
                b->b_next->b_label.id = next_lbl++;
            }
            basicblock_addop(explicit_jump, JUMP, b->b_next->b_label.id, NO_LOCATION);
            explicit_jump->b_cold = 1;
            explicit_jump->b_next = b->b_next;
            b->b_next = explicit_jump;

            /* set target */
            cfg_instr *last = _PyCfg_BasicblockLastInstr(explicit_jump);
            last->i_target = explicit_jump->b_next;
        }
    }

    assert(!entryblock->b_cold);  /* First block can't be cold */
    basicblock *cold_blocks = NULL;
    basicblock *cold_blocks_tail = NULL;

    basicblock *b = entryblock;
    while(b->b_next) {
        assert(!b->b_cold);
        while (b->b_next && !b->b_next->b_cold) {
            b = b->b_next;
        }
        if (b->b_next == NULL) {
            /* no more cold blocks */
            break;
        }

        /* b->b_next is the beginning of a cold streak */
        assert(!b->b_cold && b->b_next->b_cold);

        basicblock *b_end = b->b_next;
        while (b_end->b_next && b_end->b_next->b_cold) {
            b_end = b_end->b_next;
        }

        /* b_end is the end of the cold streak */
        assert(b_end && b_end->b_cold);
        assert(b_end->b_next == NULL || !b_end->b_next->b_cold);

        if (cold_blocks == NULL) {
            cold_blocks = b->b_next;
        }
        else {
            cold_blocks_tail->b_next = b->b_next;
        }
        cold_blocks_tail = b_end;
        b->b_next = b_end->b_next;
        b_end->b_next = NULL;
    }
    assert(b != NULL && b->b_next == NULL);
    b->b_next = cold_blocks;

    if (cold_blocks != NULL) {
        RETURN_IF_ERROR(remove_redundant_jumps(g));
    }
    return SUCCESS;
}

void
_PyCfg_ConvertPseudoOps(basicblock *entryblock)
{
    for (basicblock *b = entryblock; b != NULL; b = b->b_next) {
        for (int i = 0; i < b->b_iused; i++) {
            cfg_instr *instr = &b->b_instr[i];
            if (is_block_push(instr) || instr->i_opcode == POP_BLOCK) {
                INSTR_SET_OP0(instr, NOP);
            }
            else if (instr->i_opcode == STORE_FAST_MAYBE_NULL) {
                instr->i_opcode = STORE_FAST;
            }
        }
    }
    for (basicblock *b = entryblock; b != NULL; b = b->b_next) {
        remove_redundant_nops(b);
    }
}

static inline bool
is_exit_without_lineno(basicblock *b) {
    if (!basicblock_exits_scope(b)) {
        return false;
    }
    for (int i = 0; i < b->b_iused; i++) {
        if (b->b_instr[i].i_loc.lineno >= 0) {
            return false;
        }
    }
    return true;
}


/* PEP 626 mandates that the f_lineno of a frame is correct
 * after a frame terminates. It would be prohibitively expensive
 * to continuously update the f_lineno field at runtime,
 * so we make sure that all exiting instruction (raises and returns)
 * have a valid line number, allowing us to compute f_lineno lazily.
 * We can do this by duplicating the exit blocks without line number
 * so that none have more than one predecessor. We can then safely
 * copy the line number from the sole predecessor block.
 */
static int
duplicate_exits_without_lineno(cfg_builder *g)
{
    assert(no_empty_basic_blocks(g));

    int next_lbl = get_max_label(g->g_entryblock) + 1;

    /* Copy all exit blocks without line number that are targets of a jump.
     */
    basicblock *entryblock = g->g_entryblock;
    for (basicblock *b = entryblock; b != NULL; b = b->b_next) {
        cfg_instr *last = _PyCfg_BasicblockLastInstr(b);
        assert(last != NULL);
        if (is_jump(last)) {
            basicblock *target = last->i_target;
            if (is_exit_without_lineno(target) && target->b_predecessors > 1) {
                basicblock *new_target = copy_basicblock(g, target);
                if (new_target == NULL) {
                    return ERROR;
                }
                new_target->b_instr[0].i_loc = last->i_loc;
                last->i_target = new_target;
                target->b_predecessors--;
                new_target->b_predecessors = 1;
                new_target->b_next = target->b_next;
                new_target->b_label.id = next_lbl++;
                target->b_next = new_target;
            }
        }
    }

    /* Any remaining reachable exit blocks without line number can only be reached by
     * fall through, and thus can only have a single predecessor */
    for (basicblock *b = entryblock; b != NULL; b = b->b_next) {
        if (BB_HAS_FALLTHROUGH(b) && b->b_next && b->b_iused > 0) {
            if (is_exit_without_lineno(b->b_next)) {
                cfg_instr *last = _PyCfg_BasicblockLastInstr(b);
                assert(last != NULL);
                b->b_next->b_instr[0].i_loc = last->i_loc;
            }
        }
    }
    return SUCCESS;
}


/* If an instruction has no line number, but it's predecessor in the BB does,
 * then copy the line number. If a successor block has no line number, and only
 * one predecessor, then inherit the line number.
 * This ensures that all exit blocks (with one predecessor) receive a line number.
 * Also reduces the size of the line number table,
 * but has no impact on the generated line number events.
 */
static void
propagate_line_numbers(basicblock *entryblock) {
    for (basicblock *b = entryblock; b != NULL; b = b->b_next) {
        cfg_instr *last = _PyCfg_BasicblockLastInstr(b);
        if (last == NULL) {
            continue;
        }

        location prev_location = NO_LOCATION;
        for (int i = 0; i < b->b_iused; i++) {
            if (b->b_instr[i].i_loc.lineno < 0) {
                b->b_instr[i].i_loc = prev_location;
            }
            else {
                prev_location = b->b_instr[i].i_loc;
            }
        }
        if (BB_HAS_FALLTHROUGH(b) && b->b_next->b_predecessors == 1) {
            assert(b->b_next->b_iused);
            if (b->b_next->b_instr[0].i_loc.lineno < 0) {
                b->b_next->b_instr[0].i_loc = prev_location;
            }
        }
        if (is_jump(last)) {
            basicblock *target = last->i_target;
            if (target->b_predecessors == 1) {
                if (target->b_instr[0].i_loc.lineno < 0) {
                    target->b_instr[0].i_loc = prev_location;
                }
            }
        }
    }
}

/* Make sure that all returns have a line number, even if early passes
 * have failed to propagate a correct line number.
 * The resulting line number may not be correct according to PEP 626,
 * but should be "good enough", and no worse than in older versions. */
static void
guarantee_lineno_for_exits(basicblock *entryblock, int firstlineno) {
    int lineno = firstlineno;
    assert(lineno > 0);
    for (basicblock *b = entryblock; b != NULL; b = b->b_next) {
        cfg_instr *last = _PyCfg_BasicblockLastInstr(b);
        if (last == NULL) {
            continue;
        }
        if (last->i_loc.lineno < 0) {
            if (last->i_opcode == RETURN_VALUE) {
                for (int i = 0; i < b->b_iused; i++) {
                    assert(b->b_instr[i].i_loc.lineno < 0);

                    b->b_instr[i].i_loc.lineno = lineno;
                }
            }
        }
        else {
            lineno = last->i_loc.lineno;
        }
    }
}

static int
resolve_line_numbers(cfg_builder *g, int firstlineno)
{
    RETURN_IF_ERROR(duplicate_exits_without_lineno(g));
    propagate_line_numbers(g->g_entryblock);
    guarantee_lineno_for_exits(g->g_entryblock, firstlineno);
    return SUCCESS;
}

int
_PyCfg_OptimizeCodeUnit(cfg_builder *g, PyObject *consts, PyObject *const_cache,
                       int code_flags, int nlocals, int nparams, int firstlineno)
{
    assert(cfg_builder_check(g));
    /** Preprocessing **/
    /* Map labels to targets and mark exception handlers */
    RETURN_IF_ERROR(translate_jump_labels_to_targets(g->g_entryblock));
    RETURN_IF_ERROR(mark_except_handlers(g->g_entryblock));
    RETURN_IF_ERROR(label_exception_targets(g->g_entryblock));

    /** Optimization **/
    RETURN_IF_ERROR(optimize_cfg(g, consts, const_cache));
    RETURN_IF_ERROR(remove_unused_consts(g->g_entryblock, consts));
    RETURN_IF_ERROR(
        add_checks_for_loads_of_uninitialized_variables(
            g->g_entryblock, nlocals, nparams));

    RETURN_IF_ERROR(push_cold_blocks_to_end(g, code_flags));
    RETURN_IF_ERROR(resolve_line_numbers(g, firstlineno));
    return SUCCESS;
}