1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
|
/* stringlib: fastsearch implementation */
#define STRINGLIB_FASTSEARCH_H
/* fast search/count implementation, based on a mix between boyer-
moore and horspool, with a few more bells and whistles on the top.
for some more background, see:
https://web.archive.org/web/20201107074620/http://effbot.org/zone/stringlib.htm */
/* note: fastsearch may access s[n], which isn't a problem when using
Python's ordinary string types, but may cause problems if you're
using this code in other contexts. also, the count mode returns -1
if there cannot possibly be a match in the target string, and 0 if
it has actually checked for matches, but didn't find any. callers
beware! */
/* If the strings are long enough, use Crochemore and Perrin's Two-Way
algorithm, which has worst-case O(n) runtime and best-case O(n/k).
Also compute a table of shifts to achieve O(n/k) in more cases,
and often (data dependent) deduce larger shifts than pure C&P can
deduce. See stringlib_find_two_way_notes.txt in this folder for a
detailed explanation. */
#define FAST_COUNT 0
#define FAST_SEARCH 1
#define FAST_RSEARCH 2
#if LONG_BIT >= 128
#define STRINGLIB_BLOOM_WIDTH 128
#elif LONG_BIT >= 64
#define STRINGLIB_BLOOM_WIDTH 64
#elif LONG_BIT >= 32
#define STRINGLIB_BLOOM_WIDTH 32
#else
#error "LONG_BIT is smaller than 32"
#endif
#define STRINGLIB_BLOOM_ADD(mask, ch) \
((mask |= (1UL << ((ch) & (STRINGLIB_BLOOM_WIDTH -1)))))
#define STRINGLIB_BLOOM(mask, ch) \
((mask & (1UL << ((ch) & (STRINGLIB_BLOOM_WIDTH -1)))))
#ifdef STRINGLIB_FAST_MEMCHR
# define MEMCHR_CUT_OFF 15
#else
# define MEMCHR_CUT_OFF 40
#endif
Py_LOCAL_INLINE(Py_ssize_t)
STRINGLIB(find_char)(const STRINGLIB_CHAR* s, Py_ssize_t n, STRINGLIB_CHAR ch)
{
const STRINGLIB_CHAR *p, *e;
p = s;
e = s + n;
if (n > MEMCHR_CUT_OFF) {
#ifdef STRINGLIB_FAST_MEMCHR
p = STRINGLIB_FAST_MEMCHR(s, ch, n);
if (p != NULL)
return (p - s);
return -1;
#else
/* use memchr if we can choose a needle without too many likely
false positives */
const STRINGLIB_CHAR *s1, *e1;
unsigned char needle = ch & 0xff;
/* If looking for a multiple of 256, we'd have too
many false positives looking for the '\0' byte in UCS2
and UCS4 representations. */
if (needle != 0) {
do {
void *candidate = memchr(p, needle,
(e - p) * sizeof(STRINGLIB_CHAR));
if (candidate == NULL)
return -1;
s1 = p;
p = (const STRINGLIB_CHAR *)
_Py_ALIGN_DOWN(candidate, sizeof(STRINGLIB_CHAR));
if (*p == ch)
return (p - s);
/* False positive */
p++;
if (p - s1 > MEMCHR_CUT_OFF)
continue;
if (e - p <= MEMCHR_CUT_OFF)
break;
e1 = p + MEMCHR_CUT_OFF;
while (p != e1) {
if (*p == ch)
return (p - s);
p++;
}
}
while (e - p > MEMCHR_CUT_OFF);
}
#endif
}
while (p < e) {
if (*p == ch)
return (p - s);
p++;
}
return -1;
}
#undef MEMCHR_CUT_OFF
#if STRINGLIB_SIZEOF_CHAR == 1
# define MEMRCHR_CUT_OFF 15
#else
# define MEMRCHR_CUT_OFF 40
#endif
Py_LOCAL_INLINE(Py_ssize_t)
STRINGLIB(rfind_char)(const STRINGLIB_CHAR* s, Py_ssize_t n, STRINGLIB_CHAR ch)
{
const STRINGLIB_CHAR *p;
#ifdef HAVE_MEMRCHR
/* memrchr() is a GNU extension, available since glibc 2.1.91. it
doesn't seem as optimized as memchr(), but is still quite
faster than our hand-written loop below. There is no wmemrchr
for 4-byte chars. */
if (n > MEMRCHR_CUT_OFF) {
#if STRINGLIB_SIZEOF_CHAR == 1
p = memrchr(s, ch, n);
if (p != NULL)
return (p - s);
return -1;
#else
/* use memrchr if we can choose a needle without too many likely
false positives */
const STRINGLIB_CHAR *s1;
Py_ssize_t n1;
unsigned char needle = ch & 0xff;
/* If looking for a multiple of 256, we'd have too
many false positives looking for the '\0' byte in UCS2
and UCS4 representations. */
if (needle != 0) {
do {
void *candidate = memrchr(s, needle,
n * sizeof(STRINGLIB_CHAR));
if (candidate == NULL)
return -1;
n1 = n;
p = (const STRINGLIB_CHAR *)
_Py_ALIGN_DOWN(candidate, sizeof(STRINGLIB_CHAR));
n = p - s;
if (*p == ch)
return n;
/* False positive */
if (n1 - n > MEMRCHR_CUT_OFF)
continue;
if (n <= MEMRCHR_CUT_OFF)
break;
s1 = p - MEMRCHR_CUT_OFF;
while (p > s1) {
p--;
if (*p == ch)
return (p - s);
}
n = p - s;
}
while (n > MEMRCHR_CUT_OFF);
}
#endif
}
#endif /* HAVE_MEMRCHR */
p = s + n;
while (p > s) {
p--;
if (*p == ch)
return (p - s);
}
return -1;
}
#undef MEMRCHR_CUT_OFF
/* Change to a 1 to see logging comments walk through the algorithm. */
#if 0 && STRINGLIB_SIZEOF_CHAR == 1
# define LOG(...) printf(__VA_ARGS__)
# define LOG_STRING(s, n) printf("\"%.*s\"", (int)(n), s)
# define LOG_LINEUP() do { \
LOG("> "); LOG_STRING(haystack, len_haystack); LOG("\n> "); \
LOG("%*s",(int)(window_last - haystack + 1 - len_needle), ""); \
LOG_STRING(needle, len_needle); LOG("\n"); \
} while(0)
#else
# define LOG(...)
# define LOG_STRING(s, n)
# define LOG_LINEUP()
#endif
Py_LOCAL_INLINE(Py_ssize_t)
STRINGLIB(_lex_search)(const STRINGLIB_CHAR *needle, Py_ssize_t len_needle,
Py_ssize_t *return_period, int invert_alphabet)
{
/* Do a lexicographic search. Essentially this:
>>> max(needle[i:] for i in range(len(needle)+1))
Also find the period of the right half. */
Py_ssize_t max_suffix = 0;
Py_ssize_t candidate = 1;
Py_ssize_t k = 0;
// The period of the right half.
Py_ssize_t period = 1;
while (candidate + k < len_needle) {
// each loop increases candidate + k + max_suffix
STRINGLIB_CHAR a = needle[candidate + k];
STRINGLIB_CHAR b = needle[max_suffix + k];
// check if the suffix at candidate is better than max_suffix
if (invert_alphabet ? (b < a) : (a < b)) {
// Fell short of max_suffix.
// The next k + 1 characters are non-increasing
// from candidate, so they won't start a maximal suffix.
candidate += k + 1;
k = 0;
// We've ruled out any period smaller than what's
// been scanned since max_suffix.
period = candidate - max_suffix;
}
else if (a == b) {
if (k + 1 != period) {
// Keep scanning the equal strings
k++;
}
else {
// Matched a whole period.
// Start matching the next period.
candidate += period;
k = 0;
}
}
else {
// Did better than max_suffix, so replace it.
max_suffix = candidate;
candidate++;
k = 0;
period = 1;
}
}
*return_period = period;
return max_suffix;
}
Py_LOCAL_INLINE(Py_ssize_t)
STRINGLIB(_factorize)(const STRINGLIB_CHAR *needle,
Py_ssize_t len_needle,
Py_ssize_t *return_period)
{
/* Do a "critical factorization", making it so that:
>>> needle = (left := needle[:cut]) + (right := needle[cut:])
where the "local period" of the cut is maximal.
The local period of the cut is the minimal length of a string w
such that (left endswith w or w endswith left)
and (right startswith w or w startswith left).
The Critical Factorization Theorem says that this maximal local
period is the global period of the string.
Crochemore and Perrin (1991) show that this cut can be computed
as the later of two cuts: one that gives a lexicographically
maximal right half, and one that gives the same with the
with respect to a reversed alphabet-ordering.
This is what we want to happen:
>>> x = "GCAGAGAG"
>>> cut, period = factorize(x)
>>> x[:cut], (right := x[cut:])
('GC', 'AGAGAG')
>>> period # right half period
2
>>> right[period:] == right[:-period]
True
This is how the local period lines up in the above example:
GC | AGAGAG
AGAGAGC = AGAGAGC
The length of this minimal repetition is 7, which is indeed the
period of the original string. */
Py_ssize_t cut1, period1, cut2, period2, cut, period;
cut1 = STRINGLIB(_lex_search)(needle, len_needle, &period1, 0);
cut2 = STRINGLIB(_lex_search)(needle, len_needle, &period2, 1);
// Take the later cut.
if (cut1 > cut2) {
period = period1;
cut = cut1;
}
else {
period = period2;
cut = cut2;
}
LOG("split: "); LOG_STRING(needle, cut);
LOG(" + "); LOG_STRING(needle + cut, len_needle - cut);
LOG("\n");
*return_period = period;
return cut;
}
#define SHIFT_TYPE uint8_t
#define MAX_SHIFT UINT8_MAX
#define TABLE_SIZE_BITS 6u
#define TABLE_SIZE (1U << TABLE_SIZE_BITS)
#define TABLE_MASK (TABLE_SIZE - 1U)
typedef struct STRINGLIB(_pre) {
const STRINGLIB_CHAR *needle;
Py_ssize_t len_needle;
Py_ssize_t cut;
Py_ssize_t period;
Py_ssize_t gap;
int is_periodic;
SHIFT_TYPE table[TABLE_SIZE];
} STRINGLIB(prework);
static void
STRINGLIB(_preprocess)(const STRINGLIB_CHAR *needle, Py_ssize_t len_needle,
STRINGLIB(prework) *p)
{
p->needle = needle;
p->len_needle = len_needle;
p->cut = STRINGLIB(_factorize)(needle, len_needle, &(p->period));
assert(p->period + p->cut <= len_needle);
p->is_periodic = (0 == memcmp(needle,
needle + p->period,
p->cut * STRINGLIB_SIZEOF_CHAR));
if (p->is_periodic) {
assert(p->cut <= len_needle/2);
assert(p->cut < p->period);
p->gap = 0; // unused
}
else {
// A lower bound on the period
p->period = Py_MAX(p->cut, len_needle - p->cut) + 1;
// The gap between the last character and the previous
// occurrence of an equivalent character (modulo TABLE_SIZE)
p->gap = len_needle;
STRINGLIB_CHAR last = needle[len_needle - 1] & TABLE_MASK;
for (Py_ssize_t i = len_needle - 2; i >= 0; i--) {
STRINGLIB_CHAR x = needle[i] & TABLE_MASK;
if (x == last) {
p->gap = len_needle - 1 - i;
break;
}
}
}
// Fill up a compressed Boyer-Moore "Bad Character" table
Py_ssize_t not_found_shift = Py_MIN(len_needle, MAX_SHIFT);
for (Py_ssize_t i = 0; i < (Py_ssize_t)TABLE_SIZE; i++) {
p->table[i] = Py_SAFE_DOWNCAST(not_found_shift,
Py_ssize_t, SHIFT_TYPE);
}
for (Py_ssize_t i = len_needle - not_found_shift; i < len_needle; i++) {
SHIFT_TYPE shift = Py_SAFE_DOWNCAST(len_needle - 1 - i,
Py_ssize_t, SHIFT_TYPE);
p->table[needle[i] & TABLE_MASK] = shift;
}
}
static Py_ssize_t
STRINGLIB(_two_way)(const STRINGLIB_CHAR *haystack, Py_ssize_t len_haystack,
STRINGLIB(prework) *p)
{
// Crochemore and Perrin's (1991) Two-Way algorithm.
// See http://www-igm.univ-mlv.fr/~lecroq/string/node26.html#SECTION00260
const Py_ssize_t len_needle = p->len_needle;
const Py_ssize_t cut = p->cut;
Py_ssize_t period = p->period;
const STRINGLIB_CHAR *const needle = p->needle;
const STRINGLIB_CHAR *window_last = haystack + len_needle - 1;
const STRINGLIB_CHAR *const haystack_end = haystack + len_haystack;
SHIFT_TYPE *table = p->table;
const STRINGLIB_CHAR *window;
LOG("===== Two-way: \"%s\" in \"%s\". =====\n", needle, haystack);
if (p->is_periodic) {
LOG("Needle is periodic.\n");
Py_ssize_t memory = 0;
periodicwindowloop:
while (window_last < haystack_end) {
assert(memory == 0);
for (;;) {
LOG_LINEUP();
Py_ssize_t shift = table[(*window_last) & TABLE_MASK];
window_last += shift;
if (shift == 0) {
break;
}
if (window_last >= haystack_end) {
return -1;
}
LOG("Horspool skip\n");
}
no_shift:
window = window_last - len_needle + 1;
assert((window[len_needle - 1] & TABLE_MASK) ==
(needle[len_needle - 1] & TABLE_MASK));
Py_ssize_t i = Py_MAX(cut, memory);
for (; i < len_needle; i++) {
if (needle[i] != window[i]) {
LOG("Right half does not match.\n");
window_last += i - cut + 1;
memory = 0;
goto periodicwindowloop;
}
}
for (i = memory; i < cut; i++) {
if (needle[i] != window[i]) {
LOG("Left half does not match.\n");
window_last += period;
memory = len_needle - period;
if (window_last >= haystack_end) {
return -1;
}
Py_ssize_t shift = table[(*window_last) & TABLE_MASK];
if (shift) {
// A mismatch has been identified to the right
// of where i will next start, so we can jump
// at least as far as if the mismatch occurred
// on the first comparison.
Py_ssize_t mem_jump = Py_MAX(cut, memory) - cut + 1;
LOG("Skip with Memory.\n");
memory = 0;
window_last += Py_MAX(shift, mem_jump);
goto periodicwindowloop;
}
goto no_shift;
}
}
LOG("Found a match!\n");
return window - haystack;
}
}
else {
Py_ssize_t gap = p->gap;
period = Py_MAX(gap, period);
LOG("Needle is not periodic.\n");
Py_ssize_t gap_jump_end = Py_MIN(len_needle, cut + gap);
windowloop:
while (window_last < haystack_end) {
for (;;) {
LOG_LINEUP();
Py_ssize_t shift = table[(*window_last) & TABLE_MASK];
window_last += shift;
if (shift == 0) {
break;
}
if (window_last >= haystack_end) {
return -1;
}
LOG("Horspool skip\n");
}
window = window_last - len_needle + 1;
assert((window[len_needle - 1] & TABLE_MASK) ==
(needle[len_needle - 1] & TABLE_MASK));
for (Py_ssize_t i = cut; i < gap_jump_end; i++) {
if (needle[i] != window[i]) {
LOG("Early right half mismatch: jump by gap.\n");
assert(gap >= i - cut + 1);
window_last += gap;
goto windowloop;
}
}
for (Py_ssize_t i = gap_jump_end; i < len_needle; i++) {
if (needle[i] != window[i]) {
LOG("Late right half mismatch.\n");
assert(i - cut + 1 > gap);
window_last += i - cut + 1;
goto windowloop;
}
}
for (Py_ssize_t i = 0; i < cut; i++) {
if (needle[i] != window[i]) {
LOG("Left half does not match.\n");
window_last += period;
goto windowloop;
}
}
LOG("Found a match!\n");
return window - haystack;
}
}
LOG("Not found. Returning -1.\n");
return -1;
}
static Py_ssize_t
STRINGLIB(_two_way_find)(const STRINGLIB_CHAR *haystack,
Py_ssize_t len_haystack,
const STRINGLIB_CHAR *needle,
Py_ssize_t len_needle)
{
LOG("###### Finding \"%s\" in \"%s\".\n", needle, haystack);
STRINGLIB(prework) p;
STRINGLIB(_preprocess)(needle, len_needle, &p);
return STRINGLIB(_two_way)(haystack, len_haystack, &p);
}
static Py_ssize_t
STRINGLIB(_two_way_count)(const STRINGLIB_CHAR *haystack,
Py_ssize_t len_haystack,
const STRINGLIB_CHAR *needle,
Py_ssize_t len_needle,
Py_ssize_t maxcount)
{
LOG("###### Counting \"%s\" in \"%s\".\n", needle, haystack);
STRINGLIB(prework) p;
STRINGLIB(_preprocess)(needle, len_needle, &p);
Py_ssize_t index = 0, count = 0;
while (1) {
Py_ssize_t result;
result = STRINGLIB(_two_way)(haystack + index,
len_haystack - index, &p);
if (result == -1) {
return count;
}
count++;
if (count == maxcount) {
return maxcount;
}
index += result + len_needle;
}
return count;
}
#undef SHIFT_TYPE
#undef NOT_FOUND
#undef SHIFT_OVERFLOW
#undef TABLE_SIZE_BITS
#undef TABLE_SIZE
#undef TABLE_MASK
#undef LOG
#undef LOG_STRING
#undef LOG_LINEUP
static inline Py_ssize_t
STRINGLIB(default_find)(const STRINGLIB_CHAR* s, Py_ssize_t n,
const STRINGLIB_CHAR* p, Py_ssize_t m,
Py_ssize_t maxcount, int mode)
{
const Py_ssize_t w = n - m;
Py_ssize_t mlast = m - 1, count = 0;
Py_ssize_t gap = mlast;
const STRINGLIB_CHAR last = p[mlast];
const STRINGLIB_CHAR *const ss = &s[mlast];
unsigned long mask = 0;
for (Py_ssize_t i = 0; i < mlast; i++) {
STRINGLIB_BLOOM_ADD(mask, p[i]);
if (p[i] == last) {
gap = mlast - i - 1;
}
}
STRINGLIB_BLOOM_ADD(mask, last);
for (Py_ssize_t i = 0; i <= w; i++) {
if (ss[i] == last) {
/* candidate match */
Py_ssize_t j;
for (j = 0; j < mlast; j++) {
if (s[i+j] != p[j]) {
break;
}
}
if (j == mlast) {
/* got a match! */
if (mode != FAST_COUNT) {
return i;
}
count++;
if (count == maxcount) {
return maxcount;
}
i = i + mlast;
continue;
}
/* miss: check if next character is part of pattern */
if (!STRINGLIB_BLOOM(mask, ss[i+1])) {
i = i + m;
}
else {
i = i + gap;
}
}
else {
/* skip: check if next character is part of pattern */
if (!STRINGLIB_BLOOM(mask, ss[i+1])) {
i = i + m;
}
}
}
return mode == FAST_COUNT ? count : -1;
}
static Py_ssize_t
STRINGLIB(adaptive_find)(const STRINGLIB_CHAR* s, Py_ssize_t n,
const STRINGLIB_CHAR* p, Py_ssize_t m,
Py_ssize_t maxcount, int mode)
{
const Py_ssize_t w = n - m;
Py_ssize_t mlast = m - 1, count = 0;
Py_ssize_t gap = mlast;
Py_ssize_t hits = 0, res;
const STRINGLIB_CHAR last = p[mlast];
const STRINGLIB_CHAR *const ss = &s[mlast];
unsigned long mask = 0;
for (Py_ssize_t i = 0; i < mlast; i++) {
STRINGLIB_BLOOM_ADD(mask, p[i]);
if (p[i] == last) {
gap = mlast - i - 1;
}
}
STRINGLIB_BLOOM_ADD(mask, last);
for (Py_ssize_t i = 0; i <= w; i++) {
if (ss[i] == last) {
/* candidate match */
Py_ssize_t j;
for (j = 0; j < mlast; j++) {
if (s[i+j] != p[j]) {
break;
}
}
if (j == mlast) {
/* got a match! */
if (mode != FAST_COUNT) {
return i;
}
count++;
if (count == maxcount) {
return maxcount;
}
i = i + mlast;
continue;
}
hits += j + 1;
if (hits > m / 4 && w - i > 2000) {
if (mode == FAST_SEARCH) {
res = STRINGLIB(_two_way_find)(s + i, n - i, p, m);
return res == -1 ? -1 : res + i;
}
else {
res = STRINGLIB(_two_way_count)(s + i, n - i, p, m,
maxcount - count);
return res + count;
}
}
/* miss: check if next character is part of pattern */
if (!STRINGLIB_BLOOM(mask, ss[i+1])) {
i = i + m;
}
else {
i = i + gap;
}
}
else {
/* skip: check if next character is part of pattern */
if (!STRINGLIB_BLOOM(mask, ss[i+1])) {
i = i + m;
}
}
}
return mode == FAST_COUNT ? count : -1;
}
static Py_ssize_t
STRINGLIB(default_rfind)(const STRINGLIB_CHAR* s, Py_ssize_t n,
const STRINGLIB_CHAR* p, Py_ssize_t m,
Py_ssize_t maxcount, int mode)
{
/* create compressed boyer-moore delta 1 table */
unsigned long mask = 0;
Py_ssize_t i, j, mlast = m - 1, skip = m - 1, w = n - m;
/* process pattern[0] outside the loop */
STRINGLIB_BLOOM_ADD(mask, p[0]);
/* process pattern[:0:-1] */
for (i = mlast; i > 0; i--) {
STRINGLIB_BLOOM_ADD(mask, p[i]);
if (p[i] == p[0]) {
skip = i - 1;
}
}
for (i = w; i >= 0; i--) {
if (s[i] == p[0]) {
/* candidate match */
for (j = mlast; j > 0; j--) {
if (s[i+j] != p[j]) {
break;
}
}
if (j == 0) {
/* got a match! */
return i;
}
/* miss: check if previous character is part of pattern */
if (i > 0 && !STRINGLIB_BLOOM(mask, s[i-1])) {
i = i - m;
}
else {
i = i - skip;
}
}
else {
/* skip: check if previous character is part of pattern */
if (i > 0 && !STRINGLIB_BLOOM(mask, s[i-1])) {
i = i - m;
}
}
}
return -1;
}
static inline Py_ssize_t
STRINGLIB(count_char)(const STRINGLIB_CHAR *s, Py_ssize_t n,
const STRINGLIB_CHAR p0, Py_ssize_t maxcount)
{
Py_ssize_t i, count = 0;
for (i = 0; i < n; i++) {
if (s[i] == p0) {
count++;
if (count == maxcount) {
return maxcount;
}
}
}
return count;
}
Py_LOCAL_INLINE(Py_ssize_t)
FASTSEARCH(const STRINGLIB_CHAR* s, Py_ssize_t n,
const STRINGLIB_CHAR* p, Py_ssize_t m,
Py_ssize_t maxcount, int mode)
{
if (n < m || (mode == FAST_COUNT && maxcount == 0)) {
return -1;
}
/* look for special cases */
if (m <= 1) {
if (m <= 0) {
return -1;
}
/* use special case for 1-character strings */
if (mode == FAST_SEARCH)
return STRINGLIB(find_char)(s, n, p[0]);
else if (mode == FAST_RSEARCH)
return STRINGLIB(rfind_char)(s, n, p[0]);
else {
return STRINGLIB(count_char)(s, n, p[0], maxcount);
}
}
if (mode != FAST_RSEARCH) {
if (n < 2500 || (m < 100 && n < 30000) || m < 6) {
return STRINGLIB(default_find)(s, n, p, m, maxcount, mode);
}
else if ((m >> 2) * 3 < (n >> 2)) {
/* 33% threshold, but don't overflow. */
/* For larger problems where the needle isn't a huge
percentage of the size of the haystack, the relatively
expensive O(m) startup cost of the two-way algorithm
will surely pay off. */
if (mode == FAST_SEARCH) {
return STRINGLIB(_two_way_find)(s, n, p, m);
}
else {
return STRINGLIB(_two_way_count)(s, n, p, m, maxcount);
}
}
else {
/* To ensure that we have good worst-case behavior,
here's an adaptive version of the algorithm, where if
we match O(m) characters without any matches of the
entire needle, then we predict that the startup cost of
the two-way algorithm will probably be worth it. */
return STRINGLIB(adaptive_find)(s, n, p, m, maxcount, mode);
}
}
else {
/* FAST_RSEARCH */
return STRINGLIB(default_rfind)(s, n, p, m, maxcount, mode);
}
}
|