aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/tools/flame-graph/README.md
blob: 1d8e5cd9ef280f3d63e52d79108985bd299291ab (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
# Flame Graphs visualize profiled code

Main Website: http://www.brendangregg.com/flamegraphs.html

Example (click to zoom):
[![Example](http://www.brendangregg.com/FlameGraphs/cpu-bash-flamegraph.svg)](https://jing.yandex-team.ru/files/yazevnul/contrib-tools-flame-graph-cpu-bash-flamegraph.svg)

Other sites:
- The Flame Graph article in ACMQ and CACM: http://queue.acm.org/detail.cfm?id=2927301 http://cacm.acm.org/magazines/2016/6/202665-the-flame-graph/abstract
- CPU profiling using Linux perf\_events, DTrace, SystemTap, or ktap: http://www.brendangregg.com/FlameGraphs/cpuflamegraphs.html
- CPU profiling using XCode Instruments: http://schani.wordpress.com/2012/11/16/flame-graphs-for-instruments/
- CPU profiling using Xperf.exe: http://randomascii.wordpress.com/2013/03/26/summarizing-xperf-cpu-usage-with-flame-graphs/
- Memory profiling: http://www.brendangregg.com/FlameGraphs/memoryflamegraphs.html
- Other examples, updates, and news: http://www.brendangregg.com/flamegraphs.html#Updates

Flame graphs can be created in three steps:

1. Capture stacks
2. Fold stacks
3. flamegraph.pl

1\. Capture stacks
=================
Stack samples can be captured using Linux perf\_events, FreeBSD pmcstat (hwpmc), DTrace, SystemTap, and many other profilers. See the stackcollapse-\* converters.

### Linux perf\_events

Using Linux perf\_events (aka "perf") to capture 60 seconds of 99 Hertz stack samples, both user- and kernel-level stacks, all processes:

```
# perf record -F 99 -a -g -- sleep 60
# perf script > out.perf
```

Now only capturing PID 181:

```
# perf record -F 99 -p 181 -g -- sleep 60
# perf script > out.perf
```

### DTrace

Using DTrace to capture 60 seconds of kernel stacks at 997 Hertz:

```
# dtrace -x stackframes=100 -n 'profile-997 /arg0/ { @[stack()] = count(); } tick-60s { exit(0); }' -o out.kern_stacks
```

Using DTrace to capture 60 seconds of user-level stacks for PID 12345 at 97 Hertz:

```
# dtrace -x ustackframes=100 -n 'profile-97 /pid == 12345 && arg1/ { @[ustack()] = count(); } tick-60s { exit(0); }' -o out.user_stacks
```

60 seconds of user-level stacks, including time spent in-kernel, for PID 12345 at 97 Hertz:

```
# dtrace -x ustackframes=100 -n 'profile-97 /pid == 12345/ { @[ustack()] = count(); } tick-60s { exit(0); }' -o out.user_stacks
```

Switch `ustack()` for `jstack()` if the application has a ustack helper to include translated frames (eg, node.js frames; see: http://dtrace.org/blogs/dap/2012/01/05/where-does-your-node-program-spend-its-time/).  The rate for user-level stack collection is deliberately slower than kernel, which is especially important when using `jstack()` as it performs additional work to translate frames.

2\. Fold stacks
==============
Use the stackcollapse programs to fold stack samples into single lines.  The programs provided are:

- `stackcollapse.pl`: for DTrace stacks
- `stackcollapse-perf.pl`: for Linux perf_events "perf script" output
- `stackcollapse-pmc.pl`: for FreeBSD pmcstat -G stacks
- `stackcollapse-stap.pl`: for SystemTap stacks
- `stackcollapse-instruments.pl`: for XCode Instruments
- `stackcollapse-vtune.pl`: for Intel VTune profiles
- `stackcollapse-ljp.awk`: for Lightweight Java Profiler
- `stackcollapse-jstack.pl`: for Java jstack(1) output
- `stackcollapse-gdb.pl`: for gdb(1) stacks
- `stackcollapse-go.pl`: for Golang pprof stacks
- `stackcollapse-vsprof.pl`: for Microsoft Visual Studio profiles

Usage example:

```
For perf_events:
$ ./stackcollapse-perf.pl out.perf > out.folded

For DTrace:
$ ./stackcollapse.pl out.kern_stacks > out.kern_folded
```

The output looks like this:

```
unix`_sys_sysenter_post_swapgs 1401
unix`_sys_sysenter_post_swapgs;genunix`close 5
unix`_sys_sysenter_post_swapgs;genunix`close;genunix`closeandsetf 85
unix`_sys_sysenter_post_swapgs;genunix`close;genunix`closeandsetf;c2audit`audit_closef 26
unix`_sys_sysenter_post_swapgs;genunix`close;genunix`closeandsetf;c2audit`audit_setf 5
unix`_sys_sysenter_post_swapgs;genunix`close;genunix`closeandsetf;genunix`audit_getstate 6
unix`_sys_sysenter_post_swapgs;genunix`close;genunix`closeandsetf;genunix`audit_unfalloc 2
unix`_sys_sysenter_post_swapgs;genunix`close;genunix`closeandsetf;genunix`closef 48
[...]
```

3\. flamegraph.pl
================
Use flamegraph.pl to render a SVG.

```
$ ./flamegraph.pl out.kern_folded > kernel.svg
```

An advantage of having the folded input file (and why this is separate to flamegraph.pl) is that you can use grep for functions of interest. Eg:

```
$ grep cpuid out.kern_folded | ./flamegraph.pl > cpuid.svg
```

Provided Examples
=================

### Linux perf\_events

An example output from Linux "perf script" is included, gzip'd, as example-perf-stacks.txt.gz. The resulting flame graph is example-perf.svg:

[![Example](http://www.brendangregg.com/FlameGraphs/example-perf.svg)](https://jing.yandex-team.ru/files/yazevnul/contrib-tools-flame-graph-example-perf.svg)

You can create this using:

```
$ gunzip -c example-perf-stacks.txt.gz | ./stackcollapse-perf.pl --all | ./flamegraph.pl --color=java --hash > example-perf.svg
```

This shows my typical workflow: I'll gzip profiles on the target, then copy them to my laptop for analysis. Since I have hundreds of profiles, I leave them gzip'd!

Since this profile included Java, I used the flamegraph.pl --color=java palette. I've also used stackcollapse-perf.pl --all, which includes all annotations that help flamegraph.pl use separate colors for kernel and user level code. The resulting flame graph uses: green == Java, yellow == C++, red == user-mode native, orange == kernel.

This profile was from an analysis of vert.x performance. The benchmark client, wrk, is also visible in the flame graph.

### DTrace

An example output from DTrace is also included, example-dtrace-stacks.txt, and the resulting flame graph, example-dtrace.svg:

[![Example](http://www.brendangregg.com/FlameGraphs/example-dtrace.svg)](https://jing.yandex-team.ru/files/yazevnul/contrib-tools-flame-graph-example-dtrace.svg)

You can generate this using:

```
$ ./stackcollapse.pl example-stacks.txt | ./flamegraph.pl > example.svg
```

This was from a particular performance investigation: the Flame Graph identified that CPU time was spent in the lofs module, and quantified that time.


Options
=======
See the USAGE message (--help) for options:

USAGE: ./flamegraph.pl [options] infile > outfile.svg

	--title TEXT     # change title text
	--subtitle TEXT  # second level title (optional)
	--width NUM      # width of image (default 1200)
	--height NUM     # height of each frame (default 16)
	--minwidth NUM   # omit smaller functions (default 0.1 pixels)
	--fonttype FONT  # font type (default "Verdana")
	--fontsize NUM   # font size (default 12)
	--countname TEXT # count type label (default "samples")
	--nametype TEXT  # name type label (default "Function:")
	--colors PALETTE # set color palette. choices are: hot (default), mem,
	                 # io, wakeup, chain, java, js, perl, red, green, blue,
	                 # aqua, yellow, purple, orange
	--bgcolors COLOR # set background colors. gradient choices are yellow
	                 # (default), blue, green, grey; flat colors use "#rrggbb"
	--hash           # colors are keyed by function name hash
	--cp             # use consistent palette (palette.map)
	--reverse        # generate stack-reversed flame graph
	--inverted       # icicle graph
	--flamechart     # produce a flame chart (sort by time, do not merge stacks)
	--negate         # switch differential hues (blue<->red)
	--notes TEXT     # add notes comment in SVG (for debugging)
	--help           # this message

	eg,
	./flamegraph.pl --title="Flame Graph: malloc()" trace.txt > graph.svg

As suggested in the example, flame graphs can process traces of any event,
such as malloc()s, provided stack traces are gathered.


Consistent Palette
==================
If you use the `--cp` option, it will use the $colors selection and randomly
generate the palette like normal. Any future flamegraphs created using the `--cp`
option will use the same palette map. Any new symbols from future flamegraphs
will have their colors randomly generated using the $colors selection.

If you don't like the palette, just delete the palette.map file.

This allows your to change your colorscheme between flamegraphs to make the
differences REALLY stand out.

Example:

Say we have 2 captures, one with a problem, and one when it was working
(whatever "it" is):

```
cat working.folded | ./flamegraph.pl --cp > working.svg
# this generates a palette.map, as per the normal random generated look.

cat broken.folded | ./flamegraph.pl --cp --colors mem > broken.svg
# this svg will use the same palette.map for the same events, but a very
# different colorscheme for any new events.
```

Take a look at the demo directory for an example:

palette-example-working.svg
palette-example-broken.svg