aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/tools/cython/Cython/Plex/Machines.py
blob: 398850976bb8ade18cbfee0d84c0d115169e594d (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
#=======================================================================
#
#   Python Lexical Analyser
#
#   Classes for building NFAs and DFAs
#
#=======================================================================

from __future__ import absolute_import

import sys

from .Transitions import TransitionMap

try:
    from sys import maxsize as maxint
except ImportError:
    from sys import maxint

try:
    unichr
except NameError:
    unichr = chr

LOWEST_PRIORITY = -maxint


class Machine(object):
    """A collection of Nodes representing an NFA or DFA."""
    states = None          # [Node]
    next_state_number = 1
    initial_states = None  # {(name, bol): Node}

    def __init__(self):
        self.states = []
        self.initial_states = {}

    def __del__(self):
        #print "Destroying", self ###
        for state in self.states:
            state.destroy()

    def new_state(self):
        """Add a new state to the machine and return it."""
        s = Node()
        n = self.next_state_number
        self.next_state_number = n + 1
        s.number = n
        self.states.append(s)
        return s

    def new_initial_state(self, name):
        state = self.new_state()
        self.make_initial_state(name, state)
        return state

    def make_initial_state(self, name, state):
        self.initial_states[name] = state

    def get_initial_state(self, name):
        return self.initial_states[name]

    def dump(self, file):
        file.write("Plex.Machine:\n")
        if self.initial_states is not None:
            file.write("   Initial states:\n")
            for (name, state) in sorted(self.initial_states.items()):
                file.write("      '%s': %d\n" % (name, state.number))
        for s in self.states:
            s.dump(file)


class Node(object):
    """A state of an NFA or DFA."""
    transitions = None      # TransitionMap
    action = None           # Action
    action_priority = None  # integer
    number = 0              # for debug output
    epsilon_closure = None  # used by nfa_to_dfa()

    def __init__(self):
        # Preinitialise the list of empty transitions, because
        # the nfa-to-dfa algorithm needs it
        #self.transitions = {'':[]}
        self.transitions = TransitionMap()
        self.action_priority = LOWEST_PRIORITY

    def destroy(self):
        #print "Destroying", self ###
        self.transitions = None
        self.action = None
        self.epsilon_closure = None

    def add_transition(self, event, new_state):
        self.transitions.add(event, new_state)

    def link_to(self, state):
        """Add an epsilon-move from this state to another state."""
        self.add_transition('', state)

    def set_action(self, action, priority):
        """Make this an accepting state with the given action. If
        there is already an action, choose the action with highest
        priority."""
        if priority > self.action_priority:
            self.action = action
            self.action_priority = priority

    def get_action(self):
        return self.action

    def get_action_priority(self):
        return self.action_priority

    def is_accepting(self):
        return self.action is not None

    def __str__(self):
        return "State %d" % self.number

    def dump(self, file):
        # Header
        file.write("   State %d:\n" % self.number)
        # Transitions
        #        self.dump_transitions(file)
        self.transitions.dump(file)
        # Action
        action = self.action
        priority = self.action_priority
        if action is not None:
            file.write("      %s [priority %d]\n" % (action, priority))

    def __lt__(self, other):
        return self.number < other.number


class FastMachine(object):
    """
    FastMachine is a deterministic machine represented in a way that
    allows fast scanning.
    """
    initial_states = None  # {state_name:state}
    states = None          # [state]  where state = {event:state, 'else':state, 'action':Action}
    next_number = 1        # for debugging

    new_state_template = {
        '': None, 'bol': None, 'eol': None, 'eof': None, 'else': None
    }

    def __init__(self):
        self.initial_states = {}
        self.states = []

    def __del__(self):
        for state in self.states:
            state.clear()

    def new_state(self, action=None):
        number = self.next_number
        self.next_number = number + 1
        result = self.new_state_template.copy()
        result['number'] = number
        result['action'] = action
        self.states.append(result)
        return result

    def make_initial_state(self, name, state):
        self.initial_states[name] = state

    def add_transitions(self, state, event, new_state, maxint=maxint):
        if type(event) is tuple:
            code0, code1 = event
            if code0 == -maxint:
                state['else'] = new_state
            elif code1 != maxint:
                while code0 < code1:
                    state[unichr(code0)] = new_state
                    code0 += 1
        else:
            state[event] = new_state

    def get_initial_state(self, name):
        return self.initial_states[name]

    def dump(self, file):
        file.write("Plex.FastMachine:\n")
        file.write("   Initial states:\n")
        for name, state in sorted(self.initial_states.items()):
            file.write("      %s: %s\n" % (repr(name), state['number']))
        for state in self.states:
            self.dump_state(state, file)

    def dump_state(self, state, file):
        # Header
        file.write("   State %d:\n" % state['number'])
        # Transitions
        self.dump_transitions(state, file)
        # Action
        action = state['action']
        if action is not None:
            file.write("      %s\n" % action)

    def dump_transitions(self, state, file):
        chars_leading_to_state = {}
        special_to_state = {}
        for (c, s) in state.items():
            if len(c) == 1:
                chars = chars_leading_to_state.get(id(s), None)
                if chars is None:
                    chars = []
                    chars_leading_to_state[id(s)] = chars
                chars.append(c)
            elif len(c) <= 4:
                special_to_state[c] = s
        ranges_to_state = {}
        for state in self.states:
            char_list = chars_leading_to_state.get(id(state), None)
            if char_list:
                ranges = self.chars_to_ranges(char_list)
                ranges_to_state[ranges] = state
        ranges_list = ranges_to_state.keys()
        ranges_list.sort()
        for ranges in ranges_list:
            key = self.ranges_to_string(ranges)
            state = ranges_to_state[ranges]
            file.write("      %s --> State %d\n" % (key, state['number']))
        for key in ('bol', 'eol', 'eof', 'else'):
            state = special_to_state.get(key, None)
            if state:
                file.write("      %s --> State %d\n" % (key, state['number']))

    def chars_to_ranges(self, char_list):
        char_list.sort()
        i = 0
        n = len(char_list)
        result = []
        while i < n:
            c1 = ord(char_list[i])
            c2 = c1
            i += 1
            while i < n and ord(char_list[i]) == c2 + 1:
                i += 1
                c2 += 1
            result.append((chr(c1), chr(c2)))
        return tuple(result)

    def ranges_to_string(self, range_list):
        return ','.join(map(self.range_to_string, range_list))

    def range_to_string(self, range_tuple):
        (c1, c2) = range_tuple
        if c1 == c2:
            return repr(c1)
        else:
            return "%s..%s" % (repr(c1), repr(c2))