1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
|
# cython: language_level=3
from __future__ import absolute_import
from .PyrexTypes import CType, CTypedefType, CStructOrUnionType
import cython
try:
import pythran
pythran_is_pre_0_9 = tuple(map(int, pythran.__version__.split('.')[0:2])) < (0, 9)
pythran_is_pre_0_9_6 = tuple(map(int, pythran.__version__.split('.')[0:3])) < (0, 9, 6)
except ImportError:
pythran = None
pythran_is_pre_0_9 = True
pythran_is_pre_0_9_6 = True
if pythran_is_pre_0_9_6:
pythran_builtins = '__builtin__'
else:
pythran_builtins = 'builtins'
# Pythran/Numpy specific operations
def has_np_pythran(env):
if env is None:
return False
directives = getattr(env, 'directives', None)
return (directives and directives.get('np_pythran', False))
@cython.ccall
def is_pythran_supported_dtype(type_):
if isinstance(type_, CTypedefType):
return is_pythran_supported_type(type_.typedef_base_type)
return type_.is_numeric
def pythran_type(Ty, ptype="ndarray"):
if Ty.is_buffer:
ndim,dtype = Ty.ndim, Ty.dtype
if isinstance(dtype, CStructOrUnionType):
ctype = dtype.cname
elif isinstance(dtype, CType):
ctype = dtype.sign_and_name()
elif isinstance(dtype, CTypedefType):
ctype = dtype.typedef_cname
else:
raise ValueError("unsupported type %s!" % dtype)
if pythran_is_pre_0_9:
return "pythonic::types::%s<%s,%d>" % (ptype,ctype, ndim)
else:
return "pythonic::types::%s<%s,pythonic::types::pshape<%s>>" % (ptype,ctype, ",".join(("long",)*ndim))
if Ty.is_pythran_expr:
return Ty.pythran_type
#if Ty.is_none:
# return "decltype(pythonic::builtins::None)"
if Ty.is_numeric:
return Ty.sign_and_name()
raise ValueError("unsupported pythran type %s (%s)" % (Ty, type(Ty)))
@cython.cfunc
def type_remove_ref(ty):
return "typename std::remove_reference<%s>::type" % ty
def pythran_binop_type(op, tA, tB):
if op == '**':
return 'decltype(pythonic::numpy::functor::power{}(std::declval<%s>(), std::declval<%s>()))' % (
pythran_type(tA), pythran_type(tB))
else:
return "decltype(std::declval<%s>() %s std::declval<%s>())" % (
pythran_type(tA), op, pythran_type(tB))
def pythran_unaryop_type(op, type_):
return "decltype(%sstd::declval<%s>())" % (
op, pythran_type(type_))
@cython.cfunc
def _index_access(index_code, indices):
indexing = ",".join([index_code(idx) for idx in indices])
return ('[%s]' if len(indices) == 1 else '(%s)') % indexing
def _index_type_code(index_with_type):
idx, index_type = index_with_type
if idx.is_slice:
n = 2 + int(not idx.step.is_none)
return "pythonic::%s::functor::slice{}(%s)" % (
pythran_builtins,
",".join(["0"]*n))
elif index_type.is_int:
return "std::declval<%s>()" % index_type.sign_and_name()
elif index_type.is_pythran_expr:
return "std::declval<%s>()" % index_type.pythran_type
raise ValueError("unsupported indexing type %s!" % index_type)
def _index_code(idx):
if idx.is_slice:
values = idx.start, idx.stop, idx.step
if idx.step.is_none:
func = "contiguous_slice"
values = values[:2]
else:
func = "slice"
return "pythonic::types::%s(%s)" % (
func, ",".join((v.pythran_result() for v in values)))
elif idx.type.is_int:
return to_pythran(idx)
elif idx.type.is_pythran_expr:
return idx.pythran_result()
raise ValueError("unsupported indexing type %s" % idx.type)
def pythran_indexing_type(type_, indices):
return type_remove_ref("decltype(std::declval<%s>()%s)" % (
pythran_type(type_),
_index_access(_index_type_code, indices),
))
def pythran_indexing_code(indices):
return _index_access(_index_code, indices)
def np_func_to_list(func):
if not func.is_numpy_attribute:
return []
return np_func_to_list(func.obj) + [func.attribute]
if pythran is None:
def pythran_is_numpy_func_supported(name):
return False
else:
def pythran_is_numpy_func_supported(func):
CurF = pythran.tables.MODULES['numpy']
FL = np_func_to_list(func)
for F in FL:
CurF = CurF.get(F, None)
if CurF is None:
return False
return True
def pythran_functor(func):
func = np_func_to_list(func)
submodules = "::".join(func[:-1] + ["functor"])
return "pythonic::numpy::%s::%s" % (submodules, func[-1])
def pythran_func_type(func, args):
args = ",".join(("std::declval<%s>()" % pythran_type(a.type) for a in args))
return "decltype(%s{}(%s))" % (pythran_functor(func), args)
@cython.ccall
def to_pythran(op, ptype=None):
op_type = op.type
if op_type.is_int:
# Make sure that integer literals always have exactly the type that the templates expect.
return op_type.cast_code(op.result())
if is_type(op_type, ["is_pythran_expr", "is_numeric", "is_float", "is_complex"]):
return op.result()
if op.is_none:
return "pythonic::%s::None" % pythran_builtins
if ptype is None:
ptype = pythran_type(op_type)
assert op.type.is_pyobject
return "from_python<%s>(%s)" % (ptype, op.py_result())
@cython.cfunc
def is_type(type_, types):
for attr in types:
if getattr(type_, attr, False):
return True
return False
def is_pythran_supported_node_or_none(node):
return node.is_none or is_pythran_supported_type(node.type)
@cython.ccall
def is_pythran_supported_type(type_):
pythran_supported = (
"is_pythran_expr", "is_int", "is_numeric", "is_float", "is_none", "is_complex")
return is_type(type_, pythran_supported) or is_pythran_expr(type_)
def is_pythran_supported_operation_type(type_):
pythran_supported = (
"is_pythran_expr", "is_int", "is_numeric", "is_float", "is_complex")
return is_type(type_,pythran_supported) or is_pythran_expr(type_)
@cython.ccall
def is_pythran_expr(type_):
return type_.is_pythran_expr
def is_pythran_buffer(type_):
return (type_.is_numpy_buffer and is_pythran_supported_dtype(type_.dtype) and
type_.mode in ("c", "strided") and not type_.cast)
def pythran_get_func_include_file(func):
func = np_func_to_list(func)
return "pythonic/numpy/%s.hpp" % "/".join(func)
def include_pythran_generic(env):
# Generic files
env.add_include_file("pythonic/core.hpp")
env.add_include_file("pythonic/python/core.hpp")
env.add_include_file("pythonic/types/bool.hpp")
env.add_include_file("pythonic/types/ndarray.hpp")
env.add_include_file("pythonic/numpy/power.hpp")
env.add_include_file("pythonic/%s/slice.hpp" % pythran_builtins)
env.add_include_file("<new>") # for placement new
for i in (8, 16, 32, 64):
env.add_include_file("pythonic/types/uint%d.hpp" % i)
env.add_include_file("pythonic/types/int%d.hpp" % i)
for t in ("float", "float32", "float64", "set", "slice", "tuple", "int",
"complex", "complex64", "complex128"):
env.add_include_file("pythonic/types/%s.hpp" % t)
|