aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/tools/cython/Cython/Compiler/MemoryView.py
blob: fc46861dc1ba7c3444bf30305dc2eae714ffa52b (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
from __future__ import absolute_import

from .Errors import CompileError, error
from . import ExprNodes
from .ExprNodes import IntNode, NameNode, AttributeNode
from . import Options
from .Code import UtilityCode, TempitaUtilityCode
from .UtilityCode import CythonUtilityCode
from . import Buffer
from . import PyrexTypes
from . import ModuleNode

START_ERR = "Start must not be given."
STOP_ERR = "Axis specification only allowed in the 'step' slot."
STEP_ERR = "Step must be omitted, 1, or a valid specifier."
BOTH_CF_ERR = "Cannot specify an array that is both C and Fortran contiguous."
INVALID_ERR = "Invalid axis specification."
NOT_CIMPORTED_ERR = "Variable was not cimported from cython.view"
EXPR_ERR = "no expressions allowed in axis spec, only names and literals."
CF_ERR = "Invalid axis specification for a C/Fortran contiguous array."
ERR_UNINITIALIZED = ("Cannot check if memoryview %s is initialized without the "
                     "GIL, consider using initializedcheck(False)")


def concat_flags(*flags):
    return "(%s)" % "|".join(flags)


format_flag = "PyBUF_FORMAT"

memview_c_contiguous = "(PyBUF_C_CONTIGUOUS | PyBUF_FORMAT)"
memview_f_contiguous = "(PyBUF_F_CONTIGUOUS | PyBUF_FORMAT)"
memview_any_contiguous = "(PyBUF_ANY_CONTIGUOUS | PyBUF_FORMAT)"
memview_full_access = "PyBUF_FULL_RO"
#memview_strided_access = "PyBUF_STRIDED_RO"
memview_strided_access = "PyBUF_RECORDS_RO"

MEMVIEW_DIRECT = '__Pyx_MEMVIEW_DIRECT'
MEMVIEW_PTR    = '__Pyx_MEMVIEW_PTR'
MEMVIEW_FULL   = '__Pyx_MEMVIEW_FULL'
MEMVIEW_CONTIG = '__Pyx_MEMVIEW_CONTIG'
MEMVIEW_STRIDED= '__Pyx_MEMVIEW_STRIDED'
MEMVIEW_FOLLOW = '__Pyx_MEMVIEW_FOLLOW'

_spec_to_const = {
        'direct' : MEMVIEW_DIRECT,
        'ptr'    : MEMVIEW_PTR,
        'full'   : MEMVIEW_FULL,
        'contig' : MEMVIEW_CONTIG,
        'strided': MEMVIEW_STRIDED,
        'follow' : MEMVIEW_FOLLOW,
        }

_spec_to_abbrev = {
    'direct'  : 'd',
    'ptr'     : 'p',
    'full'    : 'f',
    'contig'  : 'c',
    'strided' : 's',
    'follow'  : '_',
}

memslice_entry_init = "{ 0, 0, { 0 }, { 0 }, { 0 } }"

memview_name = u'memoryview'
memview_typeptr_cname = '__pyx_memoryview_type'
memview_objstruct_cname = '__pyx_memoryview_obj'
memviewslice_cname = u'__Pyx_memviewslice'


def put_init_entry(mv_cname, code):
    code.putln("%s.data = NULL;" % mv_cname)
    code.putln("%s.memview = NULL;" % mv_cname)


#def axes_to_str(axes):
#    return "".join([access[0].upper()+packing[0] for (access, packing) in axes])


def put_acquire_memoryviewslice(lhs_cname, lhs_type, lhs_pos, rhs, code,
                                have_gil=False, first_assignment=True):
    "We can avoid decreffing the lhs if we know it is the first assignment"
    assert rhs.type.is_memoryviewslice

    pretty_rhs = rhs.result_in_temp() or rhs.is_simple()
    if pretty_rhs:
        rhstmp = rhs.result()
    else:
        rhstmp = code.funcstate.allocate_temp(lhs_type, manage_ref=False)
        code.putln("%s = %s;" % (rhstmp, rhs.result_as(lhs_type)))

    # Allow uninitialized assignment
    #code.putln(code.put_error_if_unbound(lhs_pos, rhs.entry))
    put_assign_to_memviewslice(lhs_cname, rhs, rhstmp, lhs_type, code,
                               have_gil=have_gil, first_assignment=first_assignment)

    if not pretty_rhs:
        code.funcstate.release_temp(rhstmp)


def put_assign_to_memviewslice(lhs_cname, rhs, rhs_cname, memviewslicetype, code,
                               have_gil=False, first_assignment=False):
    if not first_assignment:
        code.put_xdecref_memoryviewslice(lhs_cname, have_gil=have_gil)

    if not rhs.result_in_temp():
        rhs.make_owned_memoryviewslice(code)

    code.putln("%s = %s;" % (lhs_cname, rhs_cname))


def get_buf_flags(specs):
    is_c_contig, is_f_contig = is_cf_contig(specs)

    if is_c_contig:
        return memview_c_contiguous
    elif is_f_contig:
        return memview_f_contiguous

    access, packing = zip(*specs)

    if 'full' in access or 'ptr' in access:
        return memview_full_access
    else:
        return memview_strided_access


def insert_newaxes(memoryviewtype, n):
    axes = [('direct', 'strided')] * n
    axes.extend(memoryviewtype.axes)
    return PyrexTypes.MemoryViewSliceType(memoryviewtype.dtype, axes)


def broadcast_types(src, dst):
    n = abs(src.ndim - dst.ndim)
    if src.ndim < dst.ndim:
        return insert_newaxes(src, n), dst
    else:
        return src, insert_newaxes(dst, n)


def valid_memslice_dtype(dtype, i=0):
    """
    Return whether type dtype can be used as the base type of a
    memoryview slice.

    We support structs, numeric types and objects
    """
    if dtype.is_complex and dtype.real_type.is_int:
        return False

    if dtype is PyrexTypes.c_bint_type:
        return False

    if dtype.is_struct and dtype.kind == 'struct':
        for member in dtype.scope.var_entries:
            if not valid_memslice_dtype(member.type):
                return False

        return True

    return (
        dtype.is_error or
        # Pointers are not valid (yet)
        # (dtype.is_ptr and valid_memslice_dtype(dtype.base_type)) or
        (dtype.is_array and i < 8 and
         valid_memslice_dtype(dtype.base_type, i + 1)) or
        dtype.is_numeric or
        dtype.is_pyobject or
        dtype.is_fused or # accept this as it will be replaced by specializations later
        (dtype.is_typedef and valid_memslice_dtype(dtype.typedef_base_type))
    )


class MemoryViewSliceBufferEntry(Buffer.BufferEntry):
    """
    May be used during code generation time to be queried for
    shape/strides/suboffsets attributes, or to perform indexing or slicing.
    """
    def __init__(self, entry):
        self.entry = entry
        self.type = entry.type
        self.cname = entry.cname

        self.buf_ptr = "%s.data" % self.cname

        dtype = self.entry.type.dtype
        self.buf_ptr_type = PyrexTypes.CPtrType(dtype)
        self.init_attributes()

    def get_buf_suboffsetvars(self):
        return self._for_all_ndim("%s.suboffsets[%d]")

    def get_buf_stridevars(self):
        return self._for_all_ndim("%s.strides[%d]")

    def get_buf_shapevars(self):
        return self._for_all_ndim("%s.shape[%d]")

    def generate_buffer_lookup_code(self, code, index_cnames):
        axes = [(dim, index_cnames[dim], access, packing)
                    for dim, (access, packing) in enumerate(self.type.axes)]
        return self._generate_buffer_lookup_code(code, axes)

    def _generate_buffer_lookup_code(self, code, axes, cast_result=True):
        """
        Generate a single expression that indexes the memory view slice
        in each dimension.
        """
        bufp = self.buf_ptr
        type_decl = self.type.dtype.empty_declaration_code()

        for dim, index, access, packing in axes:
            shape = "%s.shape[%d]" % (self.cname, dim)
            stride = "%s.strides[%d]" % (self.cname, dim)
            suboffset = "%s.suboffsets[%d]" % (self.cname, dim)

            flag = get_memoryview_flag(access, packing)

            if flag in ("generic", "generic_contiguous"):
                # Note: we cannot do cast tricks to avoid stride multiplication
                #       for generic_contiguous, as we may have to do (dtype *)
                #       or (dtype **) arithmetic, we won't know which unless
                #       we check suboffsets
                code.globalstate.use_utility_code(memviewslice_index_helpers)
                bufp = ('__pyx_memviewslice_index_full(%s, %s, %s, %s)' %
                                            (bufp, index, stride, suboffset))

            elif flag == "indirect":
                bufp = "(%s + %s * %s)" % (bufp, index, stride)
                bufp = ("(*((char **) %s) + %s)" % (bufp, suboffset))

            elif flag == "indirect_contiguous":
                # Note: we do char ** arithmetic
                bufp = "(*((char **) %s + %s) + %s)" % (bufp, index, suboffset)

            elif flag == "strided":
                bufp = "(%s + %s * %s)" % (bufp, index, stride)

            else:
                assert flag == 'contiguous', flag
                bufp = '((char *) (((%s *) %s) + %s))' % (type_decl, bufp, index)

            bufp = '( /* dim=%d */ %s )' % (dim, bufp)

        if cast_result:
            return "((%s *) %s)" % (type_decl, bufp)

        return bufp

    def generate_buffer_slice_code(self, code, indices, dst, have_gil,
                                   have_slices, directives):
        """
        Slice a memoryviewslice.

        indices     - list of index nodes. If not a SliceNode, or NoneNode,
                      then it must be coercible to Py_ssize_t

        Simply call __pyx_memoryview_slice_memviewslice with the right
        arguments, unless the dimension is omitted or a bare ':', in which
        case we copy over the shape/strides/suboffsets attributes directly
        for that dimension.
        """
        src = self.cname

        code.putln("%(dst)s.data = %(src)s.data;" % locals())
        code.putln("%(dst)s.memview = %(src)s.memview;" % locals())
        code.put_incref_memoryviewslice(dst)

        all_dimensions_direct = all(access == 'direct' for access, packing in self.type.axes)
        suboffset_dim_temp = []

        def get_suboffset_dim():
            # create global temp variable at request
            if not suboffset_dim_temp:
                suboffset_dim = code.funcstate.allocate_temp(PyrexTypes.c_int_type, manage_ref=False)
                code.putln("%s = -1;" % suboffset_dim)
                suboffset_dim_temp.append(suboffset_dim)
            return suboffset_dim_temp[0]

        dim = -1
        new_ndim = 0
        for index in indices:
            if index.is_none:
                # newaxis
                for attrib, value in [('shape', 1), ('strides', 0), ('suboffsets', -1)]:
                    code.putln("%s.%s[%d] = %d;" % (dst, attrib, new_ndim, value))

                new_ndim += 1
                continue

            dim += 1
            access, packing = self.type.axes[dim]

            if isinstance(index, ExprNodes.SliceNode):
                # slice, unspecified dimension, or part of ellipsis
                d = dict(locals())
                for s in "start stop step".split():
                    idx = getattr(index, s)
                    have_idx = d['have_' + s] = not idx.is_none
                    d[s] = idx.result() if have_idx else "0"

                if not (d['have_start'] or d['have_stop'] or d['have_step']):
                    # full slice (:), simply copy over the extent, stride
                    # and suboffset. Also update suboffset_dim if needed
                    d['access'] = access
                    util_name = "SimpleSlice"
                else:
                    util_name = "ToughSlice"
                    d['error_goto'] = code.error_goto(index.pos) 

                new_ndim += 1
            else:
                # normal index
                idx = index.result()

                indirect = access != 'direct'
                if indirect:
                    generic = access == 'full'
                    if new_ndim != 0:
                        return error(index.pos,
                                     "All preceding dimensions must be "
                                     "indexed and not sliced")

                d = dict(
                    locals(),
                    wraparound=int(directives['wraparound']),
                    boundscheck=int(directives['boundscheck']), 
                )
                if d['boundscheck']: 
                    d['error_goto'] = code.error_goto(index.pos) 
                util_name = "SliceIndex"

            _, impl = TempitaUtilityCode.load_as_string(util_name, "MemoryView_C.c", context=d)
            code.put(impl)

        if suboffset_dim_temp:
            code.funcstate.release_temp(suboffset_dim_temp[0])


def empty_slice(pos):
    none = ExprNodes.NoneNode(pos)
    return ExprNodes.SliceNode(pos, start=none,
                               stop=none, step=none)


def unellipsify(indices, ndim):
    result = []
    seen_ellipsis = False
    have_slices = False

    newaxes = [newaxis for newaxis in indices if newaxis.is_none]
    n_indices = len(indices) - len(newaxes)

    for index in indices:
        if isinstance(index, ExprNodes.EllipsisNode):
            have_slices = True
            full_slice = empty_slice(index.pos)

            if seen_ellipsis:
                result.append(full_slice)
            else:
                nslices = ndim - n_indices + 1
                result.extend([full_slice] * nslices)
                seen_ellipsis = True
        else:
            have_slices = have_slices or index.is_slice or index.is_none
            result.append(index)

    result_length = len(result) - len(newaxes)
    if result_length < ndim:
        have_slices = True
        nslices = ndim - result_length
        result.extend([empty_slice(indices[-1].pos)] * nslices)

    return have_slices, result, newaxes


def get_memoryview_flag(access, packing):
    if access == 'full' and packing in ('strided', 'follow'):
        return 'generic'
    elif access == 'full' and packing == 'contig':
        return 'generic_contiguous'
    elif access == 'ptr' and packing in ('strided', 'follow'):
        return 'indirect'
    elif access == 'ptr' and packing == 'contig':
        return 'indirect_contiguous'
    elif access == 'direct' and packing in ('strided', 'follow'):
        return 'strided'
    else:
        assert (access, packing) == ('direct', 'contig'), (access, packing)
        return 'contiguous'


def get_is_contig_func_name(contig_type, ndim):
    assert contig_type in ('C', 'F')
    return "__pyx_memviewslice_is_contig_%s%d" % (contig_type, ndim)


def get_is_contig_utility(contig_type, ndim):
    assert contig_type in ('C', 'F')
    C = dict(context, ndim=ndim, contig_type=contig_type)
    utility = load_memview_c_utility("MemviewSliceCheckContig", C, requires=[is_contig_utility])
    return utility


def slice_iter(slice_type, slice_result, ndim, code):
    if slice_type.is_c_contig or slice_type.is_f_contig:
        return ContigSliceIter(slice_type, slice_result, ndim, code)
    else:
        return StridedSliceIter(slice_type, slice_result, ndim, code)


class SliceIter(object):
    def __init__(self, slice_type, slice_result, ndim, code):
        self.slice_type = slice_type
        self.slice_result = slice_result
        self.code = code
        self.ndim = ndim


class ContigSliceIter(SliceIter):
    def start_loops(self):
        code = self.code
        code.begin_block()

        type_decl = self.slice_type.dtype.empty_declaration_code()

        total_size = ' * '.join("%s.shape[%d]" % (self.slice_result, i)
                                for i in range(self.ndim))
        code.putln("Py_ssize_t __pyx_temp_extent = %s;" % total_size)
        code.putln("Py_ssize_t __pyx_temp_idx;")
        code.putln("%s *__pyx_temp_pointer = (%s *) %s.data;" % (
            type_decl, type_decl, self.slice_result))
        code.putln("for (__pyx_temp_idx = 0; "
                        "__pyx_temp_idx < __pyx_temp_extent; "
                        "__pyx_temp_idx++) {")

        return "__pyx_temp_pointer"

    def end_loops(self):
        self.code.putln("__pyx_temp_pointer += 1;")
        self.code.putln("}")
        self.code.end_block()


class StridedSliceIter(SliceIter):
    def start_loops(self):
        code = self.code
        code.begin_block()

        for i in range(self.ndim):
            t = i, self.slice_result, i
            code.putln("Py_ssize_t __pyx_temp_extent_%d = %s.shape[%d];" % t)
            code.putln("Py_ssize_t __pyx_temp_stride_%d = %s.strides[%d];" % t)
            code.putln("char *__pyx_temp_pointer_%d;" % i)
            code.putln("Py_ssize_t __pyx_temp_idx_%d;" % i)

        code.putln("__pyx_temp_pointer_0 = %s.data;" % self.slice_result)

        for i in range(self.ndim):
            if i > 0:
                code.putln("__pyx_temp_pointer_%d = __pyx_temp_pointer_%d;" % (i, i - 1))

            code.putln("for (__pyx_temp_idx_%d = 0; "
                            "__pyx_temp_idx_%d < __pyx_temp_extent_%d; "
                            "__pyx_temp_idx_%d++) {" % (i, i, i, i))

        return "__pyx_temp_pointer_%d" % (self.ndim - 1)

    def end_loops(self):
        code = self.code
        for i in range(self.ndim - 1, -1, -1):
            code.putln("__pyx_temp_pointer_%d += __pyx_temp_stride_%d;" % (i, i))
            code.putln("}")

        code.end_block()


def copy_c_or_fortran_cname(memview):
    if memview.is_c_contig:
        c_or_f = 'c'
    else:
        c_or_f = 'f'

    return "__pyx_memoryview_copy_slice_%s_%s" % (
            memview.specialization_suffix(), c_or_f)


def get_copy_new_utility(pos, from_memview, to_memview):
    if (from_memview.dtype != to_memview.dtype and
            not (from_memview.dtype.is_const and from_memview.dtype.const_base_type == to_memview.dtype)):
        error(pos, "dtypes must be the same!")
        return
    if len(from_memview.axes) != len(to_memview.axes):
        error(pos, "number of dimensions must be same")
        return
    if not (to_memview.is_c_contig or to_memview.is_f_contig):
        error(pos, "to_memview must be c or f contiguous.")
        return

    for (access, packing) in from_memview.axes:
        if access != 'direct':
            error(pos, "cannot handle 'full' or 'ptr' access at this time.")
            return

    if to_memview.is_c_contig:
        mode = 'c'
        contig_flag = memview_c_contiguous
    elif to_memview.is_f_contig:
        mode = 'fortran'
        contig_flag = memview_f_contiguous

    return load_memview_c_utility(
        "CopyContentsUtility",
        context=dict(
            context,
            mode=mode,
            dtype_decl=to_memview.dtype.empty_declaration_code(),
            contig_flag=contig_flag,
            ndim=to_memview.ndim,
            func_cname=copy_c_or_fortran_cname(to_memview),
            dtype_is_object=int(to_memview.dtype.is_pyobject)),
        requires=[copy_contents_new_utility])


def get_axes_specs(env, axes):
    '''
    get_axes_specs(env, axes) -> list of (access, packing) specs for each axis.
    access is one of 'full', 'ptr' or 'direct'
    packing is one of 'contig', 'strided' or 'follow'
    '''

    cythonscope = env.global_scope().context.cython_scope
    cythonscope.load_cythonscope()
    viewscope = cythonscope.viewscope

    access_specs = tuple([viewscope.lookup(name)
                    for name in ('full', 'direct', 'ptr')])
    packing_specs = tuple([viewscope.lookup(name)
                    for name in ('contig', 'strided', 'follow')])

    is_f_contig, is_c_contig = False, False
    default_access, default_packing = 'direct', 'strided'
    cf_access, cf_packing = default_access, 'follow'

    axes_specs = []
    # analyse all axes.
    for idx, axis in enumerate(axes):
        if not axis.start.is_none:
            raise CompileError(axis.start.pos,  START_ERR)

        if not axis.stop.is_none:
            raise CompileError(axis.stop.pos, STOP_ERR)

        if axis.step.is_none:
            axes_specs.append((default_access, default_packing))

        elif isinstance(axis.step, IntNode):
            # the packing for the ::1 axis is contiguous,
            # all others are cf_packing.
            if axis.step.compile_time_value(env) != 1:
                raise CompileError(axis.step.pos, STEP_ERR)

            axes_specs.append((cf_access, 'cfcontig'))

        elif isinstance(axis.step, (NameNode, AttributeNode)):
            entry = _get_resolved_spec(env, axis.step)
            if entry.name in view_constant_to_access_packing:
                axes_specs.append(view_constant_to_access_packing[entry.name])
            else:
                raise CompileError(axis.step.pos, INVALID_ERR)

        else:
            raise CompileError(axis.step.pos, INVALID_ERR)

    # First, find out if we have a ::1 somewhere
    contig_dim = 0
    is_contig = False
    for idx, (access, packing) in enumerate(axes_specs):
        if packing == 'cfcontig':
            if is_contig:
                raise CompileError(axis.step.pos, BOTH_CF_ERR)

            contig_dim = idx
            axes_specs[idx] = (access, 'contig')
            is_contig = True

    if is_contig:
        # We have a ::1 somewhere, see if we're C or Fortran contiguous
        if contig_dim == len(axes) - 1:
            is_c_contig = True
        else:
            is_f_contig = True

            if contig_dim and not axes_specs[contig_dim - 1][0] in ('full', 'ptr'):
                raise CompileError(axes[contig_dim].pos,
                                   "Fortran contiguous specifier must follow an indirect dimension")

        if is_c_contig:
            # Contiguous in the last dimension, find the last indirect dimension
            contig_dim = -1
            for idx, (access, packing) in enumerate(reversed(axes_specs)):
                if access in ('ptr', 'full'):
                    contig_dim = len(axes) - idx - 1

        # Replace 'strided' with 'follow' for any dimension following the last
        # indirect dimension, the first dimension or the dimension following
        # the ::1.
        #               int[::indirect, ::1, :, :]
        #                                    ^  ^
        #               int[::indirect, :, :, ::1]
        #                               ^  ^
        start = contig_dim + 1
        stop = len(axes) - is_c_contig
        for idx, (access, packing) in enumerate(axes_specs[start:stop]):
            idx = contig_dim + 1 + idx
            if access != 'direct':
                raise CompileError(axes[idx].pos,
                                   "Indirect dimension may not follow "
                                   "Fortran contiguous dimension")
            if packing == 'contig':
                raise CompileError(axes[idx].pos,
                                   "Dimension may not be contiguous")
            axes_specs[idx] = (access, cf_packing)

        if is_c_contig:
            # For C contiguity, we need to fix the 'contig' dimension
            # after the loop
            a, p = axes_specs[-1]
            axes_specs[-1] = a, 'contig'

    validate_axes_specs([axis.start.pos for axis in axes],
                        axes_specs,
                        is_c_contig,
                        is_f_contig)

    return axes_specs


def validate_axes(pos, axes):
    if len(axes) >= Options.buffer_max_dims:
        error(pos, "More dimensions than the maximum number"
                   " of buffer dimensions were used.")
        return False

    return True


def is_cf_contig(specs):
    is_c_contig = is_f_contig = False

    if len(specs) == 1 and specs == [('direct', 'contig')]:
        is_c_contig = True

    elif (specs[-1] == ('direct','contig') and
          all(axis == ('direct','follow') for axis in specs[:-1])):
        # c_contiguous: 'follow', 'follow', ..., 'follow', 'contig'
        is_c_contig = True

    elif (len(specs) > 1 and
        specs[0] == ('direct','contig') and
        all(axis == ('direct','follow') for axis in specs[1:])):
        # f_contiguous: 'contig', 'follow', 'follow', ..., 'follow'
        is_f_contig = True

    return is_c_contig, is_f_contig


def get_mode(specs):
    is_c_contig, is_f_contig = is_cf_contig(specs)

    if is_c_contig:
        return 'c'
    elif is_f_contig:
        return 'fortran'

    for access, packing in specs:
        if access in ('ptr', 'full'):
            return 'full'

    return 'strided'

view_constant_to_access_packing = {
    'generic':              ('full',   'strided'),
    'strided':              ('direct', 'strided'),
    'indirect':             ('ptr',    'strided'),
    'generic_contiguous':   ('full',   'contig'),
    'contiguous':           ('direct', 'contig'),
    'indirect_contiguous':  ('ptr',    'contig'),
}

def validate_axes_specs(positions, specs, is_c_contig, is_f_contig):

    packing_specs = ('contig', 'strided', 'follow')
    access_specs = ('direct', 'ptr', 'full')

    # is_c_contig, is_f_contig = is_cf_contig(specs)

    has_contig = has_follow = has_strided = has_generic_contig = False

    last_indirect_dimension = -1
    for idx, (access, packing) in enumerate(specs):
        if access == 'ptr':
            last_indirect_dimension = idx

    for idx, (pos, (access, packing)) in enumerate(zip(positions, specs)):

        if not (access in access_specs and
                packing in packing_specs):
            raise CompileError(pos, "Invalid axes specification.")

        if packing == 'strided':
            has_strided = True
        elif packing == 'contig':
            if has_contig:
                raise CompileError(pos, "Only one direct contiguous "
                                        "axis may be specified.")

            valid_contig_dims = last_indirect_dimension + 1, len(specs) - 1
            if idx not in valid_contig_dims and access != 'ptr':
                if last_indirect_dimension + 1 != len(specs) - 1:
                    dims = "dimensions %d and %d" % valid_contig_dims
                else:
                    dims = "dimension %d" % valid_contig_dims[0]

                raise CompileError(pos, "Only %s may be contiguous and direct" % dims)

            has_contig = access != 'ptr'
        elif packing == 'follow':
            if has_strided:
                raise CompileError(pos, "A memoryview cannot have both follow and strided axis specifiers.")
            if not (is_c_contig or is_f_contig):
                raise CompileError(pos, "Invalid use of the follow specifier.")

        if access in ('ptr', 'full'):
            has_strided = False

def _get_resolved_spec(env, spec):
    # spec must be a NameNode or an AttributeNode
    if isinstance(spec, NameNode):
        return _resolve_NameNode(env, spec)
    elif isinstance(spec, AttributeNode):
        return _resolve_AttributeNode(env, spec)
    else:
        raise CompileError(spec.pos, INVALID_ERR)

def _resolve_NameNode(env, node):
    try:
        resolved_name = env.lookup(node.name).name
    except AttributeError:
        raise CompileError(node.pos, INVALID_ERR)

    viewscope = env.global_scope().context.cython_scope.viewscope
    entry = viewscope.lookup(resolved_name)
    if entry is None:
        raise CompileError(node.pos, NOT_CIMPORTED_ERR)

    return entry

def _resolve_AttributeNode(env, node):
    path = []
    while isinstance(node, AttributeNode):
        path.insert(0, node.attribute)
        node = node.obj
    if isinstance(node, NameNode):
        path.insert(0, node.name)
    else:
        raise CompileError(node.pos, EXPR_ERR)
    modnames = path[:-1]
    # must be at least 1 module name, o/w not an AttributeNode.
    assert modnames

    scope = env
    for modname in modnames:
        mod = scope.lookup(modname)
        if not mod or not mod.as_module:
            raise CompileError(
                    node.pos, "undeclared name not builtin: %s" % modname)
        scope = mod.as_module

    entry = scope.lookup(path[-1])
    if not entry:
        raise CompileError(node.pos, "No such attribute '%s'" % path[-1])

    return entry

#
### Utility loading
#

def load_memview_cy_utility(util_code_name, context=None, **kwargs):
    return CythonUtilityCode.load(util_code_name, "MemoryView.pyx",
                                  context=context, **kwargs)

def load_memview_c_utility(util_code_name, context=None, **kwargs):
    if context is None:
        return UtilityCode.load(util_code_name, "MemoryView_C.c", **kwargs)
    else:
        return TempitaUtilityCode.load(util_code_name, "MemoryView_C.c",
                                       context=context, **kwargs)

def use_cython_array_utility_code(env):
    cython_scope = env.global_scope().context.cython_scope
    cython_scope.load_cythonscope()
    cython_scope.viewscope.lookup('array_cwrapper').used = True

context = {
    'memview_struct_name': memview_objstruct_cname,
    'max_dims': Options.buffer_max_dims,
    'memviewslice_name': memviewslice_cname,
    'memslice_init': memslice_entry_init,
}
memviewslice_declare_code = load_memview_c_utility(
        "MemviewSliceStruct",
        context=context,
        requires=[])

atomic_utility = load_memview_c_utility("Atomics", context)

memviewslice_init_code = load_memview_c_utility(
    "MemviewSliceInit",
    context=dict(context, BUF_MAX_NDIMS=Options.buffer_max_dims),
    requires=[memviewslice_declare_code,
              atomic_utility],
)

memviewslice_index_helpers = load_memview_c_utility("MemviewSliceIndex")

typeinfo_to_format_code = load_memview_cy_utility(
        "BufferFormatFromTypeInfo", requires=[Buffer._typeinfo_to_format_code])

is_contig_utility = load_memview_c_utility("MemviewSliceIsContig", context)
overlapping_utility = load_memview_c_utility("OverlappingSlices", context)
copy_contents_new_utility = load_memview_c_utility(
    "MemviewSliceCopyTemplate",
    context,
    requires=[], # require cython_array_utility_code
)

view_utility_code = load_memview_cy_utility(
        "View.MemoryView",
        context=context,
        requires=[Buffer.GetAndReleaseBufferUtilityCode(),
                  Buffer.buffer_struct_declare_code,
                  Buffer.buffer_formats_declare_code,
                  memviewslice_init_code,
                  is_contig_utility,
                  overlapping_utility,
                  copy_contents_new_utility,
                  ModuleNode.capsule_utility_code],
)
view_utility_whitelist = ('array', 'memoryview', 'array_cwrapper',
                          'generic', 'strided', 'indirect', 'contiguous',
                          'indirect_contiguous')

memviewslice_declare_code.requires.append(view_utility_code)
copy_contents_new_utility.requires.append(view_utility_code)