aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/tools/bison/src/tables.c
blob: 23a879cacd5ae64fc3d378636ac1a94906133bf8 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
/* Output the generated parsing program for Bison.

   Copyright (C) 1984, 1986, 1989, 1992, 2000-2006, 2009-2015, 2018-2021
   Free Software Foundation, Inc.

   This file is part of Bison, the GNU Compiler Compiler.

   This program is free software: you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation, either version 3 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <https://www.gnu.org/licenses/>.  */

#include <config.h>
#include "system.h"

#include <bitset.h>
#include <bitsetv.h>

#include "complain.h"
#include "conflicts.h"
#include "files.h"
#include "getargs.h"
#include "gram.h"
#include "lalr.h"
#include "muscle-tab.h"
#include "reader.h"
#include "symtab.h"
#include "tables.h"

/* Several tables are indexed both by state and nonterminal numbers.
   We call such an index a 'vector'; i.e., a vector is either a state
   or a nonterminal number.

   Of course vector_number_t ought to be wide enough to contain
   state_number and symbol_number.  */
typedef int vector_number;

#if 0 /* Not currently used.  */
static inline vector_number
state_number_to_vector_number (state_number s)
{
  return s;
}
#endif

static inline vector_number
symbol_number_to_vector_number (symbol_number sym)
{
  return state_number_as_int (nstates) + sym - ntokens;
}

int nvectors;


/* FROMS and TOS are indexed by vector_number.

   If VECTOR is a nonterminal, (FROMS[VECTOR], TOS[VECTOR]) form an
   array of state numbers of the non defaulted GOTO on VECTOR.

   If VECTOR is a state, TOS[VECTOR] is the array of actions to do on
   the (array of) symbols FROMS[VECTOR].

   In both cases, TALLY[VECTOR] is the size of the arrays
   FROMS[VECTOR], TOS[VECTOR]; and WIDTH[VECTOR] =
   (FROMS[VECTOR][SIZE] - FROMS[VECTOR][0] + 1) where SIZE =
   TALLY[VECTOR].

   FROMS therefore contains symbol_number and action_number,
   TOS state_number and action_number,
   TALLY sizes,
   WIDTH differences of FROMS.

   Let base_number be the type of FROMS, TOS, and WIDTH.  */
#define BASE_MAXIMUM INT_MAX
#define BASE_MINIMUM INT_MIN

static base_number **froms;
static base_number **tos;
static int **conflict_tos;
static size_t *tally;
static base_number *width;


/* For a given state, N = ACTROW[SYMBOL]:

   If N = 0, stands for 'run the default action'.
   If N = MIN, stands for 'raise a syntax error'.
   If N > 0, stands for 'shift SYMBOL and go to n'.
   If N < 0, stands for 'reduce -N'.  */
typedef int action_number;
#define ACTION_NUMBER_MINIMUM INT_MIN

static action_number *actrow;

/* FROMS and TOS are reordered to be compressed.  ORDER[VECTOR] is the
   new vector number of VECTOR.  We skip 'empty' vectors (i.e.,
   TALLY[VECTOR] = 0), and call these 'entries'.  */
static vector_number *order;
static int nentries;

base_number *base = NULL;
/* A distinguished value of BASE, negative infinite.  During the
   computation equals to BASE_MINIMUM, later mapped to BASE_NINF to
   keep parser tables small.  */
base_number base_ninf = 0;

/* Bitset representing an integer set in the range
   POS_SET_OFFSET..(POS_SET_OFFSET + SIZE).  POS_SET_OFFSET is
   nonpositive. */
static bitset pos_set = NULL;
/* The integer denoted by bitno 0 in pos_set.  */
static int pos_set_base = 0;

static int *conflrow;
int *conflict_table;
int *conflict_list;
int conflict_list_cnt;
static int conflict_list_free;

/* TABLE_SIZE is the allocated size of both TABLE and CHECK.  We start
   with more or less the original hard-coded value (which was
   SHRT_MAX).  */
static int table_size = 32768;
base_number *table;
base_number *check;
/* The value used in TABLE to denote explicit syntax errors
   (%nonassoc), a negative infinite.  First defaults to ACTION_NUMBER_MINIMUM,
   but in order to keep small tables, renumbered as TABLE_ERROR, which
   is the smallest (non error) value minus 1.  */
base_number table_ninf = 0;
static int lowzero;
int high;

state_number *yydefgoto;
rule_number *yydefact;


/*----------.
| pos_set.  |
`----------*/

#if 0
static void
pos_set_dump (void)
{
  fprintf (stderr, "pos_set (%ld, %d) =", bitset_size (pos_set), pos_set_base);
  bitset_iterator biter;
  int i;
  BITSET_FOR_EACH (biter, pos_set, i, 0)
    fprintf (stderr, " %d", i + pos_set_base);
  putc ('\n', stderr);
}
#endif


/* The size and base of POS_SET are not known, we need to be able to
   move the base farther "on the left", and grow "on the right".

   It would be nice to be able to predict the base accurately, but it
   seems difficult (-nstates seems to work most of the time, except
   when there are useless tokens).

   FIXME: The current approach is correct, but with poor performances.
   Bitsets need to support 'assign' and 'shift'.  And instead of
   extending POS_SET just for the out-of-range new values, we need
   something like doubling the size.
  */

static void
pos_set_set (int pos)
{
  int bitno = pos - pos_set_base;
  if (bitno < 0)
    {
      // Need more room on the left.
      // DELTA is positive.  Run 'pos_set >> delta'.
      const int delta = pos_set_base - pos;
      const int old_size = bitset_size (pos_set);
      const int new_size = old_size + delta;
      bitset_resize (pos_set, new_size);
      // Right-shift all the bits by DELTA.  Be sure to reset the new
      // bits on the left.
      //
      // FIXME: add bitset_assign, and bitset_shift?
      for (int i = new_size - 1; 0 <= i ; --i)
        if (delta <= i && bitset_test (pos_set, i - delta))
          bitset_set (pos_set, i);
        else
          bitset_reset (pos_set, i);
      pos_set_base = pos;
      bitno = 0;
    }
  else if (bitset_size (pos_set) <= bitno)
    // Need more room on the right.
    bitset_resize (pos_set, bitno + 1);
  bitset_set (pos_set, bitno);
}

static bool
pos_set_test (int pos)
{
  const int bitno = pos - pos_set_base;
  return bitset_test (pos_set, bitno);
}


/*-------------------------------------------------------------------.
| If TABLE, CONFLICT_TABLE, and CHECK are too small to be addressed  |
| at DESIRED, grow them.  TABLE[DESIRED] can be used, so the desired |
| size is at least DESIRED + 1.                                      |
`-------------------------------------------------------------------*/

static void
table_grow (int desired)
{
  int old_size = table_size;

  while (table_size <= desired)
    table_size *= 2;

  if (trace_flag & trace_resource)
    fprintf (stderr, "growing tables from %d to %d\n",
             old_size, table_size);

  table = xnrealloc (table, table_size, sizeof *table);
  memset (table + old_size, 0,
          sizeof *table * (table_size - old_size));

  conflict_table = xnrealloc (conflict_table, table_size,
                              sizeof *conflict_table);
  memset (conflict_table + old_size, 0,
          sizeof *conflict_table * (table_size - old_size));

  check = xnrealloc (check, table_size, sizeof *check);
  for (int i = old_size; i < table_size; ++i)
    check[i] = -1;
}




/*-------------------------------------------------------------------.
| For GLR parsers, for each conflicted token in S, as indicated      |
| by non-zero entries in CONFLROW, create a list of possible         |
| reductions that are alternatives to the shift or reduction         |
| currently recorded for that token in S.  Store the alternative     |
| reductions followed by a 0 in CONFLICT_LIST, updating              |
| CONFLICT_LIST_CNT, and storing an index to the start of the list   |
| back into CONFLROW.                                                |
`-------------------------------------------------------------------*/

static void
conflict_row (state *s)
{
  if (!nondeterministic_parser)
    return;

  const reductions *reds = s->reductions;
  for (state_number j = 0; j < ntokens; j += 1)
    if (conflrow[j])
      {
        conflrow[j] = conflict_list_cnt;

        /* Find all reductions for token J, and record all that do not
           match ACTROW[J].  */
        for (int i = 0; i < reds->num; i += 1)
          if (bitset_test (reds->lookaheads[i], j)
              && (actrow[j]
                  != rule_number_as_item_number (reds->rules[i]->number)))
            {
              aver (0 < conflict_list_free);
              conflict_list[conflict_list_cnt] = reds->rules[i]->number + 1;
              conflict_list_cnt += 1;
              conflict_list_free -= 1;
            }

        /* Leave a 0 at the end.  */
        aver (0 < conflict_list_free);
        conflict_list[conflict_list_cnt] = 0;
        conflict_list_cnt += 1;
        conflict_list_free -= 1;
      }
}


/*------------------------------------------------------------------.
| Decide what to do for each type of token if seen as the           |
| lookahead in specified state.  The value returned is used as the  |
| default action (yydefact) for the state.  In addition, ACTROW is  |
| filled with what to do for each kind of token, index by symbol    |
| number, with zero meaning do the default action.  The value       |
| ACTION_NUMBER_MINIMUM, a very negative number, means this         |
| situation is an error.  The parser recognizes this value          |
| specially.                                                        |
|                                                                   |
| This is where conflicts are resolved.  The loop over lookahead    |
| rules considered lower-numbered rules last, and the last rule     |
| considered that likes a token gets to handle it.                  |
|                                                                   |
| For GLR parsers, also sets CONFLROW[SYM] to an index into         |
| CONFLICT_LIST iff there is an unresolved conflict (s/r or r/r)    |
| with symbol SYM. The default reduction is not used for a symbol   |
| that has any such conflicts.                                      |
`------------------------------------------------------------------*/

static rule *
action_row (state *s)
{
  for (state_number i = 0; i < ntokens; i++)
    actrow[i] = conflrow[i] = 0;

  reductions *reds = s->reductions;
  bool conflicted = false;
  if (reds->lookaheads)
    /* loop over all the rules available here which require
       lookahead (in reverse order to give precedence to the first
       rule) */
    for (int i = reds->num - 1; 0 <= i; --i)
      /* and find each token which the rule finds acceptable
         to come next */
      {
        bitset_iterator biter;
        int j;
        BITSET_FOR_EACH (biter, reds->lookaheads[i], j, 0)
          {
            /* and record this rule as the rule to use if that
               token follows.  */
            if (actrow[j] != 0)
              {
                conflicted = true;
                conflrow[j] = 1;
              }
            actrow[j] = rule_number_as_item_number (reds->rules[i]->number);
          }
      }

  /* Now see which tokens are allowed for shifts in this state.  For
     them, record the shift as the thing to do.  So shift is preferred
     to reduce.  */
  transitions *trans = s->transitions;
  /* Set to nonzero to inhibit having any default reduction.  */
  bool nodefault = false;
  {
    int i;
    FOR_EACH_SHIFT (trans, i)
      {
        symbol_number sym = TRANSITION_SYMBOL (trans, i);
        state *shift_state = trans->states[i];

        if (actrow[sym] != 0)
          {
            conflicted = true;
            conflrow[sym] = 1;
          }
        actrow[sym] = state_number_as_int (shift_state->number);

        /* Do not use any default reduction if there is a shift for
           error */
        if (sym == errtoken->content->number)
          nodefault = true;
      }
  }

  /* See which tokens are an explicit error in this state (due to
     %nonassoc).  For them, record ACTION_NUMBER_MINIMUM as the
     action.  */
  errs *errp = s->errs;
  for (int i = 0; i < errp->num; i++)
    {
      symbol *sym = errp->symbols[i];
      actrow[sym->content->number] = ACTION_NUMBER_MINIMUM;
    }

  /* Turn off default reductions where requested by the user.  See
     state_lookaheads_count in lalr.c to understand when states are
     labeled as consistent.  */
  {
    char *default_reductions =
      muscle_percent_define_get ("lr.default-reduction");
    if (STRNEQ (default_reductions, "most") && !s->consistent)
      nodefault = true;
    free (default_reductions);
  }

  /* Now find the most common reduction and make it the default action
     for this state.  */
  rule *default_reduction = NULL;
  if (reds->num >= 1 && !nodefault)
    {
      if (s->consistent)
        default_reduction = reds->rules[0];
      else
        {
          int max = 0;
          for (int i = 0; i < reds->num; i++)
            {
              int count = 0;
              rule *r = reds->rules[i];
              for (symbol_number j = 0; j < ntokens; j++)
                if (actrow[j] == rule_number_as_item_number (r->number))
                  count++;

              if (count > max)
                {
                  max = count;
                  default_reduction = r;
                }
            }

          /* GLR parsers need space for conflict lists, so we can't
             default conflicted entries.  For non-conflicted entries
             or as long as we are not building a GLR parser,
             actions that match the default are replaced with zero,
             which means "use the default". */

          if (0 < max)
            for (symbol_number j = 0; j < ntokens; j++)
              if (actrow[j]
                  == rule_number_as_item_number (default_reduction->number)
                  && ! (nondeterministic_parser && conflrow[j]))
                actrow[j] = 0;
        }
    }

  /* If have no default reduction, the default is an error.
     So replace any action which says "error" with "use default".  */

  if (!default_reduction)
    for (symbol_number i = 0; i < ntokens; i++)
      if (actrow[i] == ACTION_NUMBER_MINIMUM)
        actrow[i] = 0;

  if (conflicted)
    conflict_row (s);

  return default_reduction;
}


/*----------------------------------------.
| Set FROMS, TOS, TALLY and WIDTH for S.  |
`----------------------------------------*/

static void
save_row (state_number s)
{
  /* Number of non default actions in S.  */
  size_t count = 0;
  for (symbol_number i = 0; i < ntokens; i++)
    if (actrow[i] != 0)
      count++;

  if (count)
    {
      /* Allocate non defaulted actions.  */
      base_number *sp1 = froms[s] = xnmalloc (count, sizeof *sp1);
      base_number *sp2 = tos[s] = xnmalloc (count, sizeof *sp2);
      int *sp3 = conflict_tos[s] =
        nondeterministic_parser ? xnmalloc (count, sizeof *sp3) : NULL;

      /* Store non defaulted actions.  */
      for (symbol_number i = 0; i < ntokens; i++)
        if (actrow[i] != 0)
          {
            *sp1++ = i;
            *sp2++ = actrow[i];
            if (nondeterministic_parser)
              *sp3++ = conflrow[i];
          }

      tally[s] = count;
      width[s] = sp1[-1] - froms[s][0] + 1;
    }
}


/*------------------------------------------------------------------.
| Figure out the actions for the specified state, indexed by        |
| lookahead token kind.                                             |
|                                                                   |
| The YYDEFACT table is output now.  The detailed info is saved for |
| putting into YYTABLE later.                                       |
`------------------------------------------------------------------*/

static void
token_actions (void)
{
  int nconflict = nondeterministic_parser ? conflicts_total_count () : 0;

  yydefact = xnmalloc (nstates, sizeof *yydefact);

  actrow = xnmalloc (ntokens, sizeof *actrow);
  conflrow = xnmalloc (ntokens, sizeof *conflrow);

  conflict_list = xnmalloc (1 + 2 * nconflict, sizeof *conflict_list);
  conflict_list_free = 2 * nconflict;
  conflict_list_cnt = 1;

  /* Find the rules which are reduced.  */
  if (!nondeterministic_parser)
    for (rule_number r = 0; r < nrules; ++r)
      rules[r].useful = false;

  for (state_number i = 0; i < nstates; ++i)
    {
      rule *default_reduction = action_row (states[i]);
      yydefact[i] = default_reduction ? default_reduction->number + 1 : 0;
      save_row (i);

      /* Now that the parser was computed, we can find which rules are
         really reduced, and which are not because of SR or RR
         conflicts.  */
      if (!nondeterministic_parser)
        {
          for (symbol_number j = 0; j < ntokens; ++j)
            if (actrow[j] < 0 && actrow[j] != ACTION_NUMBER_MINIMUM)
              rules[item_number_as_rule_number (actrow[j])].useful = true;
          if (yydefact[i])
            rules[yydefact[i] - 1].useful = true;
        }
    }
  free (actrow);
  free (conflrow);
}


/*------------------------------------------------------------------.
| Compute FROMS[VECTOR], TOS[VECTOR], TALLY[VECTOR], WIDTH[VECTOR], |
| i.e., the information related to non defaulted GOTO on the nterm  |
| SYM.                                                              |
|                                                                   |
| DEFAULT_STATE is the principal destination on SYM, i.e., the      |
| default GOTO destination on SYM.                                  |
`------------------------------------------------------------------*/

static void
save_column (symbol_number sym, state_number default_state)
{
  const goto_number begin = goto_map[sym - ntokens];
  const goto_number end = goto_map[sym - ntokens + 1];

  /* Number of non default GOTO.  */
  size_t count = 0;
  for (goto_number i = begin; i < end; i++)
    if (to_state[i] != default_state)
      count++;

  if (count)
    {
      /* Allocate room for non defaulted gotos.  */
      vector_number symno = symbol_number_to_vector_number (sym);
      base_number *sp1 = froms[symno] = xnmalloc (count, sizeof *sp1);
      base_number *sp2 = tos[symno] = xnmalloc (count, sizeof *sp2);

      /* Store the state numbers of the non defaulted gotos.  */
      for (goto_number i = begin; i < end; i++)
        if (to_state[i] != default_state)
          {
            *sp1++ = from_state[i];
            *sp2++ = to_state[i];
          }

      tally[symno] = count;
      width[symno] = sp1[-1] - froms[symno][0] + 1;
    }
}


/*----------------------------------------------------------------.
| The default state for SYM: the state which is 'the' most common |
| GOTO destination on SYM (an nterm).                             |
`----------------------------------------------------------------*/

static state_number
default_goto (symbol_number sym, size_t state_count[])
{
  const goto_number begin = goto_map[sym - ntokens];
  const goto_number end = goto_map[sym - ntokens + 1];

  /* In the case this symbol is never reduced to ($accept), use state
     0.  We used to use -1, but as a result the yydefgoto table must
     be signed, which (1) might trigger compiler warnings when storing
     a value from yydefgoto into a state number (nonnegative), and (2)
     wastes bits which might result in using a int16 where a uint8
     suffices. */
  state_number res = 0;

  if (begin != end)
    {
      for (state_number s = 0; s < nstates; s++)
        state_count[s] = 0;

      for (goto_number i = begin; i < end; i++)
        state_count[to_state[i]]++;

      size_t max = 0;
      for (state_number s = 0; s < nstates; s++)
        if (max < state_count[s])
          {
            max = state_count[s];
            res = s;
          }
    }
  return res;
}


/*-------------------------------------------------------------------.
| Figure out what to do after reducing with each rule, depending on  |
| the saved state from before the beginning of parsing the data that |
| matched this rule.                                                 |
|                                                                    |
| The YYDEFGOTO table is output now.  The detailed info is saved for |
| putting into YYTABLE later.                                        |
`-------------------------------------------------------------------*/

static void
goto_actions (void)
{
  size_t *state_count = xnmalloc (nstates, sizeof *state_count);
  yydefgoto = xnmalloc (nnterms, sizeof *yydefgoto);

  /* For a given nterm I, STATE_COUNT[S] is the number of times there
     is a GOTO to S on I.  */
  for (symbol_number i = ntokens; i < nsyms; ++i)
    {
      state_number default_state = default_goto (i, state_count);
      save_column (i, default_state);
      yydefgoto[i - ntokens] = default_state;
    }
  free (state_count);
}


/*------------------------------------------------------------------.
| Compute ORDER, a reordering of vectors, in order to decide how to |
| pack the actions and gotos information into yytable.              |
`------------------------------------------------------------------*/

static void
sort_actions (void)
{
  nentries = 0;

  for (int i = 0; i < nvectors; i++)
    if (0 < tally[i])
      {
        const size_t t = tally[i];
        const int w = width[i];
        int j = nentries - 1;

        while (0 <= j && width[order[j]] < w)
          j--;

        while (0 <= j && width[order[j]] == w && tally[order[j]] < t)
          j--;

        for (int k = nentries - 1; k > j; k--)
          order[k + 1] = order[k];

        order[j + 1] = i;
        nentries++;
      }
}


/* If VECTOR is a state whose actions (reflected by FROMS, TOS, TALLY
   and WIDTH of VECTOR) are common to a previous state, return this
   state number.

   In any other case, return -1.  */

static state_number
matching_state (vector_number vector)
{
  vector_number i = order[vector];
  /* If VECTOR is a nterm, return -1.  */
  if (i < nstates)
    {
      size_t t = tally[i];
      int w = width[i];

      /* If VECTOR has GLR conflicts, return -1 */
      if (conflict_tos[i] != NULL)
        for (int j = 0; j < t; j += 1)
          if (conflict_tos[i][j] != 0)
            return -1;

      for (int prev = vector - 1; 0 <= prev; prev--)
        {
          vector_number j = order[prev];
          /* Given how ORDER was computed, if the WIDTH or TALLY is
             different, there cannot be a matching state.  */
          if (width[j] != w || tally[j] != t)
            return -1;
          else
            {
              bool match = true;
              for (int k = 0; match && k < t; k++)
                if (tos[j][k] != tos[i][k]
                    || froms[j][k] != froms[i][k]
                    || (conflict_tos[j] != NULL && conflict_tos[j][k] != 0))
                  match = false;
              if (match)
                return j;
            }
        }
    }
  return -1;
}


static base_number
pack_vector (vector_number vector)
{
  vector_number i = order[vector];
  size_t t = tally[i];
  base_number *from = froms[i];
  base_number *to = tos[i];
  int *conflict_to = conflict_tos[i];

  aver (t != 0);

  for (base_number res = lowzero - from[0]; ; res++)
    {
      bool ok = true;
      aver (res < table_size);
      {
        for (int k = 0; ok && k < t; k++)
          {
            int loc = res + state_number_as_int (from[k]);
            if (table_size <= loc)
              table_grow (loc);

            if (table[loc] != 0)
              ok = false;
          }

        if (ok && pos_set_test (res))
          ok = false;
      }

      if (ok)
        {
          int loc PACIFY_CC (= -1);
          for (int k = 0; k < t; k++)
            {
              loc = res + state_number_as_int (from[k]);
              table[loc] = to[k];
              if (nondeterministic_parser && conflict_to != NULL)
                conflict_table[loc] = conflict_to[k];
              check[loc] = from[k];
            }

          while (table[lowzero] != 0)
            lowzero++;

          if (high < loc)
            high = loc;

          aver (BASE_MINIMUM <= res && res <= BASE_MAXIMUM);
          return res;
        }
    }
}


/*-------------------------------------------------------------.
| Remap the negative infinite in TAB from NINF to the greatest |
| possible smallest value.  Return it.                         |
|                                                              |
| In most case this allows us to use shorts instead of ints in |
| parsers.                                                     |
`-------------------------------------------------------------*/

static base_number
table_ninf_remap (base_number tab[], int size, base_number ninf)
{
  base_number res = 0;

  for (int i = 0; i < size; i++)
    if (tab[i] < res && tab[i] != ninf)
      res = tab[i];

  --res;

  for (int i = 0; i < size; i++)
    if (tab[i] == ninf)
      tab[i] = res;

  return res;
}

static void
pack_table (void)
{
  base = xnmalloc (nvectors, sizeof *base);
  pos_set = bitset_create (table_size + nstates, BITSET_FRUGAL);
  pos_set_base = -nstates;
  table = xcalloc (table_size, sizeof *table);
  conflict_table = xcalloc (table_size, sizeof *conflict_table);
  check = xnmalloc (table_size, sizeof *check);

  lowzero = 0;
  high = 0;

  for (int i = 0; i < nvectors; i++)
    base[i] = BASE_MINIMUM;

  for (int i = 0; i < table_size; i++)
    check[i] = -1;

  for (int i = 0; i < nentries; i++)
    {
      state_number s = matching_state (i);
      base_number place;

      if (s < 0)
        /* A new set of state actions, or a nonterminal.  */
        place = pack_vector (i);
      else
        /* Action of I were already coded for S.  */
        place = base[s];

      pos_set_set (place);
      base[order[i]] = place;
    }

  /* Use the greatest possible negative infinites.  */
  base_ninf = table_ninf_remap (base, nvectors, BASE_MINIMUM);
  table_ninf = table_ninf_remap (table, high + 1, ACTION_NUMBER_MINIMUM);

  bitset_free (pos_set);
}



/*-----------------------------------------------------------------.
| Compute and output yydefact, yydefgoto, yypact, yypgoto, yytable |
| and yycheck.                                                     |
`-----------------------------------------------------------------*/

void
tables_generate (void)
{
  /* This is a poor way to make sure the sizes are properly
     correlated.  In particular the signedness is not taken into
     account.  But it's not useless.  */
  verify (sizeof nstates <= sizeof nvectors);
  verify (sizeof nnterms <= sizeof nvectors);

  nvectors = state_number_as_int (nstates) + nnterms;

  froms = xcalloc (nvectors, sizeof *froms);
  tos = xcalloc (nvectors, sizeof *tos);
  conflict_tos = xcalloc (nvectors, sizeof *conflict_tos);
  tally = xcalloc (nvectors, sizeof *tally);
  width = xnmalloc (nvectors, sizeof *width);

  token_actions ();

  goto_actions ();
  free (goto_map);
  free (from_state);
  free (to_state);

  order = xcalloc (nvectors, sizeof *order);
  sort_actions ();
  pack_table ();
  free (order);

  free (tally);
  free (width);

  for (int i = 0; i < nvectors; i++)
    {
      free (froms[i]);
      free (tos[i]);
      free (conflict_tos[i]);
    }

  free (froms);
  free (tos);
  free (conflict_tos);
}


/*-------------------------.
| Free the parser tables.  |
`-------------------------*/

void
tables_free (void)
{
  free (base);
  free (conflict_table);
  free (conflict_list);
  free (table);
  free (check);
  free (yydefgoto);
  free (yydefact);
}