aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/tools/bison/src/ielr.c
blob: 8e34b2cc32373249e731c4084415870cece5674c (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
/* IELR main implementation.

   Copyright (C) 2009-2015, 2018-2020 Free Software Foundation, Inc.

   This file is part of Bison, the GNU Compiler Compiler.

   This program is free software: you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation, either version 3 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */

#include <config.h>
#include "system.h"

#include "ielr.h"

#include <bitset.h>
#include <timevar.h>

#include "AnnotationList.h"
#include "derives.h"
#include "getargs.h"
#include "lalr.h"
#include "muscle-tab.h"
#include "nullable.h"
#include "relation.h"
#include "state.h"
#include "symtab.h"

/** Records the value of the \%define variable lr.type.  */
typedef enum
  {
   LR_TYPE__LR0,
   LR_TYPE__LALR,
   LR_TYPE__IELR,
   LR_TYPE__CANONICAL_LR
  } LrType;

/* The user's requested LR type.  */
static LrType
lr_type_get (void)
{
  char *type = muscle_percent_define_get ("lr.type");
  LrType res;
  if (STREQ (type, "lr""(0)"))
    res = LR_TYPE__LR0;
  else if (STREQ (type, "lalr"))
    res = LR_TYPE__LALR;
  else if (STREQ (type, "ielr"))
    res = LR_TYPE__IELR;
  else if (STREQ (type, "canonical-lr"))
    res = LR_TYPE__CANONICAL_LR;
  else
    {
      aver (false);
      abort ();
    }
  free (type);
  return res;
}

/**
 * \post:
 *   - \c result = a new \c bitset of size \c ::nritems such that any bit \c i
 *     is set iff <tt>ritem[i]</tt> is a nonterminal after which all ritems in
 *     the same RHS are nullable nonterminals.  In other words, the follows of
 *     a goto on <tt>ritem[i]</tt> include the lookahead set of the item.
 */
static bitset
ielr_compute_ritem_sees_lookahead_set (void)
{
  bitset result = bitset_create (nritems, BITSET_FIXED);
  int i = nritems-1;
  while (0 < i)
    {
      --i;
      while (!item_number_is_rule_number (ritem[i])
             && ISVAR (ritem[i])
             && nullable [item_number_as_symbol_number (ritem[i]) - ntokens])
        bitset_set (result, i--);
      if (!item_number_is_rule_number (ritem[i]) && ISVAR (ritem[i]))
        bitset_set (result, i--);
      while (!item_number_is_rule_number (ritem[i]) && 0 < i)
        --i;
    }
  if (trace_flag & trace_ielr)
    {
      fprintf (stderr, "ritem_sees_lookahead_set:\n");
      debug_bitset (result);
      fprintf (stderr, "\n");
    }
  return result;
}

/**
 * \pre:
 *   - \c ritem_sees_lookahead_set was computed by
 *     \c ielr_compute_ritem_sees_lookahead_set.
 * \post:
 *   - Each of \c *edgesp and \c *edge_countsp is a new array of size
 *     \c ::ngotos.
 *   - <tt>(*edgesp)[i]</tt> points to a \c goto_number array of size
 *     <tt>(*edge_countsp)[i]+1</tt>.
 *   - In such a \c goto_number array, the last element is \c ::END_NODE.
 *   - All remaining elements are the indices of the gotos to which there is an
 *     internal follow edge from goto \c i.
 *   - There is an internal follow edge from goto \c i to goto \c j iff both:
 *     - The from states of gotos \c i and \c j are the same.
 *     - The transition nonterminal for goto \c i appears as the first RHS
 *       symbol of at least one production for which both:
 *       - The LHS is the transition symbol of goto \c j.
 *       - All other RHS symbols are nullable nonterminals.
 *     - In other words, the follows of goto \c i include the follows of
 *       goto \c j and it's an internal edge because the from states are the
 *       same.
 */
static void
ielr_compute_internal_follow_edges (bitset ritem_sees_lookahead_set,
                                    goto_number ***edgesp, int **edge_countsp)
{
  *edgesp = xnmalloc (ngotos, sizeof **edgesp);
  *edge_countsp = xnmalloc (ngotos, sizeof **edge_countsp);
  {
    bitset sources = bitset_create (ngotos, BITSET_FIXED);
    for (goto_number i = 0; i < ngotos; ++i)
      (*edge_countsp)[i] = 0;
    for (goto_number i = 0; i < ngotos; ++i)
      {
        int nsources = 0;
        {
          for (rule **rulep = derives[states[to_state[i]]->accessing_symbol
                                      - ntokens];
               *rulep;
               ++rulep)
            {
              /* If there is at least one RHS symbol, if the first RHS symbol
                 is a nonterminal, and if all remaining RHS symbols (if any)
                 are nullable nonterminals, create an edge from the LHS
                 symbol's goto to the first RHS symbol's goto such that the RHS
                 symbol's goto will be the source of the edge after the
                 eventual relation_transpose below.

                 Unlike in ielr_compute_always_follows, I use a bitset for
                 edges rather than an array because it is possible that
                 multiple RHS's with the same first symbol could fit and thus
                 that we could end up with redundant edges.  With the
                 possibility of redundant edges, it's hard to know ahead of
                 time how large to make such an array.  Another possible
                 redundancy is that source and destination might be the same
                 goto.  Eliminating all these possible redundancies now might
                 possibly help performance a little.  I have not proven any of
                 this, but I'm guessing the bitset shouldn't entail much of a
                 performance penalty, if any.  */
              if (bitset_test (ritem_sees_lookahead_set,
                               (*rulep)->rhs - ritem))
                {
                  goto_number source =
                    map_goto (from_state[i],
                              item_number_as_symbol_number (*(*rulep)->rhs));
                  if (i != source && !bitset_test (sources, source))
                    {
                      bitset_set (sources, source);
                      ++nsources;
                      ++(*edge_countsp)[source];
                    }
                }
            }
        }
        if (nsources == 0)
          (*edgesp)[i] = NULL;
        else
          {
            (*edgesp)[i] = xnmalloc (nsources + 1, sizeof *(*edgesp)[i]);
            {
              bitset_iterator biter_source;
              bitset_bindex source;
              int j = 0;
              BITSET_FOR_EACH (biter_source, sources, source, 0)
                (*edgesp)[i][j++] = source;
            }
            (*edgesp)[i][nsources] = END_NODE;
          }
        bitset_zero (sources);
      }
    bitset_free (sources);
  }

  relation_transpose (edgesp, ngotos);

  if (trace_flag & trace_ielr)
    relation_print ("internal_follow_edges", *edgesp, ngotos, NULL, stderr);
}

/**
 * \pre:
 *   - \c ritem_sees_lookahead_set was computed by
 *     \c ielr_compute_ritem_sees_lookahead_set.
 *   - \c internal_follow_edges was computed by
 *     \c ielr_compute_internal_follow_edges.
 * \post:
 *   - \c *follow_kernel_itemsp is a new \c bitsetv in which the number of rows
 *     is \c ngotos and the number of columns is maximum number of kernel items
 *     in any state.
 *   - <tt>(*follow_kernel_itemsp)[i][j]</tt> is set iff the follows of goto
 *     \c i include the lookahead set of item \c j in the from state of goto
 *     \c i.
 *   - Thus, <tt>(*follow_kernel_itemsp)[i][j]</tt> is always unset if there is
 *     no item \c j in the from state of goto \c i.
 */
static void
ielr_compute_follow_kernel_items (bitset ritem_sees_lookahead_set,
                                  goto_number **internal_follow_edges,
                                  bitsetv *follow_kernel_itemsp)
{
  {
    size_t max_nitems = 0;
    for (state_number i = 0; i < nstates; ++i)
      if (states[i]->nitems > max_nitems)
        max_nitems = states[i]->nitems;
    *follow_kernel_itemsp = bitsetv_create (ngotos, max_nitems, BITSET_FIXED);
  }
  for (goto_number i = 0; i < ngotos; ++i)
    {
      size_t nitems = states[from_state[i]]->nitems;
      item_number *items = states[from_state[i]]->items;
      for (size_t j = 0; j < nitems; ++j)
        /* If this item has this goto and if all subsequent symbols in this
           RHS (if any) are nullable nonterminals, then record this item as
           one whose lookahead set is included in this goto's follows.  */
        if (item_number_is_symbol_number (ritem[items[j]])
            && item_number_as_symbol_number (ritem[items[j]])
            == states[to_state[i]]->accessing_symbol
            && bitset_test (ritem_sees_lookahead_set, items[j]))
          bitset_set ((*follow_kernel_itemsp)[i], j);
    }
  relation_digraph (internal_follow_edges, ngotos, *follow_kernel_itemsp);

  if (trace_flag & trace_ielr)
    {
      fprintf (stderr, "follow_kernel_items:\n");
      debug_bitsetv (*follow_kernel_itemsp);
    }
}

/**
 * \pre
 *   - \c *edgesp and \c edge_counts were computed by
 *     \c ielr_compute_internal_follow_edges.
 * \post
 *   - \c *always_followsp is a new \c bitsetv with \c ngotos rows and
 *     \c ntokens columns.
 *   - <tt>(*always_followsp)[i][j]</tt> is set iff token \c j is an always
 *     follow (that is, it's computed by internal and successor edges) of goto
 *     \c i.
 *   - Rows of \c *edgesp have been realloc'ed and extended to include
 *     successor follow edges.  \c edge_counts has not been updated.
 */
static void
ielr_compute_always_follows (goto_number ***edgesp,
                             int const edge_counts[],
                             bitsetv *always_followsp)
{
  *always_followsp = bitsetv_create (ngotos, ntokens, BITSET_FIXED);
  {
    goto_number *edge_array = xnmalloc (ngotos, sizeof *edge_array);
    for (goto_number i = 0; i < ngotos; ++i)
      {
        goto_number nedges = edge_counts[i];
        {
          int j;
          transitions *trans = states[to_state[i]]->transitions;
          FOR_EACH_SHIFT (trans, j)
            bitset_set ((*always_followsp)[i], TRANSITION_SYMBOL (trans, j));
          for (; j < trans->num; ++j)
            {
              symbol_number sym = TRANSITION_SYMBOL (trans, j);
              if (nullable[sym - ntokens])
                edge_array[nedges++] = map_goto (to_state[i], sym);
            }
        }
        if (nedges - edge_counts[i])
          {
            (*edgesp)[i] =
              xnrealloc ((*edgesp)[i], nedges + 1, sizeof *(*edgesp)[i]);
            memcpy ((*edgesp)[i] + edge_counts[i], edge_array + edge_counts[i],
                    (nedges - edge_counts[i]) * sizeof *(*edgesp)[i]);
            (*edgesp)[i][nedges] = END_NODE;
          }
      }
    free (edge_array);
  }
  relation_digraph (*edgesp, ngotos, *always_followsp);

  if (trace_flag & trace_ielr)
    {
      relation_print ("always follow edges", *edgesp, ngotos, NULL, stderr);
      fprintf (stderr, "always_follows:\n");
      debug_bitsetv (*always_followsp);
    }
}

/**
 * \post
 *   - \c result is a new array of size \c ::nstates.
 *   - <tt>result[i]</tt> is an array of pointers to the predecessor
 *     <tt>state</tt>'s of state \c i.
 *   - The last element of such an array is \c NULL.
 */
static state ***
ielr_compute_predecessors (void)
{
  int *predecessor_counts = xnmalloc (nstates, sizeof *predecessor_counts);
  state ***result = xnmalloc (nstates, sizeof *result);
  for (state_number i = 0; i < nstates; ++i)
    predecessor_counts[i] = 0;
  for (state_number i = 0; i < nstates; ++i)
    for (int j = 0; j < states[i]->transitions->num; ++j)
      ++predecessor_counts[states[i]->transitions->states[j]->number];
  for (state_number i = 0; i < nstates; ++i)
    {
      result[i] = xnmalloc (predecessor_counts[i]+1, sizeof *result[i]);
      result[i][predecessor_counts[i]] = NULL;
      predecessor_counts[i] = 0;
    }
  for (state_number i = 0; i < nstates; ++i)
    for (int j = 0; j < states[i]->transitions->num; ++j)
      {
        state_number k = states[i]->transitions->states[j]->number;
        result[k][predecessor_counts[k]++] = states[i];
      }
  free (predecessor_counts);
  return result;
}

/**
 * \post
 *   - \c *follow_kernel_itemsp and \c *always_followsp were computed by
 *     \c ielr_compute_follow_kernel_items and
 *     \c ielr_compute_always_follows.
 *   - Iff <tt>predecessorsp != NULL</tt>, then \c *predecessorsp was computed
 *     by \c ielr_compute_predecessors.
 */
static void
ielr_compute_auxiliary_tables (bitsetv *follow_kernel_itemsp,
                               bitsetv *always_followsp,
                               state ****predecessorsp)
{
  goto_number **edges;
  int *edge_counts;
  {
    bitset ritem_sees_lookahead_set = ielr_compute_ritem_sees_lookahead_set ();
    ielr_compute_internal_follow_edges (ritem_sees_lookahead_set,
                                        &edges, &edge_counts);
    ielr_compute_follow_kernel_items (ritem_sees_lookahead_set, edges,
                                      follow_kernel_itemsp);
    bitset_free (ritem_sees_lookahead_set);
  }
  ielr_compute_always_follows (&edges, edge_counts, always_followsp);
  for (int i = 0; i < ngotos; ++i)
    free (edges[i]);
  free (edges);
  free (edge_counts);
  if (predecessorsp)
    *predecessorsp = ielr_compute_predecessors ();
}

/**
 * \note
 *   - FIXME: It might be an interesting experiment to compare the space and
 *     time efficiency of computing \c item_lookahead_sets either:
 *     - Fully up front.
 *     - Just-in-time, as implemented below.
 *     - Not at all.  That is, just let annotations continue even when
 *       unnecessary.
 */
bool
ielr_item_has_lookahead (state *s, symbol_number lhs, size_t item,
                         symbol_number lookahead, state ***predecessors,
                         bitset **item_lookahead_sets)
{
  if (!item_lookahead_sets[s->number])
    {
      item_lookahead_sets[s->number] =
        xnmalloc (s->nitems, sizeof item_lookahead_sets[s->number][0]);
      for (size_t i = 0; i < s->nitems; ++i)
        item_lookahead_sets[s->number][i] = NULL;
    }
  if (!item_lookahead_sets[s->number][item])
    {
      item_lookahead_sets[s->number][item] =
        bitset_create (ntokens, BITSET_FIXED);
      /* If this kernel item is the beginning of a RHS, it must be the kernel
         item in the start state, and so its LHS has no follows and no goto to
         check.  If, instead, this kernel item is the successor of the start
         state's kernel item, there are still no follows and no goto.  This
         situation is fortunate because we want to avoid the - 2 below in both
         cases.

         Actually, IELR(1) should never invoke this function for either of
         those cases because (1) follow_kernel_items will never reference a
         kernel item for this RHS because the end token blocks sight of the
         lookahead set from the RHS's only nonterminal, and (2) no reduction
         has a lookback dependency on this lookahead set.  Nevertheless, I
         didn't change this test to an aver just in case the usage of this
         function evolves to need those two cases.  In both cases, the current
         implementation returns the right result.  */
      if (s->items[item] > 1)
        {
          /* If the LHS symbol of this item isn't known (because this is a
             top-level invocation), go get it.  */
          if (!lhs)
            {
              int i;
              for (i = s->items[item];
                   !item_number_is_rule_number (ritem[i]);
                   ++i)
                continue;
              lhs = rules[item_number_as_rule_number (ritem[i])].lhs->number;
            }
          /* If this kernel item is next to the beginning of the RHS, then
             check all predecessors' goto follows for the LHS.  */
          if (item_number_is_rule_number (ritem[s->items[item] - 2]))
            {
              aver (lhs != accept->content->number);
              for (state **predecessor = predecessors[s->number];
                   *predecessor;
                   ++predecessor)
                bitset_or (item_lookahead_sets[s->number][item],
                           item_lookahead_sets[s->number][item],
                           goto_follows[map_goto ((*predecessor)->number,
                                                  lhs)]);
            }
          /* If this kernel item is later in the RHS, then check all
             predecessor items' lookahead sets.  */
          else
            {
              for (state **predecessor = predecessors[s->number];
                   *predecessor;
                   ++predecessor)
                {
                  size_t predecessor_item;
                  for (predecessor_item = 0;
                       predecessor_item < (*predecessor)->nitems;
                       ++predecessor_item)
                    if ((*predecessor)->items[predecessor_item]
                        == s->items[item] - 1)
                      break;
                  aver (predecessor_item != (*predecessor)->nitems);
                  ielr_item_has_lookahead (*predecessor, lhs,
                                           predecessor_item, 0 /*irrelevant*/,
                                           predecessors, item_lookahead_sets);
                  bitset_or (item_lookahead_sets[s->number][item],
                             item_lookahead_sets[s->number][item],
                             item_lookahead_sets[(*predecessor)->number]
                                                [predecessor_item]);
                }
            }
        }
    }
  return bitset_test (item_lookahead_sets[s->number][item], lookahead);
}

/**
 * \pre
 *   - \c follow_kernel_items, \c always_follows, and \c predecessors
 *     were computed by \c ielr_compute_auxiliary_tables.
 * \post
 *   - Each of <tt>*inadequacy_listsp</tt> and <tt>*annotation_listsp</tt>
 *     points to a new array of size \c ::nstates.
 *   - For <tt>0 <= i < ::nstates</tt>:
 *     - <tt>(*inadequacy_listsp)[i]</tt> contains the \c InadequacyList head
 *       node for <tt>states[i]</tt>.
 *     - <tt>(*annotation_listsp)[i]</tt> contains the \c AnnotationList head
 *       node for <tt>states[i]</tt>.
 *   - <tt>*max_annotationsp</tt> is the maximum number of annotations per
 *     state.
 */
static void
ielr_compute_annotation_lists (bitsetv follow_kernel_items,
                               bitsetv always_follows, state ***predecessors,
                               AnnotationIndex *max_annotationsp,
                               InadequacyList ***inadequacy_listsp,
                               AnnotationList ***annotation_listsp,
                               struct obstack *annotations_obstackp)
{
  bitset **item_lookahead_sets =
    xnmalloc (nstates, sizeof *item_lookahead_sets);
  AnnotationIndex *annotation_counts =
    xnmalloc (nstates, sizeof *annotation_counts);
  ContributionIndex max_contributions = 0;
  int total_annotations = 0;

  *inadequacy_listsp = xnmalloc (nstates, sizeof **inadequacy_listsp);
  *annotation_listsp = xnmalloc (nstates, sizeof **annotation_listsp);
  for (state_number i = 0; i < nstates; ++i)
    {
      item_lookahead_sets[i] = NULL;
      (*inadequacy_listsp)[i] = NULL;
      (*annotation_listsp)[i] = NULL;
      annotation_counts[i] = 0;
    }
  {
    InadequacyListNodeCount inadequacy_list_node_count = 0;
    for (state_number i = 0; i < nstates; ++i)
      AnnotationList__compute_from_inadequacies (
        states[i], follow_kernel_items, always_follows, predecessors,
        item_lookahead_sets, *inadequacy_listsp, *annotation_listsp,
        annotation_counts, &max_contributions, annotations_obstackp,
        &inadequacy_list_node_count);
  }
  *max_annotationsp = 0;
  for (state_number i = 0; i < nstates; ++i)
    {
      if (annotation_counts[i] > *max_annotationsp)
        *max_annotationsp = annotation_counts[i];
      total_annotations += annotation_counts[i];
    }
  if (trace_flag & trace_ielr)
    {
      for (state_number i = 0; i < nstates; ++i)
        {
          fprintf (stderr, "Inadequacy annotations for state %d:\n", i);
          AnnotationList__debug ((*annotation_listsp)[i],
                                 states[i]->nitems, 2);
        }
      fprintf (stderr, "Number of LR(0)/LALR(1) states: %d\n", nstates);
      fprintf (stderr, "Average number of annotations per state: %f\n",
               (float)total_annotations/nstates);
      fprintf (stderr, "Max number of annotations per state: %d\n",
               *max_annotationsp);
      fprintf (stderr, "Max number of contributions per annotation: %d\n",
               max_contributions);
    }
  for (state_number i = 0; i < nstates; ++i)
    if (item_lookahead_sets[i])
      {
        for (size_t j = 0; j < states[i]->nitems; ++j)
          if (item_lookahead_sets[i][j])
            bitset_free (item_lookahead_sets[i][j]);
        free (item_lookahead_sets[i]);
      }
  free (item_lookahead_sets);
  free (annotation_counts);
}

typedef struct state_list
{
  struct state_list *next;
  state *state;
  /** Has this state been recomputed as a successor of another state?  */
  bool recomputedAsSuccessor;
  /**
   * \c NULL iff all lookahead sets are empty.  <tt>lookaheads[i] = NULL</tt>
   * iff the lookahead set on item \c i is empty.
   */
  bitset *lookaheads;
  /**
   * nextIsocore is the next state in a circularly linked-list of all states
   * with the same core.  The one originally computed by generate_states in
   * lr0.c is lr0Isocore.
   */
  struct state_list *lr0Isocore;
  struct state_list *nextIsocore;
} state_list;

/**
 * \pre
 *   - \c follow_kernel_items and \c always_follows were computed by
 *     \c ielr_compute_auxiliary_tables.
 *   - <tt>n->class = nterm_sym</tt>.
 * \post
 *   - \c follow_set contains the follow set for the goto on nonterminal \c n
 *     in state \c s based on the lookaheads stored in <tt>s->lookaheads</tt>.
 */
static void
ielr_compute_goto_follow_set (bitsetv follow_kernel_items,
                              bitsetv always_follows, state_list *s,
                              sym_content *n, bitset follow_set)
{
  goto_number n_goto = map_goto (s->lr0Isocore->state->number, n->number);
  bitset_copy (follow_set, always_follows[n_goto]);
  if (s->lookaheads)
    {
      bitset_iterator biter_item;
      bitset_bindex item;
      BITSET_FOR_EACH (biter_item, follow_kernel_items[n_goto], item, 0)
        if (s->lookaheads[item])
          bitset_or (follow_set, follow_set, s->lookaheads[item]);
    }
}

/**
 * \pre
 *   - \c follow_kernel_items and \c always_follows were computed by
 *     \c ielr_compute_auxiliary_tables.
 *   - \c lookahead_filter was computed by
 *     \c AnnotationList__computeLookaheadFilter for the original LR(0) isocore
 *     of \c t.
 *   - The number of rows in \c lookaheads is at least the number of items in
 *     \c t, and the number of columns is \c ::ntokens.
 * \post
 *   - <tt>lookaheads[i][j]</tt> is set iff both:
 *     - <tt>lookahead_filter[i][j]</tt> is set.
 *     - The isocore of \c t that will be the transition successor of \c s will
 *       inherit from \c s token \c j into the lookahead set of item \c i.
 */
static void
ielr_compute_lookaheads (bitsetv follow_kernel_items, bitsetv always_follows,
                         state_list *s, state *t, bitsetv lookahead_filter,
                         bitsetv lookaheads)
{
  size_t s_item = 0;
  bitsetv_zero (lookaheads);
  for (size_t t_item = 0; t_item < t->nitems; ++t_item)
    {
      /* If this kernel item is the beginning of a RHS, it must be the
         kernel item in the start state, but t is supposed to be a successor
         state.  If, instead, this kernel item is the successor of the start
         state's kernel item, the lookahead set is empty.  This second case is
         a special case to avoid the - 2 below, but the next successor can be
         handled fine without special casing it.  */
      aver (t->items[t_item] != 0);
      if (t->items[t_item] > 1
          && !bitset_empty_p (lookahead_filter[t_item]))
        {
          if (item_number_is_rule_number (ritem[t->items[t_item] - 2]))
            {
              int rule_item;
              for (rule_item = t->items[t_item];
                   !item_number_is_rule_number (ritem[rule_item]);
                   ++rule_item)
                ;
              ielr_compute_goto_follow_set (
                follow_kernel_items, always_follows, s,
                rules[item_number_as_rule_number (ritem[rule_item])].lhs,
                lookaheads[t_item]);
            }
          else if (s->lookaheads)
            {
              /* We don't have to start the s item search at the beginning
                 every time because items from both states are sorted by their
                 indices in ritem.  */
              for (; s_item < s->state->nitems; ++s_item)
                if (s->state->items[s_item] == t->items[t_item] - 1)
                  break;
              aver (s_item != s->state->nitems);
              if (s->lookaheads[s_item])
                bitset_copy (lookaheads[t_item], s->lookaheads[s_item]);
            }
          bitset_and (lookaheads[t_item],
                      lookaheads[t_item], lookahead_filter[t_item]);
        }
    }
}

/**
 * \pre
 *   - \c follow_kernel_items and \c always_follows were computed by
 *     \c ielr_compute_auxiliary_tables.
 *   - Either:
 *     - <tt>annotation_lists = NULL</tt> and all bits in work2 are set.
 *     - \c annotation_lists was computed by \c ielr_compute_annotation_lists.
 *   - The number of rows in each of \c lookaheads and \c work2 is the maximum
 *     number of items in any state.  The number of columns in each is
 *     \c ::ntokens.
 *   - \c lookaheads was computed by \c ielr_compute_lookaheads for \c t.
 *   - \c ::nstates is the total number of states, some not yet fully computed,
 *     in the list ending at \c *last_statep.  It is at least the number of
 *     original LR(0) states.
 *   - The size of \c work1 is at least the number of annotations for the LR(0)
 *     isocore of \c t.
 * \post
 *   - Either:
 *     - In the case that <tt>annotation_lists != NULL</tt>,
 *       <tt>lookaheads \@pre</tt> was merged with some isocore of \c t if
 *       permitted by the annotations for the original LR(0) isocore of \c t.
 *       If this changed the lookaheads in that isocore, those changes were
 *       propagated to all already computed transition successors recursively
 *       possibly resulting in the splitting of some of those successors.
 *     - In the case that <tt>annotation_lists = NULL</tt>,
 *       <tt>lookaheads \@pre</tt> was merged with some isocore of \c t if the
 *       isocore's lookahead sets were identical to those specified by
 *       <tt>lookaheads \@pre</tt>.
 *     - If no such merge was permitted, a new isocore of \c t containing
 *       <tt>lookaheads \@pre</tt> was appended to the state list whose
 *       previous tail was <tt>*last_statep \@pre</tt> and \c ::nstates was
 *       incremented.  It was also appended to \c t's isocore list.
 *   - <tt>*tp</tt> = the isocore of \c t into which
 *     <tt>lookaheads \@pre</tt> was placed/merged.
 *   - \c lookaheads, \c work1, and \c work2 may have been altered.
 */
static void
ielr_compute_state (bitsetv follow_kernel_items, bitsetv always_follows,
                    AnnotationList **annotation_lists, state *t,
                    bitsetv lookaheads, state_list **last_statep,
                    ContributionIndex work1[], bitsetv work2, state **tp)
{
  state_list *lr0_isocore = t->state_list->lr0Isocore;
  state_list **this_isocorep;

  /* Determine whether there's an isocore of t with which these lookaheads can
     be merged.  */
  {
    AnnotationIndex ai;
    AnnotationList *a;
    if (annotation_lists)
      for (ai = 0, a = annotation_lists[lr0_isocore->state->number];
           a;
           ++ai, a = a->next)
        work1[ai] =
          AnnotationList__computeDominantContribution (
            a, lr0_isocore->state->nitems, lookaheads, false);
    for (this_isocorep = &t->state_list;
         this_isocorep == &t->state_list || *this_isocorep != t->state_list;
         this_isocorep = &(*this_isocorep)->nextIsocore)
      {
        if (!(*this_isocorep)->recomputedAsSuccessor)
          break;
        if (annotation_lists)
          {
            for (ai = 0, a = annotation_lists[lr0_isocore->state->number];
                 a;
                 ++ai, a = a->next)
              {
                if (work1[ai] != ContributionIndex__none)
                  {
                    /* This isocore compatibility test depends on the fact
                       that, if the dominant contributions are the same for the
                       two isocores, then merging their lookahead sets will not
                       produce a state with a different dominant contribution.
                       */
                    ContributionIndex ci =
                      AnnotationList__computeDominantContribution (
                        a, lr0_isocore->state->nitems,
                        (*this_isocorep)->lookaheads, false);
                    if (ci != ContributionIndex__none && work1[ai] != ci)
                      break;
                  }
              }
            if (!a)
              break;
          }
        else
          {
            size_t i;
            for (i = 0; i < t->nitems; ++i)
              {
                if (!(*this_isocorep)->lookaheads
                    || !(*this_isocorep)->lookaheads[i])
                  {
                    if (!bitset_empty_p (lookaheads[i]))
                      break;
                  }
                /* bitset_equal_p uses the size of the first argument,
                   so lookaheads[i] must be the second argument.  */
                else if (!bitset_equal_p ((*this_isocorep)->lookaheads[i],
                                          lookaheads[i]))
                  break;
              }
            if (i == t->nitems)
              break;
          }
      }
  }

  bool has_lookaheads = false;
  for (size_t i = 0; i < lr0_isocore->state->nitems; ++i)
    if (!bitset_empty_p (lookaheads[i]))
      {
        has_lookaheads = true;
        break;
      }

  /* Merge with an existing isocore.  */
  if (this_isocorep == &t->state_list || *this_isocorep != t->state_list)
    {
      bool new_lookaheads = false;
      *tp = (*this_isocorep)->state;

      /* Merge lookaheads into the state and record whether any of them are
         actually new.  */
      if (has_lookaheads)
        {
          size_t i;
          if (!(*this_isocorep)->lookaheads)
            {
              (*this_isocorep)->lookaheads =
                xnmalloc (t->nitems, sizeof (*this_isocorep)->lookaheads);
              for (i = 0; i < t->nitems; ++i)
                (*this_isocorep)->lookaheads[i] = NULL;
            }
          for (i = 0; i < t->nitems; ++i)
            if (!bitset_empty_p (lookaheads[i]))
              {
                if (!(*this_isocorep)->lookaheads[i])
                  (*this_isocorep)->lookaheads[i] =
                    bitset_create (ntokens, BITSET_FIXED);
                bitset_andn (lookaheads[i],
                             lookaheads[i], (*this_isocorep)->lookaheads[i]);
                bitset_or ((*this_isocorep)->lookaheads[i],
                           lookaheads[i], (*this_isocorep)->lookaheads[i]);
                if (!bitset_empty_p (lookaheads[i]))
                  new_lookaheads = true;
              }
        }

      /* If new lookaheads were merged, propagate those lookaheads to the
         successors, possibly splitting them.  If *tp is being recomputed for
         the first time, this isn't necessary because the main
         ielr_split_states loop will handle the successors later.  */
      if (!(*this_isocorep)->recomputedAsSuccessor)
        (*this_isocorep)->recomputedAsSuccessor = true;
      else if (new_lookaheads)
        {
          /* When merging demands identical lookahead sets, it is impossible to
             merge new lookaheads.  */
          aver (annotation_lists);
          for (int i = 0; i < (*tp)->transitions->num; ++i)
            {
              state *t2 = (*tp)->transitions->states[i];
              /* At any time, there's at most one state for which we have so
                 far initially recomputed only some of its successors in the
                 main ielr_split_states loop.  Because we recompute successors
                 in order, we can just stop at the first such successor.  Of
                 course, *tp might be a state some of whose successors have
                 been recomputed as successors of other states rather than as
                 successors of *tp.  It's fine if we go ahead and propagate to
                 some of those.  We'll propagate to them again (but stop when
                 we see nothing changes) and to the others when we reach *tp in
                 the main ielr_split_states loop later.  */
              if (!t2->state_list->recomputedAsSuccessor)
                break;
              AnnotationList__computeLookaheadFilter (
                annotation_lists[t2->state_list->lr0Isocore->state->number],
                t2->nitems, work2);
              ielr_compute_lookaheads (follow_kernel_items, always_follows,
                                       (*this_isocorep), t2, work2,
                                       lookaheads);
              /* FIXME: If splitting t2 here, it's possible that lookaheads
                 that had already propagated from *tp to t2 will be left in t2
                 after *tp has been removed as t2's predecessor:
                 - We're going to recompute all lookaheads in phase 4, so these
                   extra lookaheads won't appear in the final parser table.
                 - If t2 has just one annotation, then these extra lookaheads
                   cannot alter the dominating contribution to the associated
                   inadequacy and thus cannot needlessly prevent a future merge
                   of some new state with t2.  We can be sure of this because:
                   - The fact that we're splitting t2 now means that some
                     predecessors (at least one) other than *tp must be
                     propagating contributions to t2.
                   - The fact that t2 was merged in the first place means that,
                     if *tp propagated any contributions, the dominating
                     contribution must be the same as that from those other
                     predecessors.
                   - Thus, if some new state to be merged with t2 in the future
                     proves to be compatible with the contributions propagated
                     by the other predecessors, it will also be compatible with
                     the contributions made by the extra lookaheads left behind
                     by *tp.
                 - However, if t2 has more than one annotation and these extra
                   lookaheads contribute to one of their inadequacies, it's
                   possible these extra lookaheads may needlessly prevent a
                   future merge with t2.  For example:
                   - Let's say there's an inadequacy A that makes the split
                     necessary as follows:
                     - There's currently just one other predecessor and it
                       propagates to t2 some contributions to inadequacy A.
                     - The new lookaheads that we were attempting to propagate
                       from *tp to t2 made contributions to inadequacy A with a
                       different dominating contribution than those from that
                       other predecessor.
                     - The extra lookaheads either make no contribution to
                       inadequacy A or have the same dominating contribution as
                       the contributions from the other predecessor.  Either
                       way, as explained above, they can't prevent a future
                       merge.
                   - Let's say there's an inadequacy B that causes the trouble
                     with future merges as follows:
                     - The extra lookaheads make contributions to inadequacy B.
                     - Those extra contributions did not prevent the original
                       merge to create t2 because the other predecessor
                       propagates to t2 no contributions to inadequacy B.
                     - Thus, those extra contributions may prevent a future
                       merge with t2 even though the merge would be fine if *tp
                       had not left them behind.
                 - Is the latter case common enough to worry about?
                 - Perhaps we should track all predecessors and iterate them
                   now to recreate t2 without those extra lookaheads.  */
              ielr_compute_state (follow_kernel_items, always_follows,
                                  annotation_lists, t2, lookaheads,
                                  last_statep, work1, work2,
                                  &(*tp)->transitions->states[i]);
            }
        }
    }

  /* Create a new isocore.  */
  else
    {
      state_list *old_isocore = *this_isocorep;
      (*last_statep)->next = *this_isocorep = xmalloc (sizeof **last_statep);
      *last_statep = *this_isocorep;
      (*last_statep)->state = *tp = state_new_isocore (t);
      (*tp)->state_list = *last_statep;
      (*last_statep)->recomputedAsSuccessor = true;
      (*last_statep)->next = NULL;
      (*last_statep)->lookaheads = NULL;
      if (has_lookaheads)
        {
          (*last_statep)->lookaheads =
            xnmalloc (t->nitems, sizeof (*last_statep)->lookaheads);
          for (size_t i = 0; i < t->nitems; ++i)
            {
              if (bitset_empty_p (lookaheads[i]))
                (*last_statep)->lookaheads[i] = NULL;
              else
                {
                  (*last_statep)->lookaheads[i] =
                    bitset_create (ntokens, BITSET_FIXED);
                  bitset_copy ((*last_statep)->lookaheads[i], lookaheads[i]);
                }
            }
        }
      (*last_statep)->lr0Isocore = lr0_isocore;
      (*last_statep)->nextIsocore = old_isocore;
    }
}

/**
 * \pre
 *   - \c follow_kernel_items and \c always_follows were computed by
 *     \c ielr_compute_auxiliary_tables.
 *   - Either:
 *     - <tt>annotation_lists = NULL</tt> and <tt>max_annotations=0</tt>.
 *     - \c annotation_lists and \c max_annotations were computed by
 *       \c ielr_compute_annotation_lists.
 * \post
 *   - \c ::states is of size \c ::nstates (which might be greater than
 *     <tt>::nstates \@pre</tt>) and no longer contains any LR(1)-relative
 *     inadequacy.  \c annotation_lists was used to determine state
 *     compatibility or, if <tt>annotation_lists = NULL</tt>, the canonical
 *     LR(1) state compatibility test was used.
 *   - If <tt>annotation_lists = NULL</tt>, reduction lookahead sets were
 *     computed in all states.  tv_ielr_phase4 was pushed while they were
 *     computed from item lookahead sets.
 */
static void
ielr_split_states (bitsetv follow_kernel_items, bitsetv always_follows,
                   AnnotationList **annotation_lists,
                   AnnotationIndex max_annotations)
{
  state_list *first_state;
  state_list *last_state;
  bitsetv lookahead_filter = NULL;
  bitsetv lookaheads;

  /* Set up state list and some reusable bitsets.  */
  {
    size_t max_nitems = 0;
    state_list **nodep = &first_state;
    for (state_number i = 0; i < nstates; ++i)
      {
        *nodep = states[i]->state_list = last_state = xmalloc (sizeof **nodep);
        (*nodep)->state = states[i];
        (*nodep)->recomputedAsSuccessor = false;
        (*nodep)->lookaheads = NULL;
        (*nodep)->lr0Isocore = *nodep;
        (*nodep)->nextIsocore = *nodep;
        nodep = &(*nodep)->next;
        if (states[i]->nitems > max_nitems)
          max_nitems = states[i]->nitems;
      }
    *nodep = NULL;
    lookahead_filter = bitsetv_create (max_nitems, ntokens, BITSET_FIXED);
    if (!annotation_lists)
      bitsetv_ones (lookahead_filter);
    lookaheads = bitsetv_create (max_nitems, ntokens, BITSET_FIXED);
  }

  /* Recompute states.  */
  {
    ContributionIndex *work = xnmalloc (max_annotations, sizeof *work);
    for (state_list *this_state = first_state;
         this_state;
         this_state = this_state->next)
      {
        state *s = this_state->state;
        for (int i = 0; i < s->transitions->num; ++i)
          {
            state *t = s->transitions->states[i];
            if (annotation_lists)
              AnnotationList__computeLookaheadFilter (
                annotation_lists[t->state_list->lr0Isocore->state->number],
                t->nitems, lookahead_filter);
            ielr_compute_lookaheads (follow_kernel_items, always_follows,
                                     this_state, t, lookahead_filter,
                                     lookaheads);
            ielr_compute_state (follow_kernel_items, always_follows,
                                annotation_lists, t, lookaheads, &last_state,
                                work, lookahead_filter,
                                &s->transitions->states[i]);
          }
      }
    free (work);
  }

  bitsetv_free (lookahead_filter);
  bitsetv_free (lookaheads);

  /* Store states back in the states array.  */
  states = xnrealloc (states, nstates, sizeof *states);
  for (state_list *node = first_state; node; node = node->next)
    states[node->state->number] = node->state;

  /* In the case of canonical LR(1), copy item lookahead sets to reduction
     lookahead sets.  */
  if (!annotation_lists)
    {
      timevar_push (tv_ielr_phase4);
      initialize_LA ();
      for (state_list *node = first_state; node; node = node->next)
        if (!node->state->consistent)
          {
            size_t i = 0;
            item_number *itemset = node->state->items;
            for (size_t r = 0; r < node->state->reductions->num; ++r)
              {
                rule *this_rule = node->state->reductions->rules[r];
                bitset lookahead_set =
                  node->state->reductions->lookahead_tokens[r];
                if (item_number_is_rule_number (*this_rule->rhs))
                  ielr_compute_goto_follow_set (follow_kernel_items,
                                                always_follows, node,
                                                this_rule->lhs, lookahead_set);
                else if (node->lookaheads)
                  {
                    /* We don't need to start the kernel item search back at
                       i=0 because both items and reductions are sorted on rule
                       number.  */
                    while (!item_number_is_rule_number (ritem[itemset[i]])
                           || item_number_as_rule_number (ritem[itemset[i]])
                              != this_rule->number)
                      {
                        ++i;
                        aver (i < node->state->nitems);
                      }
                    if (node->lookaheads[i])
                      bitset_copy (lookahead_set, node->lookaheads[i]);
                  }
              }
          }
      timevar_pop (tv_ielr_phase4);
    }

  /* Free state list.  */
  while (first_state)
    {
      state_list *node = first_state;
      if (node->lookaheads)
        {
          for (size_t i = 0; i < node->state->nitems; ++i)
            if (node->lookaheads[i])
              bitset_free (node->lookaheads[i]);
          free (node->lookaheads);
        }
      first_state = node->next;
      free (node);
    }
}


void
ielr (void)
{
  LrType lr_type = lr_type_get ();

  /* Phase 0: LALR(1).  */
  switch (lr_type)
    {
    case LR_TYPE__LR0:
      timevar_push (tv_lalr);
      set_goto_map ();
      timevar_pop (tv_lalr);
      return;

    case LR_TYPE__CANONICAL_LR:
      timevar_push (tv_lalr);
      set_goto_map ();
      timevar_pop (tv_lalr);
      break;

    case LR_TYPE__LALR:
      timevar_push (tv_lalr);
      lalr ();
      bitsetv_free (goto_follows);
      timevar_pop (tv_lalr);
      return;

    case LR_TYPE__IELR:
      timevar_push (tv_lalr);
      lalr ();
      timevar_pop (tv_lalr);
      break;
    }

  {
    bitsetv follow_kernel_items;
    bitsetv always_follows;
    InadequacyList **inadequacy_lists = NULL;
    AnnotationList **annotation_lists = NULL;
    struct obstack annotations_obstack;
    AnnotationIndex max_annotations = 0;

    {
      /* Phase 1: Compute Auxiliary Tables.  */
      state ***predecessors;
      timevar_push (tv_ielr_phase1);
      ielr_compute_auxiliary_tables (
        &follow_kernel_items, &always_follows,
        lr_type == LR_TYPE__CANONICAL_LR ? NULL : &predecessors);
      timevar_pop (tv_ielr_phase1);

      /* Phase 2: Compute Annotations.  */
      timevar_push (tv_ielr_phase2);
      if (lr_type != LR_TYPE__CANONICAL_LR)
        {
          obstack_init (&annotations_obstack);
          ielr_compute_annotation_lists (follow_kernel_items, always_follows,
                                         predecessors, &max_annotations,
                                         &inadequacy_lists, &annotation_lists,
                                         &annotations_obstack);
          for (state_number i = 0; i < nstates; ++i)
            free (predecessors[i]);
          free (predecessors);
          bitsetv_free (goto_follows);
          lalr_free ();
        }
      timevar_pop (tv_ielr_phase2);
    }

    /* Phase 3: Split States.  */
    timevar_push (tv_ielr_phase3);
    {
      state_number nstates_lr0 = nstates;
      ielr_split_states (follow_kernel_items, always_follows,
                         annotation_lists, max_annotations);
      if (inadequacy_lists)
        for (state_number i = 0; i < nstates_lr0; ++i)
          InadequacyList__delete (inadequacy_lists[i]);
    }
    free (inadequacy_lists);
    if (annotation_lists)
      obstack_free (&annotations_obstack, NULL);
    free (annotation_lists);
    bitsetv_free (follow_kernel_items);
    bitsetv_free (always_follows);
    timevar_pop (tv_ielr_phase3);
  }

  /* Phase 4: Compute Reduction Lookaheads.  */
  timevar_push (tv_ielr_phase4);
  free (goto_map);
  free (from_state);
  free (to_state);
  if (lr_type == LR_TYPE__CANONICAL_LR)
    {
      /* Reduction lookaheads are computed in ielr_split_states above
         but are timed as part of phase 4. */
      set_goto_map ();
    }
  else
    {
      lalr ();
      bitsetv_free (goto_follows);
    }
  timevar_pop (tv_ielr_phase4);
}