1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
|
/* Sequential list data type implemented by a hash table with a binary tree.
Copyright (C) 2006-2007, 2009-2020 Free Software Foundation, Inc.
Written by Bruno Haible <bruno@clisp.org>, 2006.
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>. */
/* Common code of gl_avltreehash_list.c and gl_rbtreehash_list.c. */
static gl_list_node_t
gl_tree_search_from_to (gl_list_t list, size_t start_index, size_t end_index,
const void *elt)
{
if (!(start_index <= end_index
&& end_index <= (list->root != NULL ? list->root->branch_size : 0)))
/* Invalid arguments. */
abort ();
{
size_t hashcode =
(list->base.hashcode_fn != NULL
? list->base.hashcode_fn (elt)
: (size_t)(uintptr_t) elt);
size_t bucket = hashcode % list->table_size;
gl_listelement_equals_fn equals = list->base.equals_fn;
gl_hash_entry_t entry;
if (list->base.allow_duplicates)
{
for (entry = list->table[bucket]; entry != NULL; entry = entry->hash_next)
if (entry->hashcode == hashcode)
{
if (((struct gl_multiple_nodes *) entry)->magic == MULTIPLE_NODES_MAGIC)
{
/* An entry representing multiple nodes. */
gl_oset_t nodes = ((struct gl_multiple_nodes *) entry)->nodes;
/* The first node is interesting. */
gl_list_node_t node = gl_oset_first (nodes);
if (equals != NULL ? equals (elt, node->value) : elt == node->value)
{
/* All nodes in the entry are equal to the given ELT. */
if (start_index == 0)
{
/* We have to return only the one at the minimal
position, and this is the first one in the ordered
set. */
if (end_index == list->root->branch_size
|| node_position (node) < end_index)
return node;
}
else
{
/* We have to return only the one at the minimal
position >= start_index. */
const void *nodes_elt;
if (gl_oset_search_atleast (nodes,
compare_position_threshold,
(void *)(uintptr_t)start_index,
&nodes_elt))
{
node = (gl_list_node_t) nodes_elt;
if (end_index == list->root->branch_size
|| node_position (node) < end_index)
return node;
}
}
break;
}
}
else
{
/* An entry representing a single node. */
gl_list_node_t node = (struct gl_list_node_impl *) entry;
if (equals != NULL ? equals (elt, node->value) : elt == node->value)
{
bool position_in_bounds;
if (start_index == 0 && end_index == list->root->branch_size)
position_in_bounds = true;
else
{
size_t position = node_position (node);
position_in_bounds =
(position >= start_index && position < end_index);
}
if (position_in_bounds)
return node;
break;
}
}
}
}
else
{
/* If no duplicates are allowed, multiple nodes are not needed. */
for (entry = list->table[bucket]; entry != NULL; entry = entry->hash_next)
if (entry->hashcode == hashcode)
{
gl_list_node_t node = (struct gl_list_node_impl *) entry;
if (equals != NULL ? equals (elt, node->value) : elt == node->value)
{
bool position_in_bounds;
if (start_index == 0 && end_index == list->root->branch_size)
position_in_bounds = true;
else
{
size_t position = node_position (node);
position_in_bounds =
(position >= start_index && position < end_index);
}
if (position_in_bounds)
return node;
break;
}
}
}
return NULL;
}
}
static size_t
gl_tree_indexof_from_to (gl_list_t list, size_t start_index, size_t end_index,
const void *elt)
{
gl_list_node_t node =
gl_tree_search_from_to (list, start_index, end_index, elt);
if (node != NULL)
return node_position (node);
else
return (size_t)(-1);
}
static void
gl_tree_list_free (gl_list_t list)
{
if (list->base.allow_duplicates)
{
/* Free the ordered sets in the hash buckets. */
size_t i;
for (i = list->table_size; i > 0; )
{
gl_hash_entry_t entry = list->table[--i];
while (entry != NULL)
{
gl_hash_entry_t next = entry->hash_next;
if (((struct gl_multiple_nodes *) entry)->magic == MULTIPLE_NODES_MAGIC)
{
gl_oset_t nodes = ((struct gl_multiple_nodes *) entry)->nodes;
gl_oset_free (nodes);
free (entry);
}
entry = next;
}
}
}
/* Iterate across all elements in post-order. */
{
gl_list_node_t node = list->root;
iterstack_t stack;
iterstack_item_t *stack_ptr = &stack[0];
for (;;)
{
/* Descend on left branch. */
for (;;)
{
if (node == NULL)
break;
stack_ptr->node = node;
stack_ptr->rightp = false;
node = node->left;
stack_ptr++;
}
/* Climb up again. */
for (;;)
{
if (stack_ptr == &stack[0])
goto done_iterate;
stack_ptr--;
node = stack_ptr->node;
if (!stack_ptr->rightp)
break;
/* Free the current node. */
if (list->base.dispose_fn != NULL)
list->base.dispose_fn (node->value);
free (node);
}
/* Descend on right branch. */
stack_ptr->rightp = true;
node = node->right;
stack_ptr++;
}
}
done_iterate:
free (list->table);
free (list);
}
|