1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
|
/* -----------------------------------------------------------------------
ffi.c - Copyright (c) 2011 Timothy Wall
Copyright (c) 2011 Plausible Labs Cooperative, Inc.
Copyright (c) 2011 Anthony Green
Copyright (c) 2011 Free Software Foundation
Copyright (c) 1998, 2008, 2011 Red Hat, Inc.
ARM Foreign Function Interface
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
``Software''), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.
----------------------------------------------------------------------- */
#if defined(__arm__) || defined(_M_ARM)
#include <fficonfig.h>
#include <ffi.h>
#include <ffi_common.h>
#include <stdint.h>
#include <stdlib.h>
#include "internal.h"
#if defined(_MSC_VER) && defined(_M_ARM)
#define WIN32_LEAN_AND_MEAN
#include <windows.h>
#endif
#if FFI_EXEC_TRAMPOLINE_TABLE
#ifdef __MACH__
#include <mach/machine/vm_param.h>
#endif
#else
#ifndef _M_ARM
extern unsigned int ffi_arm_trampoline[2] FFI_HIDDEN;
#else
extern unsigned int ffi_arm_trampoline[3] FFI_HIDDEN;
#endif
#endif
/* Forward declares. */
static int vfp_type_p (const ffi_type *);
static void layout_vfp_args (ffi_cif *);
static void *
ffi_align (ffi_type *ty, void *p)
{
/* Align if necessary */
size_t alignment;
#ifdef _WIN32_WCE
alignment = 4;
#else
alignment = ty->alignment;
if (alignment < 4)
alignment = 4;
#endif
return (void *) FFI_ALIGN (p, alignment);
}
static size_t
ffi_put_arg (ffi_type *ty, void *src, void *dst)
{
size_t z = ty->size;
switch (ty->type)
{
case FFI_TYPE_SINT8:
*(UINT32 *)dst = *(SINT8 *)src;
break;
case FFI_TYPE_UINT8:
*(UINT32 *)dst = *(UINT8 *)src;
break;
case FFI_TYPE_SINT16:
*(UINT32 *)dst = *(SINT16 *)src;
break;
case FFI_TYPE_UINT16:
*(UINT32 *)dst = *(UINT16 *)src;
break;
case FFI_TYPE_INT:
case FFI_TYPE_SINT32:
case FFI_TYPE_UINT32:
case FFI_TYPE_POINTER:
#ifndef _MSC_VER
case FFI_TYPE_FLOAT:
#endif
*(UINT32 *)dst = *(UINT32 *)src;
break;
#ifdef _MSC_VER
// casting a float* to a UINT32* doesn't work on Windows
case FFI_TYPE_FLOAT:
*(uintptr_t *)dst = 0;
*(float *)dst = *(float *)src;
break;
#endif
case FFI_TYPE_SINT64:
case FFI_TYPE_UINT64:
case FFI_TYPE_DOUBLE:
*(UINT64 *)dst = *(UINT64 *)src;
break;
case FFI_TYPE_STRUCT:
case FFI_TYPE_COMPLEX:
memcpy (dst, src, z);
break;
default:
abort();
}
return FFI_ALIGN (z, 4);
}
/* ffi_prep_args is called once stack space has been allocated
for the function's arguments.
The vfp_space parameter is the load area for VFP regs, the return
value is cif->vfp_used (word bitset of VFP regs used for passing
arguments). These are only used for the VFP hard-float ABI.
*/
static void
ffi_prep_args_SYSV (ffi_cif *cif, int flags, void *rvalue,
void **avalue, char *argp)
{
ffi_type **arg_types = cif->arg_types;
int i, n;
if (flags == ARM_TYPE_STRUCT)
{
*(void **) argp = rvalue;
argp += 4;
}
for (i = 0, n = cif->nargs; i < n; i++)
{
ffi_type *ty = arg_types[i];
argp = ffi_align (ty, argp);
argp += ffi_put_arg (ty, avalue[i], argp);
}
}
static void
ffi_prep_args_VFP (ffi_cif *cif, int flags, void *rvalue,
void **avalue, char *stack, char *vfp_space)
{
ffi_type **arg_types = cif->arg_types;
int i, n, vi = 0;
char *argp, *regp, *eo_regp;
char stack_used = 0;
char done_with_regs = 0;
/* The first 4 words on the stack are used for values
passed in core registers. */
regp = stack;
eo_regp = argp = regp + 16;
/* If the function returns an FFI_TYPE_STRUCT in memory,
that address is passed in r0 to the function. */
if (flags == ARM_TYPE_STRUCT)
{
*(void **) regp = rvalue;
regp += 4;
}
for (i = 0, n = cif->nargs; i < n; i++)
{
ffi_type *ty = arg_types[i];
void *a = avalue[i];
int is_vfp_type = vfp_type_p (ty);
/* Allocated in VFP registers. */
if (vi < cif->vfp_nargs && is_vfp_type)
{
char *vfp_slot = vfp_space + cif->vfp_args[vi++] * 4;
ffi_put_arg (ty, a, vfp_slot);
continue;
}
/* Try allocating in core registers. */
else if (!done_with_regs && !is_vfp_type)
{
char *tregp = ffi_align (ty, regp);
size_t size = ty->size;
size = (size < 4) ? 4 : size; // pad
/* Check if there is space left in the aligned register
area to place the argument. */
if (tregp + size <= eo_regp)
{
regp = tregp + ffi_put_arg (ty, a, tregp);
done_with_regs = (regp == argp);
// ensure we did not write into the stack area
FFI_ASSERT (regp <= argp);
continue;
}
/* In case there are no arguments in the stack area yet,
the argument is passed in the remaining core registers
and on the stack. */
else if (!stack_used)
{
stack_used = 1;
done_with_regs = 1;
argp = tregp + ffi_put_arg (ty, a, tregp);
FFI_ASSERT (eo_regp < argp);
continue;
}
}
/* Base case, arguments are passed on the stack */
stack_used = 1;
argp = ffi_align (ty, argp);
argp += ffi_put_arg (ty, a, argp);
}
}
/* Perform machine dependent cif processing */
ffi_status FFI_HIDDEN
ffi_prep_cif_machdep (ffi_cif *cif)
{
int flags = 0, cabi = cif->abi;
size_t bytes = cif->bytes;
/* Map out the register placements of VFP register args. The VFP
hard-float calling conventions are slightly more sophisticated
than the base calling conventions, so we do it here instead of
in ffi_prep_args(). */
if (cabi == FFI_VFP)
layout_vfp_args (cif);
/* Set the return type flag */
switch (cif->rtype->type)
{
case FFI_TYPE_VOID:
flags = ARM_TYPE_VOID;
break;
case FFI_TYPE_INT:
case FFI_TYPE_UINT8:
case FFI_TYPE_SINT8:
case FFI_TYPE_UINT16:
case FFI_TYPE_SINT16:
case FFI_TYPE_UINT32:
case FFI_TYPE_SINT32:
case FFI_TYPE_POINTER:
flags = ARM_TYPE_INT;
break;
case FFI_TYPE_SINT64:
case FFI_TYPE_UINT64:
flags = ARM_TYPE_INT64;
break;
case FFI_TYPE_FLOAT:
flags = (cabi == FFI_VFP ? ARM_TYPE_VFP_S : ARM_TYPE_INT);
break;
case FFI_TYPE_DOUBLE:
flags = (cabi == FFI_VFP ? ARM_TYPE_VFP_D : ARM_TYPE_INT64);
break;
case FFI_TYPE_STRUCT:
case FFI_TYPE_COMPLEX:
if (cabi == FFI_VFP)
{
int h = vfp_type_p (cif->rtype);
flags = ARM_TYPE_VFP_N;
if (h == 0x100 + FFI_TYPE_FLOAT)
flags = ARM_TYPE_VFP_S;
if (h == 0x100 + FFI_TYPE_DOUBLE)
flags = ARM_TYPE_VFP_D;
if (h != 0)
break;
}
/* A Composite Type not larger than 4 bytes is returned in r0.
A Composite Type larger than 4 bytes, or whose size cannot
be determined statically ... is stored in memory at an
address passed [in r0]. */
if (cif->rtype->size <= 4)
flags = ARM_TYPE_INT;
else
{
flags = ARM_TYPE_STRUCT;
bytes += 4;
}
break;
default:
abort();
}
/* Round the stack up to a multiple of 8 bytes. This isn't needed
everywhere, but it is on some platforms, and it doesn't harm anything
when it isn't needed. */
bytes = FFI_ALIGN (bytes, 8);
/* Minimum stack space is the 4 register arguments that we pop. */
if (bytes < 4*4)
bytes = 4*4;
cif->bytes = bytes;
cif->flags = flags;
return FFI_OK;
}
/* Perform machine dependent cif processing for variadic calls */
ffi_status FFI_HIDDEN
ffi_prep_cif_machdep_var (ffi_cif * cif,
unsigned int nfixedargs, unsigned int ntotalargs)
{
/* VFP variadic calls actually use the SYSV ABI */
if (cif->abi == FFI_VFP)
cif->abi = FFI_SYSV;
return ffi_prep_cif_machdep (cif);
}
/* Prototypes for assembly functions, in sysv.S. */
struct call_frame
{
void *fp;
void *lr;
void *rvalue;
int flags;
void *closure;
};
extern void ffi_call_SYSV (void *stack, struct call_frame *,
void (*fn) (void)) FFI_HIDDEN;
extern void ffi_call_VFP (void *vfp_space, struct call_frame *,
void (*fn) (void), unsigned vfp_used) FFI_HIDDEN;
static void
ffi_call_int (ffi_cif * cif, void (*fn) (void), void *rvalue,
void **avalue, void *closure)
{
int flags = cif->flags;
ffi_type *rtype = cif->rtype;
size_t bytes, rsize, vfp_size;
char *stack, *vfp_space, *new_rvalue;
struct call_frame *frame;
rsize = 0;
if (rvalue == NULL)
{
/* If the return value is a struct and we don't have a return
value address then we need to make one. Otherwise the return
value is in registers and we can ignore them. */
if (flags == ARM_TYPE_STRUCT)
rsize = rtype->size;
else
flags = ARM_TYPE_VOID;
}
else if (flags == ARM_TYPE_VFP_N)
{
/* Largest case is double x 4. */
rsize = 32;
}
else if (flags == ARM_TYPE_INT && rtype->type == FFI_TYPE_STRUCT)
rsize = 4;
/* Largest case. */
vfp_size = (cif->abi == FFI_VFP && cif->vfp_used ? 8*8: 0);
bytes = cif->bytes;
stack = alloca (vfp_size + bytes + sizeof(struct call_frame) + rsize);
vfp_space = NULL;
if (vfp_size)
{
vfp_space = stack;
stack += vfp_size;
}
frame = (struct call_frame *)(stack + bytes);
new_rvalue = rvalue;
if (rsize)
new_rvalue = (void *)(frame + 1);
frame->rvalue = new_rvalue;
frame->flags = flags;
frame->closure = closure;
if (vfp_space)
{
ffi_prep_args_VFP (cif, flags, new_rvalue, avalue, stack, vfp_space);
ffi_call_VFP (vfp_space, frame, fn, cif->vfp_used);
}
else
{
ffi_prep_args_SYSV (cif, flags, new_rvalue, avalue, stack);
ffi_call_SYSV (stack, frame, fn);
}
if (rvalue && rvalue != new_rvalue)
memcpy (rvalue, new_rvalue, rtype->size);
}
void
ffi_call (ffi_cif *cif, void (*fn) (void), void *rvalue, void **avalue)
{
ffi_call_int (cif, fn, rvalue, avalue, NULL);
}
void
ffi_call_go (ffi_cif *cif, void (*fn) (void), void *rvalue,
void **avalue, void *closure)
{
ffi_call_int (cif, fn, rvalue, avalue, closure);
}
static void *
ffi_prep_incoming_args_SYSV (ffi_cif *cif, void *rvalue,
char *argp, void **avalue)
{
ffi_type **arg_types = cif->arg_types;
int i, n;
if (cif->flags == ARM_TYPE_STRUCT)
{
rvalue = *(void **) argp;
argp += 4;
}
else
{
if (cif->rtype->size && cif->rtype->size < 4)
*(uint32_t *) rvalue = 0;
}
for (i = 0, n = cif->nargs; i < n; i++)
{
ffi_type *ty = arg_types[i];
size_t z = ty->size;
argp = ffi_align (ty, argp);
avalue[i] = (void *) argp;
argp += z;
}
return rvalue;
}
static void *
ffi_prep_incoming_args_VFP (ffi_cif *cif, void *rvalue, char *stack,
char *vfp_space, void **avalue)
{
ffi_type **arg_types = cif->arg_types;
int i, n, vi = 0;
char *argp, *regp, *eo_regp;
char done_with_regs = 0;
char stack_used = 0;
regp = stack;
eo_regp = argp = regp + 16;
if (cif->flags == ARM_TYPE_STRUCT)
{
rvalue = *(void **) regp;
regp += 4;
}
for (i = 0, n = cif->nargs; i < n; i++)
{
ffi_type *ty = arg_types[i];
int is_vfp_type = vfp_type_p (ty);
size_t z = ty->size;
if (vi < cif->vfp_nargs && is_vfp_type)
{
avalue[i] = vfp_space + cif->vfp_args[vi++] * 4;
continue;
}
else if (!done_with_regs && !is_vfp_type)
{
char *tregp = ffi_align (ty, regp);
z = (z < 4) ? 4 : z; // pad
/* If the arguments either fits into the registers or uses registers
and stack, while we haven't read other things from the stack */
if (tregp + z <= eo_regp || !stack_used)
{
/* Because we're little endian, this is what it turns into. */
avalue[i] = (void *) tregp;
regp = tregp + z;
/* If we read past the last core register, make sure we
have not read from the stack before and continue
reading after regp. */
if (regp > eo_regp)
{
FFI_ASSERT (!stack_used);
argp = regp;
}
if (regp >= eo_regp)
{
done_with_regs = 1;
stack_used = 1;
}
continue;
}
}
stack_used = 1;
argp = ffi_align (ty, argp);
avalue[i] = (void *) argp;
argp += z;
}
return rvalue;
}
struct closure_frame
{
char vfp_space[8*8] __attribute__((aligned(8)));
char result[8*4];
char argp[];
};
int FFI_HIDDEN
ffi_closure_inner_SYSV (ffi_cif *cif,
void (*fun) (ffi_cif *, void *, void **, void *),
void *user_data,
struct closure_frame *frame)
{
void **avalue = (void **) alloca (cif->nargs * sizeof (void *));
void *rvalue = ffi_prep_incoming_args_SYSV (cif, frame->result,
frame->argp, avalue);
fun (cif, rvalue, avalue, user_data);
return cif->flags;
}
int FFI_HIDDEN
ffi_closure_inner_VFP (ffi_cif *cif,
void (*fun) (ffi_cif *, void *, void **, void *),
void *user_data,
struct closure_frame *frame)
{
void **avalue = (void **) alloca (cif->nargs * sizeof (void *));
void *rvalue = ffi_prep_incoming_args_VFP (cif, frame->result, frame->argp,
frame->vfp_space, avalue);
fun (cif, rvalue, avalue, user_data);
return cif->flags;
}
void ffi_closure_SYSV (void) FFI_HIDDEN;
void ffi_closure_VFP (void) FFI_HIDDEN;
void ffi_go_closure_SYSV (void) FFI_HIDDEN;
void ffi_go_closure_VFP (void) FFI_HIDDEN;
/* the cif must already be prep'ed */
ffi_status
ffi_prep_closure_loc (ffi_closure * closure,
ffi_cif * cif,
void (*fun) (ffi_cif *, void *, void **, void *),
void *user_data, void *codeloc)
{
void (*closure_func) (void) = ffi_closure_SYSV;
if (cif->abi == FFI_VFP)
{
/* We only need take the vfp path if there are vfp arguments. */
if (cif->vfp_used)
closure_func = ffi_closure_VFP;
}
else if (cif->abi != FFI_SYSV)
return FFI_BAD_ABI;
#if FFI_EXEC_TRAMPOLINE_TABLE
void **config = (void **)((uint8_t *)codeloc - PAGE_MAX_SIZE);
config[0] = closure;
config[1] = closure_func;
#else
#ifndef _M_ARM
memcpy(closure->tramp, ffi_arm_trampoline, 8);
#else
// cast away function type so MSVC doesn't set the lower bit of the function pointer
memcpy(closure->tramp, (void*)((uintptr_t)ffi_arm_trampoline & 0xFFFFFFFE), FFI_TRAMPOLINE_CLOSURE_OFFSET);
#endif
#if defined (__QNX__)
msync(closure->tramp, 8, 0x1000000); /* clear data map */
msync(codeloc, 8, 0x1000000); /* clear insn map */
#elif defined(_MSC_VER)
FlushInstructionCache(GetCurrentProcess(), closure->tramp, FFI_TRAMPOLINE_SIZE);
#else
__clear_cache(closure->tramp, closure->tramp + 8); /* clear data map */
__clear_cache(codeloc, codeloc + 8); /* clear insn map */
#endif
#ifdef _M_ARM
*(void(**)(void))(closure->tramp + FFI_TRAMPOLINE_CLOSURE_FUNCTION) = closure_func;
#else
*(void (**)(void))(closure->tramp + 8) = closure_func;
#endif
#endif
closure->cif = cif;
closure->fun = fun;
closure->user_data = user_data;
return FFI_OK;
}
ffi_status
ffi_prep_go_closure (ffi_go_closure *closure, ffi_cif *cif,
void (*fun) (ffi_cif *, void *, void **, void *))
{
void (*closure_func) (void) = ffi_go_closure_SYSV;
if (cif->abi == FFI_VFP)
{
/* We only need take the vfp path if there are vfp arguments. */
if (cif->vfp_used)
closure_func = ffi_go_closure_VFP;
}
else if (cif->abi != FFI_SYSV)
return FFI_BAD_ABI;
closure->tramp = closure_func;
closure->cif = cif;
closure->fun = fun;
return FFI_OK;
}
/* Below are routines for VFP hard-float support. */
/* A subroutine of vfp_type_p. Given a structure type, return the type code
of the first non-structure element. Recurse for structure elements.
Return -1 if the structure is in fact empty, i.e. no nested elements. */
static int
is_hfa0 (const ffi_type *ty)
{
ffi_type **elements = ty->elements;
int i, ret = -1;
if (elements != NULL)
for (i = 0; elements[i]; ++i)
{
ret = elements[i]->type;
if (ret == FFI_TYPE_STRUCT || ret == FFI_TYPE_COMPLEX)
{
ret = is_hfa0 (elements[i]);
if (ret < 0)
continue;
}
break;
}
return ret;
}
/* A subroutine of vfp_type_p. Given a structure type, return true if all
of the non-structure elements are the same as CANDIDATE. */
static int
is_hfa1 (const ffi_type *ty, int candidate)
{
ffi_type **elements = ty->elements;
int i;
if (elements != NULL)
for (i = 0; elements[i]; ++i)
{
int t = elements[i]->type;
if (t == FFI_TYPE_STRUCT || t == FFI_TYPE_COMPLEX)
{
if (!is_hfa1 (elements[i], candidate))
return 0;
}
else if (t != candidate)
return 0;
}
return 1;
}
/* Determine if TY is an homogenous floating point aggregate (HFA).
That is, a structure consisting of 1 to 4 members of all the same type,
where that type is a floating point scalar.
Returns non-zero iff TY is an HFA. The result is an encoded value where
bits 0-7 contain the type code, and bits 8-10 contain the element count. */
static int
vfp_type_p (const ffi_type *ty)
{
ffi_type **elements;
int candidate, i;
size_t size, ele_count;
/* Quickest tests first. */
candidate = ty->type;
switch (ty->type)
{
default:
return 0;
case FFI_TYPE_FLOAT:
case FFI_TYPE_DOUBLE:
ele_count = 1;
goto done;
case FFI_TYPE_COMPLEX:
candidate = ty->elements[0]->type;
if (candidate != FFI_TYPE_FLOAT && candidate != FFI_TYPE_DOUBLE)
return 0;
ele_count = 2;
goto done;
case FFI_TYPE_STRUCT:
break;
}
/* No HFA types are smaller than 4 bytes, or larger than 32 bytes. */
size = ty->size;
if (size < 4 || size > 32)
return 0;
/* Find the type of the first non-structure member. */
elements = ty->elements;
candidate = elements[0]->type;
if (candidate == FFI_TYPE_STRUCT || candidate == FFI_TYPE_COMPLEX)
{
for (i = 0; ; ++i)
{
candidate = is_hfa0 (elements[i]);
if (candidate >= 0)
break;
}
}
/* If the first member is not a floating point type, it's not an HFA.
Also quickly re-check the size of the structure. */
switch (candidate)
{
case FFI_TYPE_FLOAT:
ele_count = size / sizeof(float);
if (size != ele_count * sizeof(float))
return 0;
break;
case FFI_TYPE_DOUBLE:
ele_count = size / sizeof(double);
if (size != ele_count * sizeof(double))
return 0;
break;
default:
return 0;
}
if (ele_count > 4)
return 0;
/* Finally, make sure that all scalar elements are the same type. */
for (i = 0; elements[i]; ++i)
{
int t = elements[i]->type;
if (t == FFI_TYPE_STRUCT || t == FFI_TYPE_COMPLEX)
{
if (!is_hfa1 (elements[i], candidate))
return 0;
}
else if (t != candidate)
return 0;
}
/* All tests succeeded. Encode the result. */
done:
return (ele_count << 8) | candidate;
}
static int
place_vfp_arg (ffi_cif *cif, int h)
{
unsigned short reg = cif->vfp_reg_free;
int align = 1, nregs = h >> 8;
if ((h & 0xff) == FFI_TYPE_DOUBLE)
align = 2, nregs *= 2;
/* Align register number. */
if ((reg & 1) && align == 2)
reg++;
while (reg + nregs <= 16)
{
int s, new_used = 0;
for (s = reg; s < reg + nregs; s++)
{
new_used |= (1 << s);
if (cif->vfp_used & (1 << s))
{
reg += align;
goto next_reg;
}
}
/* Found regs to allocate. */
cif->vfp_used |= new_used;
cif->vfp_args[cif->vfp_nargs++] = (signed char)reg;
/* Update vfp_reg_free. */
if (cif->vfp_used & (1 << cif->vfp_reg_free))
{
reg += nregs;
while (cif->vfp_used & (1 << reg))
reg += 1;
cif->vfp_reg_free = reg;
}
return 0;
next_reg:;
}
// done, mark all regs as used
cif->vfp_reg_free = 16;
cif->vfp_used = 0xFFFF;
return 1;
}
static void
layout_vfp_args (ffi_cif * cif)
{
unsigned int i;
/* Init VFP fields */
cif->vfp_used = 0;
cif->vfp_nargs = 0;
cif->vfp_reg_free = 0;
memset (cif->vfp_args, -1, 16); /* Init to -1. */
for (i = 0; i < cif->nargs; i++)
{
int h = vfp_type_p (cif->arg_types[i]);
if (h && place_vfp_arg (cif, h) == 1)
break;
}
}
#endif /* __arm__ or _M_ARM */
|