aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/restricted/googletest/googlemock/src/gmock-matchers.cc
blob: 5810b6aa391e9ec186b2420f1506c82f53d84232 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
// Copyright 2007, Google Inc.
// All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
//     * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

// Google Mock - a framework for writing C++ mock classes.
//
// This file implements Matcher<const string&>, Matcher<string>, and
// utilities for defining matchers.

#include "gmock/gmock-matchers.h"

#include <string.h>

#include <iostream>
#include <sstream>
#include <string>
#include <vector>

namespace testing {
namespace internal {

// Returns the description for a matcher defined using the MATCHER*()
// macro where the user-supplied description string is "", if
// 'negation' is false; otherwise returns the description of the
// negation of the matcher.  'param_values' contains a list of strings
// that are the print-out of the matcher's parameters.
GTEST_API_ std::string FormatMatcherDescription(
    bool negation, const char* matcher_name,
    const std::vector<const char*>& param_names, const Strings& param_values) {
  std::string result = ConvertIdentifierNameToWords(matcher_name);
  if (param_values.size() >= 1) {
    result += " " + JoinAsKeyValueTuple(param_names, param_values);
  }
  return negation ? "not (" + result + ")" : result;
}

// FindMaxBipartiteMatching and its helper class.
//
// Uses the well-known Ford-Fulkerson max flow method to find a maximum
// bipartite matching. Flow is considered to be from left to right.
// There is an implicit source node that is connected to all of the left
// nodes, and an implicit sink node that is connected to all of the
// right nodes. All edges have unit capacity.
//
// Neither the flow graph nor the residual flow graph are represented
// explicitly. Instead, they are implied by the information in 'graph' and
// a vector<int> called 'left_' whose elements are initialized to the
// value kUnused. This represents the initial state of the algorithm,
// where the flow graph is empty, and the residual flow graph has the
// following edges:
//   - An edge from source to each left_ node
//   - An edge from each right_ node to sink
//   - An edge from each left_ node to each right_ node, if the
//     corresponding edge exists in 'graph'.
//
// When the TryAugment() method adds a flow, it sets left_[l] = r for some
// nodes l and r. This induces the following changes:
//   - The edges (source, l), (l, r), and (r, sink) are added to the
//     flow graph.
//   - The same three edges are removed from the residual flow graph.
//   - The reverse edges (l, source), (r, l), and (sink, r) are added
//     to the residual flow graph, which is a directional graph
//     representing unused flow capacity.
//
// When the method augments a flow (moving left_[l] from some r1 to some
// other r2), this can be thought of as "undoing" the above steps with
// respect to r1 and "redoing" them with respect to r2.
//
// It bears repeating that the flow graph and residual flow graph are
// never represented explicitly, but can be derived by looking at the
// information in 'graph' and in left_.
//
// As an optimization, there is a second vector<int> called right_ which
// does not provide any new information. Instead, it enables more
// efficient queries about edges entering or leaving the right-side nodes
// of the flow or residual flow graphs. The following invariants are
// maintained:
//
// left[l] == kUnused or right[left[l]] == l
// right[r] == kUnused or left[right[r]] == r
//
// . [ source ]                                        .
// .   |||                                             .
// .   |||                                             .
// .   ||\--> left[0]=1  ---\    right[0]=-1 ----\     .
// .   ||                   |                    |     .
// .   |\---> left[1]=-1    \--> right[1]=0  ---\|     .
// .   |                                        ||     .
// .   \----> left[2]=2  ------> right[2]=2  --\||     .
// .                                           |||     .
// .         elements           matchers       vvv     .
// .                                         [ sink ]  .
//
// See Also:
//   [1] Cormen, et al (2001). "Section 26.2: The Ford-Fulkerson method".
//       "Introduction to Algorithms (Second ed.)", pp. 651-664.
//   [2] "Ford-Fulkerson algorithm", Wikipedia,
//       'http://en.wikipedia.org/wiki/Ford%E2%80%93Fulkerson_algorithm'
class MaxBipartiteMatchState {
 public:
  explicit MaxBipartiteMatchState(const MatchMatrix& graph)
      : graph_(&graph),
        left_(graph_->LhsSize(), kUnused),
        right_(graph_->RhsSize(), kUnused) {}

  // Returns the edges of a maximal match, each in the form {left, right}.
  ElementMatcherPairs Compute() {
    // 'seen' is used for path finding { 0: unseen, 1: seen }.
    ::std::vector<char> seen;
    // Searches the residual flow graph for a path from each left node to
    // the sink in the residual flow graph, and if one is found, add flow
    // to the graph. It's okay to search through the left nodes once. The
    // edge from the implicit source node to each previously-visited left
    // node will have flow if that left node has any path to the sink
    // whatsoever. Subsequent augmentations can only add flow to the
    // network, and cannot take away that previous flow unit from the source.
    // Since the source-to-left edge can only carry one flow unit (or,
    // each element can be matched to only one matcher), there is no need
    // to visit the left nodes more than once looking for augmented paths.
    // The flow is known to be possible or impossible by looking at the
    // node once.
    for (size_t ilhs = 0; ilhs < graph_->LhsSize(); ++ilhs) {
      // Reset the path-marking vector and try to find a path from
      // source to sink starting at the left_[ilhs] node.
      GTEST_CHECK_(left_[ilhs] == kUnused)
          << "ilhs: " << ilhs << ", left_[ilhs]: " << left_[ilhs];
      // 'seen' initialized to 'graph_->RhsSize()' copies of 0.
      seen.assign(graph_->RhsSize(), 0);
      TryAugment(ilhs, &seen);
    }
    ElementMatcherPairs result;
    for (size_t ilhs = 0; ilhs < left_.size(); ++ilhs) {
      size_t irhs = left_[ilhs];
      if (irhs == kUnused) continue;
      result.push_back(ElementMatcherPair(ilhs, irhs));
    }
    return result;
  }

 private:
  static const size_t kUnused = static_cast<size_t>(-1);

  // Perform a depth-first search from left node ilhs to the sink.  If a
  // path is found, flow is added to the network by linking the left and
  // right vector elements corresponding each segment of the path.
  // Returns true if a path to sink was found, which means that a unit of
  // flow was added to the network. The 'seen' vector elements correspond
  // to right nodes and are marked to eliminate cycles from the search.
  //
  // Left nodes will only be explored at most once because they
  // are accessible from at most one right node in the residual flow
  // graph.
  //
  // Note that left_[ilhs] is the only element of left_ that TryAugment will
  // potentially transition from kUnused to another value. Any other
  // left_ element holding kUnused before TryAugment will be holding it
  // when TryAugment returns.
  //
  bool TryAugment(size_t ilhs, ::std::vector<char>* seen) {
    for (size_t irhs = 0; irhs < graph_->RhsSize(); ++irhs) {
      if ((*seen)[irhs]) continue;
      if (!graph_->HasEdge(ilhs, irhs)) continue;
      // There's an available edge from ilhs to irhs.
      (*seen)[irhs] = 1;
      // Next a search is performed to determine whether
      // this edge is a dead end or leads to the sink.
      //
      // right_[irhs] == kUnused means that there is residual flow from
      // right node irhs to the sink, so we can use that to finish this
      // flow path and return success.
      //
      // Otherwise there is residual flow to some ilhs. We push flow
      // along that path and call ourselves recursively to see if this
      // ultimately leads to sink.
      if (right_[irhs] == kUnused || TryAugment(right_[irhs], seen)) {
        // Add flow from left_[ilhs] to right_[irhs].
        left_[ilhs] = irhs;
        right_[irhs] = ilhs;
        return true;
      }
    }
    return false;
  }

  const MatchMatrix* graph_;  // not owned
  // Each element of the left_ vector represents a left hand side node
  // (i.e. an element) and each element of right_ is a right hand side
  // node (i.e. a matcher). The values in the left_ vector indicate
  // outflow from that node to a node on the right_ side. The values
  // in the right_ indicate inflow, and specify which left_ node is
  // feeding that right_ node, if any. For example, left_[3] == 1 means
  // there's a flow from element #3 to matcher #1. Such a flow would also
  // be redundantly represented in the right_ vector as right_[1] == 3.
  // Elements of left_ and right_ are either kUnused or mutually
  // referent. Mutually referent means that left_[right_[i]] = i and
  // right_[left_[i]] = i.
  ::std::vector<size_t> left_;
  ::std::vector<size_t> right_;
};

const size_t MaxBipartiteMatchState::kUnused;

GTEST_API_ ElementMatcherPairs FindMaxBipartiteMatching(const MatchMatrix& g) {
  return MaxBipartiteMatchState(g).Compute();
}

static void LogElementMatcherPairVec(const ElementMatcherPairs& pairs,
                                     ::std::ostream* stream) {
  typedef ElementMatcherPairs::const_iterator Iter;
  ::std::ostream& os = *stream;
  os << "{";
  const char* sep = "";
  for (Iter it = pairs.begin(); it != pairs.end(); ++it) {
    os << sep << "\n  ("
       << "element #" << it->first << ", "
       << "matcher #" << it->second << ")";
    sep = ",";
  }
  os << "\n}";
}

bool MatchMatrix::NextGraph() {
  for (size_t ilhs = 0; ilhs < LhsSize(); ++ilhs) {
    for (size_t irhs = 0; irhs < RhsSize(); ++irhs) {
      char& b = matched_[SpaceIndex(ilhs, irhs)];
      if (!b) {
        b = 1;
        return true;
      }
      b = 0;
    }
  }
  return false;
}

void MatchMatrix::Randomize() {
  for (size_t ilhs = 0; ilhs < LhsSize(); ++ilhs) {
    for (size_t irhs = 0; irhs < RhsSize(); ++irhs) {
      char& b = matched_[SpaceIndex(ilhs, irhs)];
      b = static_cast<char>(rand() & 1);  // NOLINT
    }
  }
}

std::string MatchMatrix::DebugString() const {
  ::std::stringstream ss;
  const char* sep = "";
  for (size_t i = 0; i < LhsSize(); ++i) {
    ss << sep;
    for (size_t j = 0; j < RhsSize(); ++j) {
      ss << HasEdge(i, j);
    }
    sep = ";";
  }
  return ss.str();
}

void UnorderedElementsAreMatcherImplBase::DescribeToImpl(
    ::std::ostream* os) const {
  switch (match_flags()) {
    case UnorderedMatcherRequire::ExactMatch:
      if (matcher_describers_.empty()) {
        *os << "is empty";
        return;
      }
      if (matcher_describers_.size() == 1) {
        *os << "has " << Elements(1) << " and that element ";
        matcher_describers_[0]->DescribeTo(os);
        return;
      }
      *os << "has " << Elements(matcher_describers_.size())
          << " and there exists some permutation of elements such that:\n";
      break;
    case UnorderedMatcherRequire::Superset:
      *os << "a surjection from elements to requirements exists such that:\n";
      break;
    case UnorderedMatcherRequire::Subset:
      *os << "an injection from elements to requirements exists such that:\n";
      break;
  }

  const char* sep = "";
  for (size_t i = 0; i != matcher_describers_.size(); ++i) {
    *os << sep;
    if (match_flags() == UnorderedMatcherRequire::ExactMatch) {
      *os << " - element #" << i << " ";
    } else {
      *os << " - an element ";
    }
    matcher_describers_[i]->DescribeTo(os);
    if (match_flags() == UnorderedMatcherRequire::ExactMatch) {
      sep = ", and\n";
    } else {
      sep = "\n";
    }
  }
}

void UnorderedElementsAreMatcherImplBase::DescribeNegationToImpl(
    ::std::ostream* os) const {
  switch (match_flags()) {
    case UnorderedMatcherRequire::ExactMatch:
      if (matcher_describers_.empty()) {
        *os << "isn't empty";
        return;
      }
      if (matcher_describers_.size() == 1) {
        *os << "doesn't have " << Elements(1) << ", or has " << Elements(1)
            << " that ";
        matcher_describers_[0]->DescribeNegationTo(os);
        return;
      }
      *os << "doesn't have " << Elements(matcher_describers_.size())
          << ", or there exists no permutation of elements such that:\n";
      break;
    case UnorderedMatcherRequire::Superset:
      *os << "no surjection from elements to requirements exists such that:\n";
      break;
    case UnorderedMatcherRequire::Subset:
      *os << "no injection from elements to requirements exists such that:\n";
      break;
  }
  const char* sep = "";
  for (size_t i = 0; i != matcher_describers_.size(); ++i) {
    *os << sep;
    if (match_flags() == UnorderedMatcherRequire::ExactMatch) {
      *os << " - element #" << i << " ";
    } else {
      *os << " - an element ";
    }
    matcher_describers_[i]->DescribeTo(os);
    if (match_flags() == UnorderedMatcherRequire::ExactMatch) {
      sep = ", and\n";
    } else {
      sep = "\n";
    }
  }
}

// Checks that all matchers match at least one element, and that all
// elements match at least one matcher. This enables faster matching
// and better error reporting.
// Returns false, writing an explanation to 'listener', if and only
// if the success criteria are not met.
bool UnorderedElementsAreMatcherImplBase::VerifyMatchMatrix(
    const ::std::vector<std::string>& element_printouts,
    const MatchMatrix& matrix, MatchResultListener* listener) const {
  if (matrix.LhsSize() == 0 && matrix.RhsSize() == 0) {
    return true;
  }

  if (match_flags() == UnorderedMatcherRequire::ExactMatch) {
    if (matrix.LhsSize() != matrix.RhsSize()) {
      // The element count doesn't match.  If the container is empty,
      // there's no need to explain anything as Google Mock already
      // prints the empty container. Otherwise we just need to show
      // how many elements there actually are.
      if (matrix.LhsSize() != 0 && listener->IsInterested()) {
        *listener << "which has " << Elements(matrix.LhsSize());
      }
      return false;
    }
  }

  bool result = true;
  ::std::vector<char> element_matched(matrix.LhsSize(), 0);
  ::std::vector<char> matcher_matched(matrix.RhsSize(), 0);

  for (size_t ilhs = 0; ilhs < matrix.LhsSize(); ilhs++) {
    for (size_t irhs = 0; irhs < matrix.RhsSize(); irhs++) {
      char matched = matrix.HasEdge(ilhs, irhs);
      element_matched[ilhs] |= matched;
      matcher_matched[irhs] |= matched;
    }
  }

  if (match_flags() & UnorderedMatcherRequire::Superset) {
    const char* sep =
        "where the following matchers don't match any elements:\n";
    for (size_t mi = 0; mi < matcher_matched.size(); ++mi) {
      if (matcher_matched[mi]) continue;
      result = false;
      if (listener->IsInterested()) {
        *listener << sep << "matcher #" << mi << ": ";
        matcher_describers_[mi]->DescribeTo(listener->stream());
        sep = ",\n";
      }
    }
  }

  if (match_flags() & UnorderedMatcherRequire::Subset) {
    const char* sep =
        "where the following elements don't match any matchers:\n";
    const char* outer_sep = "";
    if (!result) {
      outer_sep = "\nand ";
    }
    for (size_t ei = 0; ei < element_matched.size(); ++ei) {
      if (element_matched[ei]) continue;
      result = false;
      if (listener->IsInterested()) {
        *listener << outer_sep << sep << "element #" << ei << ": "
                  << element_printouts[ei];
        sep = ",\n";
        outer_sep = "";
      }
    }
  }
  return result;
}

bool UnorderedElementsAreMatcherImplBase::FindPairing(
    const MatchMatrix& matrix, MatchResultListener* listener) const {
  ElementMatcherPairs matches = FindMaxBipartiteMatching(matrix);

  size_t max_flow = matches.size();
  if ((match_flags() & UnorderedMatcherRequire::Superset) &&
      max_flow < matrix.RhsSize()) {
    if (listener->IsInterested()) {
      *listener << "where no permutation of the elements can satisfy all "
                   "matchers, and the closest match is "
                << max_flow << " of " << matrix.RhsSize()
                << " matchers with the pairings:\n";
      LogElementMatcherPairVec(matches, listener->stream());
    }
    return false;
  }
  if ((match_flags() & UnorderedMatcherRequire::Subset) &&
      max_flow < matrix.LhsSize()) {
    if (listener->IsInterested()) {
      *listener
          << "where not all elements can be matched, and the closest match is "
          << max_flow << " of " << matrix.RhsSize()
          << " matchers with the pairings:\n";
      LogElementMatcherPairVec(matches, listener->stream());
    }
    return false;
  }

  if (matches.size() > 1) {
    if (listener->IsInterested()) {
      const char* sep = "where:\n";
      for (size_t mi = 0; mi < matches.size(); ++mi) {
        *listener << sep << " - element #" << matches[mi].first
                  << " is matched by matcher #" << matches[mi].second;
        sep = ",\n";
      }
    }
  }
  return true;
}

}  // namespace internal
}  // namespace testing