1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
|
// Copyright 2021 Google Inc. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "perf_counters.h"
#include <cstring>
#include <memory>
#include <vector>
#if defined HAVE_LIBPFM
#error #include "perfmon/pfmlib.h"
#error #include "perfmon/pfmlib_perf_event.h"
#endif
namespace benchmark {
namespace internal {
constexpr size_t PerfCounterValues::kMaxCounters;
#if defined HAVE_LIBPFM
size_t PerfCounterValues::Read(const std::vector<int>& leaders) {
// Create a pointer for multiple reads
const size_t bufsize = values_.size() * sizeof(values_[0]);
char* ptr = reinterpret_cast<char*>(values_.data());
size_t size = bufsize;
for (int lead : leaders) {
auto read_bytes = ::read(lead, ptr, size);
if (read_bytes >= ssize_t(sizeof(uint64_t))) {
// Actual data bytes are all bytes minus initial padding
std::size_t data_bytes =
static_cast<std::size_t>(read_bytes) - sizeof(uint64_t);
// This should be very cheap since it's in hot cache
std::memmove(ptr, ptr + sizeof(uint64_t), data_bytes);
// Increment our counters
ptr += data_bytes;
size -= data_bytes;
} else {
int err = errno;
GetErrorLogInstance() << "Error reading lead " << lead << " errno:" << err
<< " " << ::strerror(err) << "\n";
return 0;
}
}
return (bufsize - size) / sizeof(uint64_t);
}
const bool PerfCounters::kSupported = true;
// Initializes libpfm only on the first call. Returns whether that single
// initialization was successful.
bool PerfCounters::Initialize() {
// Function-scope static gets initialized only once on first call.
static const bool success = []() {
return pfm_initialize() == PFM_SUCCESS;
}();
return success;
}
bool PerfCounters::IsCounterSupported(const std::string& name) {
Initialize();
perf_event_attr_t attr;
std::memset(&attr, 0, sizeof(attr));
pfm_perf_encode_arg_t arg;
std::memset(&arg, 0, sizeof(arg));
arg.attr = &attr;
const int mode = PFM_PLM3; // user mode only
int ret = pfm_get_os_event_encoding(name.c_str(), mode, PFM_OS_PERF_EVENT_EXT,
&arg);
return (ret == PFM_SUCCESS);
}
PerfCounters PerfCounters::Create(
const std::vector<std::string>& counter_names) {
if (!counter_names.empty()) {
Initialize();
}
// Valid counters will populate these arrays but we start empty
std::vector<std::string> valid_names;
std::vector<int> counter_ids;
std::vector<int> leader_ids;
// Resize to the maximum possible
valid_names.reserve(counter_names.size());
counter_ids.reserve(counter_names.size());
const int kCounterMode = PFM_PLM3; // user mode only
// Group leads will be assigned on demand. The idea is that once we cannot
// create a counter descriptor, the reason is that this group has maxed out
// so we set the group_id again to -1 and retry - giving the algorithm a
// chance to create a new group leader to hold the next set of counters.
int group_id = -1;
// Loop through all performance counters
for (size_t i = 0; i < counter_names.size(); ++i) {
// we are about to push into the valid names vector
// check if we did not reach the maximum
if (valid_names.size() == PerfCounterValues::kMaxCounters) {
// Log a message if we maxed out and stop adding
GetErrorLogInstance()
<< counter_names.size() << " counters were requested. The maximum is "
<< PerfCounterValues::kMaxCounters << " and " << valid_names.size()
<< " were already added. All remaining counters will be ignored\n";
// stop the loop and return what we have already
break;
}
// Check if this name is empty
const auto& name = counter_names[i];
if (name.empty()) {
GetErrorLogInstance()
<< "A performance counter name was the empty string\n";
continue;
}
// Here first means first in group, ie the group leader
const bool is_first = (group_id < 0);
// This struct will be populated by libpfm from the counter string
// and then fed into the syscall perf_event_open
struct perf_event_attr attr {};
attr.size = sizeof(attr);
// This is the input struct to libpfm.
pfm_perf_encode_arg_t arg{};
arg.attr = &attr;
const int pfm_get = pfm_get_os_event_encoding(name.c_str(), kCounterMode,
PFM_OS_PERF_EVENT, &arg);
if (pfm_get != PFM_SUCCESS) {
GetErrorLogInstance()
<< "Unknown performance counter name: " << name << "\n";
continue;
}
// We then proceed to populate the remaining fields in our attribute struct
// Note: the man page for perf_event_create suggests inherit = true and
// read_format = PERF_FORMAT_GROUP don't work together, but that's not the
// case.
attr.disabled = is_first;
attr.inherit = true;
attr.pinned = is_first;
attr.exclude_kernel = true;
attr.exclude_user = false;
attr.exclude_hv = true;
// Read all counters in a group in one read.
attr.read_format = PERF_FORMAT_GROUP;
int id = -1;
while (id < 0) {
static constexpr size_t kNrOfSyscallRetries = 5;
// Retry syscall as it was interrupted often (b/64774091).
for (size_t num_retries = 0; num_retries < kNrOfSyscallRetries;
++num_retries) {
id = perf_event_open(&attr, 0, -1, group_id, 0);
if (id >= 0 || errno != EINTR) {
break;
}
}
if (id < 0) {
// If the file descriptor is negative we might have reached a limit
// in the current group. Set the group_id to -1 and retry
if (group_id >= 0) {
// Create a new group
group_id = -1;
} else {
// At this point we have already retried to set a new group id and
// failed. We then give up.
break;
}
}
}
// We failed to get a new file descriptor. We might have reached a hard
// hardware limit that cannot be resolved even with group multiplexing
if (id < 0) {
GetErrorLogInstance() << "***WARNING** Failed to get a file descriptor "
"for performance counter "
<< name << ". Ignoring\n";
// We give up on this counter but try to keep going
// as the others would be fine
continue;
}
if (group_id < 0) {
// This is a leader, store and assign it to the current file descriptor
leader_ids.push_back(id);
group_id = id;
}
// This is a valid counter, add it to our descriptor's list
counter_ids.push_back(id);
valid_names.push_back(name);
}
// Loop through all group leaders activating them
// There is another option of starting ALL counters in a process but
// that would be far reaching an intrusion. If the user is using PMCs
// by themselves then this would have a side effect on them. It is
// friendlier to loop through all groups individually.
for (int lead : leader_ids) {
if (ioctl(lead, PERF_EVENT_IOC_ENABLE) != 0) {
// This should never happen but if it does, we give up on the
// entire batch as recovery would be a mess.
GetErrorLogInstance() << "***WARNING*** Failed to start counters. "
"Claring out all counters.\n";
// Close all peformance counters
for (int id : counter_ids) {
::close(id);
}
// Return an empty object so our internal state is still good and
// the process can continue normally without impact
return NoCounters();
}
}
return PerfCounters(std::move(valid_names), std::move(counter_ids),
std::move(leader_ids));
}
void PerfCounters::CloseCounters() const {
if (counter_ids_.empty()) {
return;
}
for (int lead : leader_ids_) {
ioctl(lead, PERF_EVENT_IOC_DISABLE);
}
for (int fd : counter_ids_) {
close(fd);
}
}
#else // defined HAVE_LIBPFM
size_t PerfCounterValues::Read(const std::vector<int>&) { return 0; }
const bool PerfCounters::kSupported = false;
bool PerfCounters::Initialize() { return false; }
bool PerfCounters::IsCounterSupported(const std::string&) { return false; }
PerfCounters PerfCounters::Create(
const std::vector<std::string>& counter_names) {
if (!counter_names.empty()) {
GetErrorLogInstance() << "Performance counters not supported.\n";
}
return NoCounters();
}
void PerfCounters::CloseCounters() const {}
#endif // defined HAVE_LIBPFM
PerfCountersMeasurement::PerfCountersMeasurement(
const std::vector<std::string>& counter_names)
: start_values_(counter_names.size()), end_values_(counter_names.size()) {
counters_ = PerfCounters::Create(counter_names);
}
PerfCounters& PerfCounters::operator=(PerfCounters&& other) noexcept {
if (this != &other) {
CloseCounters();
counter_ids_ = std::move(other.counter_ids_);
leader_ids_ = std::move(other.leader_ids_);
counter_names_ = std::move(other.counter_names_);
}
return *this;
}
} // namespace internal
} // namespace benchmark
|