1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
|
// Copyright (C) 2006 Tiago de Paula Peixoto <tiago@forked.de>
// Copyright (C) 2004,2009 The Trustees of Indiana University.
//
// Use, modification and distribution is subject to the Boost Software
// License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
// Authors: Douglas Gregor
// Jeremiah Willcock
// Andrew Lumsdaine
// Tiago de Paula Peixoto
#define BOOST_GRAPH_SOURCE
#include <boost/foreach.hpp>
#include <boost/optional.hpp>
#include <boost/throw_exception.hpp>
#include <boost/graph/graphml.hpp>
#include <boost/graph/dll_import_export.hpp>
#include <boost/property_tree/ptree.hpp>
#include <boost/property_tree/xml_parser.hpp>
using namespace boost;
namespace {
class graphml_reader
{
public:
graphml_reader(mutate_graph& g)
: m_g(g) { }
static boost::property_tree::ptree::path_type path(const std::string& str) {
return boost::property_tree::ptree::path_type(str, '/');
}
void get_graphs(const boost::property_tree::ptree& top,
size_t desired_idx /* or -1 for all */, bool is_root,
std::vector<const boost::property_tree::ptree*>& result) {
using boost::property_tree::ptree;
size_t current_idx = 0;
bool is_first = is_root;
BOOST_FOREACH(const ptree::value_type& n, top) {
if (n.first == "graph") {
if (current_idx == desired_idx || desired_idx == (size_t)(-1)) {
result.push_back(&n.second);
if(is_first)
{
is_first = false;
BOOST_FOREACH(const ptree::value_type& attr, n.second) {
if (attr.first != "data")
continue;
std::string key = attr.second.get<std::string>(path("<xmlattr>/key"));
std::string value = attr.second.get_value("");
handle_graph_property(key, value);
}
}
get_graphs(n.second, (size_t)(-1), false, result);
if (desired_idx != (size_t)(-1)) break;
}
++current_idx;
}
}
}
void run(std::istream& in, size_t desired_idx)
{
using boost::property_tree::ptree;
ptree pt;
read_xml(in, pt, boost::property_tree::xml_parser::no_comments | boost::property_tree::xml_parser::trim_whitespace);
ptree gml = pt.get_child(path("graphml"));
// Search for attributes
BOOST_FOREACH(const ptree::value_type& child, gml) {
if (child.first != "key") continue;
std::string id = child.second.get(path("<xmlattr>/id"), "");
std::string for_ = child.second.get(path("<xmlattr>/for"), "");
std::string name = child.second.get(path("<xmlattr>/attr.name"), "");
std::string type = child.second.get(path("<xmlattr>/attr.type"), "");
key_kind kind = all_key;
if (for_ == "graph") kind = graph_key;
else if (for_ == "node") kind = node_key;
else if (for_ == "edge") kind = edge_key;
else if (for_ == "hyperedge") kind = hyperedge_key;
else if (for_ == "port") kind = port_key;
else if (for_ == "endpoint") kind = endpoint_key;
else if (for_ == "all") kind = all_key;
else if (for_ == "graphml") kind = graphml_key;
else {BOOST_THROW_EXCEPTION(parse_error("Attribute for is not valid: " + for_));}
m_keys[id] = kind;
m_key_name[id] = name;
m_key_type[id] = type;
boost::optional<std::string> default_ = child.second.get_optional<std::string>(path("default"));
if (default_) m_key_default[id] = default_.get();
}
// Search for graphs
std::vector<const ptree*> graphs;
handle_graph();
get_graphs(gml, desired_idx, true, graphs);
BOOST_FOREACH(const ptree* gr, graphs) {
// Search for nodes
BOOST_FOREACH(const ptree::value_type& node, *gr) {
if (node.first != "node") continue;
std::string id = node.second.get<std::string>(path("<xmlattr>/id"));
handle_vertex(id);
BOOST_FOREACH(const ptree::value_type& attr, node.second) {
if (attr.first != "data") continue;
std::string key = attr.second.get<std::string>(path("<xmlattr>/key"));
std::string value = attr.second.get_value("");
handle_node_property(key, id, value);
}
}
}
BOOST_FOREACH(const ptree* gr, graphs) {
bool default_directed = gr->get<std::string>(path("<xmlattr>/edgedefault")) == "directed";
// Search for edges
BOOST_FOREACH(const ptree::value_type& edge, *gr) {
if (edge.first != "edge") continue;
std::string source = edge.second.get<std::string>(path("<xmlattr>/source"));
std::string target = edge.second.get<std::string>(path("<xmlattr>/target"));
std::string local_directed = edge.second.get(path("<xmlattr>/directed"), "");
bool is_directed = (local_directed == "" ? default_directed : local_directed == "true");
if (is_directed != m_g.is_directed()) {
if (is_directed) {
BOOST_THROW_EXCEPTION(directed_graph_error());
} else {
BOOST_THROW_EXCEPTION(undirected_graph_error());
}
}
size_t old_edges_size = m_edge.size();
handle_edge(source, target);
BOOST_FOREACH(const ptree::value_type& attr, edge.second) {
if (attr.first != "data") continue;
std::string key = attr.second.get<std::string>(path("<xmlattr>/key"));
std::string value = attr.second.get_value("");
handle_edge_property(key, old_edges_size, value);
}
}
}
}
private:
/// The kinds of keys. Not all of these are supported
enum key_kind {
graph_key,
node_key,
edge_key,
hyperedge_key,
port_key,
endpoint_key,
all_key,
graphml_key
};
void
handle_vertex(const std::string& v)
{
bool is_new = false;
if (m_vertex.find(v) == m_vertex.end())
{
m_vertex[v] = m_g.do_add_vertex();
is_new = true;
}
if (is_new)
{
std::map<std::string, std::string>::iterator iter;
for (iter = m_key_default.begin(); iter != m_key_default.end(); ++iter)
{
if (m_keys[iter->first] == node_key)
handle_node_property(iter->first, v, iter->second);
}
}
}
any
get_vertex_descriptor(const std::string& v)
{
return m_vertex[v];
}
void
handle_edge(const std::string& u, const std::string& v)
{
handle_vertex(u);
handle_vertex(v);
any source, target;
source = get_vertex_descriptor(u);
target = get_vertex_descriptor(v);
any edge;
bool added;
boost::tie(edge, added) = m_g.do_add_edge(source, target);
if (!added) {
BOOST_THROW_EXCEPTION(bad_parallel_edge(u, v));
}
size_t e = m_edge.size();
m_edge.push_back(edge);
std::map<std::string, std::string>::iterator iter;
for (iter = m_key_default.begin(); iter != m_key_default.end(); ++iter)
{
if (m_keys[iter->first] == edge_key)
handle_edge_property(iter->first, e, iter->second);
}
}
void
handle_graph()
{
std::map<std::string, std::string>::iterator iter;
for (iter = m_key_default.begin(); iter != m_key_default.end(); ++iter)
{
if (m_keys[iter->first] == graph_key)
handle_graph_property(iter->first, iter->second);
}
}
void handle_graph_property(const std::string& key_id, const std::string& value)
{
m_g.set_graph_property(m_key_name[key_id], value, m_key_type[key_id]);
}
void handle_node_property(const std::string& key_id, const std::string& descriptor, const std::string& value)
{
m_g.set_vertex_property(m_key_name[key_id], m_vertex[descriptor], value, m_key_type[key_id]);
}
void handle_edge_property(const std::string& key_id, size_t descriptor, const std::string& value)
{
m_g.set_edge_property(m_key_name[key_id], m_edge[descriptor], value, m_key_type[key_id]);
}
mutate_graph& m_g;
std::map<std::string, key_kind> m_keys;
std::map<std::string, std::string> m_key_name;
std::map<std::string, std::string> m_key_type;
std::map<std::string, std::string> m_key_default;
std::map<std::string, any> m_vertex;
std::vector<any> m_edge;
};
}
namespace boost
{
void BOOST_GRAPH_DECL
read_graphml(std::istream& in, mutate_graph& g, size_t desired_idx)
{
graphml_reader reader(g);
reader.run(in, desired_idx);
}
}
|