1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
|
//////////////////////////////////////////////////////////////////////////////
//
// (C) Copyright Ion Gaztanaga 2007-2015. Distributed under the Boost
// Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
// See http://www.boost.org/libs/container for documentation.
//
//////////////////////////////////////////////////////////////////////////////
#include <boost/container/detail/alloc_lib.h>
#include "errno.h" //dlmalloc bug EINVAL is used in posix_memalign without checking LACKS_ERRNO_H
#include "limits.h" //CHAR_BIT
#ifdef BOOST_CONTAINER_DLMALLOC_FOOTERS
#define FOOTERS 1
#endif
#define USE_LOCKS 1
#define MSPACES 1
#define NO_MALLINFO 1
#define NO_MALLOC_STATS 1
//disable sbrk as it's deprecated in some systems and weakens ASLR
#define HAVE_MORECORE 0
#if !defined(NDEBUG)
#if !defined(DEBUG)
#define DEBUG 1
#define DL_DEBUG_DEFINED
#endif
#endif
#define USE_DL_PREFIX
#ifdef __GNUC__
#define FORCEINLINE inline
#endif
#ifdef _MSC_VER
#pragma warning (push)
#pragma warning (disable : 4127)
#pragma warning (disable : 4267)
#pragma warning (disable : 4127)
#pragma warning (disable : 4702)
#pragma warning (disable : 4390) /*empty controlled statement found; is this the intent?*/
#pragma warning (disable : 4251 4231 4660) /*dll warnings*/
#pragma warning (disable : 4057) /*differs in indirection to slightly different base types from*/
#pragma warning (disable : 4702) /*unreachable code*/
#pragma warning (disable : 4127) /*conditional expression is constant*/
#endif
#include "dlmalloc_2_8_6.c"
#define DL_SIZE_IMPL(p) (chunksize(mem2chunk(p)) - overhead_for(mem2chunk(p)))
static size_t s_allocated_memory;
///////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////
//
// SLIGHTLY MODIFIED DLMALLOC FUNCTIONS
//
///////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////
//This function is equal to mspace_free
//replacing PREACTION with 0 and POSTACTION with nothing
static void mspace_free_lockless(mspace msp, void* mem)
{
if (mem != 0) {
mchunkptr p = mem2chunk(mem);
#if FOOTERS
mstate fm = get_mstate_for(p);
msp = msp; /* placate people compiling -Wunused */
#else /* FOOTERS */
mstate fm = (mstate)msp;
#endif /* FOOTERS */
if (!ok_magic(fm)) {
USAGE_ERROR_ACTION(fm, p);
return;
}
if (!0){//PREACTION(fm)) {
check_inuse_chunk(fm, p);
if (RTCHECK(ok_address(fm, p) && ok_inuse(p))) {
size_t psize = chunksize(p);
mchunkptr next = chunk_plus_offset(p, psize);
if (!pinuse(p)) {
size_t prevsize = p->prev_foot;
if (is_mmapped(p)) {
psize += prevsize + MMAP_FOOT_PAD;
if (CALL_MUNMAP((char*)p - prevsize, psize) == 0)
fm->footprint -= psize;
goto postaction;
}
else {
mchunkptr prev = chunk_minus_offset(p, prevsize);
psize += prevsize;
p = prev;
if (RTCHECK(ok_address(fm, prev))) { /* consolidate backward */
if (p != fm->dv) {
unlink_chunk(fm, p, prevsize);
}
else if ((next->head & INUSE_BITS) == INUSE_BITS) {
fm->dvsize = psize;
set_free_with_pinuse(p, psize, next);
goto postaction;
}
}
else
goto erroraction;
}
}
if (RTCHECK(ok_next(p, next) && ok_pinuse(next))) {
if (!cinuse(next)) { /* consolidate forward */
if (next == fm->top) {
size_t tsize = fm->topsize += psize;
fm->top = p;
p->head = tsize | PINUSE_BIT;
if (p == fm->dv) {
fm->dv = 0;
fm->dvsize = 0;
}
if (should_trim(fm, tsize))
sys_trim(fm, 0);
goto postaction;
}
else if (next == fm->dv) {
size_t dsize = fm->dvsize += psize;
fm->dv = p;
set_size_and_pinuse_of_free_chunk(p, dsize);
goto postaction;
}
else {
size_t nsize = chunksize(next);
psize += nsize;
unlink_chunk(fm, next, nsize);
set_size_and_pinuse_of_free_chunk(p, psize);
if (p == fm->dv) {
fm->dvsize = psize;
goto postaction;
}
}
}
else
set_free_with_pinuse(p, psize, next);
if (is_small(psize)) {
insert_small_chunk(fm, p, psize);
check_free_chunk(fm, p);
}
else {
tchunkptr tp = (tchunkptr)p;
insert_large_chunk(fm, tp, psize);
check_free_chunk(fm, p);
if (--fm->release_checks == 0)
release_unused_segments(fm);
}
goto postaction;
}
}
erroraction:
USAGE_ERROR_ACTION(fm, p);
postaction:
;//POSTACTION(fm);
}
}
}
//This function is equal to mspace_malloc
//replacing PREACTION with 0 and POSTACTION with nothing
void* mspace_malloc_lockless(mspace msp, size_t bytes)
{
mstate ms = (mstate)msp;
if (!ok_magic(ms)) {
USAGE_ERROR_ACTION(ms,ms);
return 0;
}
if (!0){//PREACTION(ms)) {
void* mem;
size_t nb;
if (bytes <= MAX_SMALL_REQUEST) {
bindex_t idx;
binmap_t smallbits;
nb = (bytes < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(bytes);
idx = small_index(nb);
smallbits = ms->smallmap >> idx;
if ((smallbits & 0x3U) != 0) { /* Remainderless fit to a smallbin. */
mchunkptr b, p;
idx += ~smallbits & 1; /* Uses next bin if idx empty */
b = smallbin_at(ms, idx);
p = b->fd;
assert(chunksize(p) == small_index2size(idx));
unlink_first_small_chunk(ms, b, p, idx);
set_inuse_and_pinuse(ms, p, small_index2size(idx));
mem = chunk2mem(p);
check_malloced_chunk(ms, mem, nb);
goto postaction;
}
else if (nb > ms->dvsize) {
if (smallbits != 0) { /* Use chunk in next nonempty smallbin */
mchunkptr b, p, r;
size_t rsize;
bindex_t i;
binmap_t leftbits = (smallbits << idx) & left_bits(idx2bit(idx));
binmap_t leastbit = least_bit(leftbits);
compute_bit2idx(leastbit, i);
b = smallbin_at(ms, i);
p = b->fd;
assert(chunksize(p) == small_index2size(i));
unlink_first_small_chunk(ms, b, p, i);
rsize = small_index2size(i) - nb;
/* Fit here cannot be remainderless if 4byte sizes */
if (SIZE_T_SIZE != 4 && rsize < MIN_CHUNK_SIZE)
set_inuse_and_pinuse(ms, p, small_index2size(i));
else {
set_size_and_pinuse_of_inuse_chunk(ms, p, nb);
r = chunk_plus_offset(p, nb);
set_size_and_pinuse_of_free_chunk(r, rsize);
replace_dv(ms, r, rsize);
}
mem = chunk2mem(p);
check_malloced_chunk(ms, mem, nb);
goto postaction;
}
else if (ms->treemap != 0 && (mem = tmalloc_small(ms, nb)) != 0) {
check_malloced_chunk(ms, mem, nb);
goto postaction;
}
}
}
else if (bytes >= MAX_REQUEST)
nb = MAX_SIZE_T; /* Too big to allocate. Force failure (in sys alloc) */
else {
nb = pad_request(bytes);
if (ms->treemap != 0 && (mem = tmalloc_large(ms, nb)) != 0) {
check_malloced_chunk(ms, mem, nb);
goto postaction;
}
}
if (nb <= ms->dvsize) {
size_t rsize = ms->dvsize - nb;
mchunkptr p = ms->dv;
if (rsize >= MIN_CHUNK_SIZE) { /* split dv */
mchunkptr r = ms->dv = chunk_plus_offset(p, nb);
ms->dvsize = rsize;
set_size_and_pinuse_of_free_chunk(r, rsize);
set_size_and_pinuse_of_inuse_chunk(ms, p, nb);
}
else { /* exhaust dv */
size_t dvs = ms->dvsize;
ms->dvsize = 0;
ms->dv = 0;
set_inuse_and_pinuse(ms, p, dvs);
}
mem = chunk2mem(p);
check_malloced_chunk(ms, mem, nb);
goto postaction;
}
else if (nb < ms->topsize) { /* Split top */
size_t rsize = ms->topsize -= nb;
mchunkptr p = ms->top;
mchunkptr r = ms->top = chunk_plus_offset(p, nb);
r->head = rsize | PINUSE_BIT;
set_size_and_pinuse_of_inuse_chunk(ms, p, nb);
mem = chunk2mem(p);
check_top_chunk(ms, ms->top);
check_malloced_chunk(ms, mem, nb);
goto postaction;
}
mem = sys_alloc(ms, nb);
postaction:
;//POSTACTION(ms);
return mem;
}
return 0;
}
//This function is equal to try_realloc_chunk but handling
//minimum and desired bytes
static mchunkptr try_realloc_chunk_with_min(mstate m, mchunkptr p, size_t min_nb, size_t des_nb, int can_move)
{
mchunkptr newp = 0;
size_t oldsize = chunksize(p);
mchunkptr next = chunk_plus_offset(p, oldsize);
if (RTCHECK(ok_address(m, p) && ok_inuse(p) &&
ok_next(p, next) && ok_pinuse(next))) {
if (is_mmapped(p)) {
newp = mmap_resize(m, p, des_nb, can_move);
if(!newp) //mmap does not return how many bytes we could reallocate, so go the minimum
newp = mmap_resize(m, p, min_nb, can_move);
}
else if (oldsize >= min_nb) { /* already big enough */
size_t nb = oldsize >= des_nb ? des_nb : oldsize;
size_t rsize = oldsize - nb;
if (rsize >= MIN_CHUNK_SIZE) { /* split off remainder */
mchunkptr r = chunk_plus_offset(p, nb);
set_inuse(m, p, nb);
set_inuse(m, r, rsize);
dispose_chunk(m, r, rsize);
}
newp = p;
}
else if (next == m->top) { /* extend into top */
if (oldsize + m->topsize > min_nb) {
size_t nb = (oldsize + m->topsize) > des_nb ? des_nb : (oldsize + m->topsize - MALLOC_ALIGNMENT);
size_t newsize = oldsize + m->topsize;
size_t newtopsize = newsize - nb;
mchunkptr newtop = chunk_plus_offset(p, nb);
set_inuse(m, p, nb);
newtop->head = newtopsize |PINUSE_BIT;
m->top = newtop;
m->topsize = newtopsize;
newp = p;
}
}
else if (next == m->dv) { /* extend into dv */
size_t dvs = m->dvsize;
if (oldsize + dvs >= min_nb) {
size_t nb = (oldsize + dvs) >= des_nb ? des_nb : (oldsize + dvs);
size_t dsize = oldsize + dvs - nb;
if (dsize >= MIN_CHUNK_SIZE) {
mchunkptr r = chunk_plus_offset(p, nb);
mchunkptr n = chunk_plus_offset(r, dsize);
set_inuse(m, p, nb);
set_size_and_pinuse_of_free_chunk(r, dsize);
clear_pinuse(n);
m->dvsize = dsize;
m->dv = r;
}
else { /* exhaust dv */
size_t newsize = oldsize + dvs;
set_inuse(m, p, newsize);
m->dvsize = 0;
m->dv = 0;
}
newp = p;
}
}
else if (!cinuse(next)) { /* extend into next free chunk */
size_t nextsize = chunksize(next);
if (oldsize + nextsize >= min_nb) {
size_t nb = (oldsize + nextsize) >= des_nb ? des_nb : (oldsize + nextsize);
size_t rsize = oldsize + nextsize - nb;
unlink_chunk(m, next, nextsize);
if (rsize < MIN_CHUNK_SIZE) {
size_t newsize = oldsize + nextsize;
set_inuse(m, p, newsize);
}
else {
mchunkptr r = chunk_plus_offset(p, nb);
set_inuse(m, p, nb);
set_inuse(m, r, rsize);
dispose_chunk(m, r, rsize);
}
newp = p;
}
}
}
else {
USAGE_ERROR_ACTION(m, chunk2mem(p));
}
return newp;
}
///////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////
//
// NEW FUNCTIONS BASED ON DLMALLOC INTERNALS
//
///////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////
#define GET_TRUNCATED_SIZE(ORIG_SIZE, ROUNDTO) ((ORIG_SIZE)/(ROUNDTO)*(ROUNDTO))
#define GET_ROUNDED_SIZE(ORIG_SIZE, ROUNDTO) ((((ORIG_SIZE)-1)/(ROUNDTO)+1)*(ROUNDTO))
#define GET_TRUNCATED_PO2_SIZE(ORIG_SIZE, ROUNDTO) ((ORIG_SIZE) & (~(ROUNDTO-1)))
#define GET_ROUNDED_PO2_SIZE(ORIG_SIZE, ROUNDTO) (((ORIG_SIZE - 1) & (~(ROUNDTO-1))) + ROUNDTO)
/* Greatest common divisor and least common multiple
gcd is an algorithm that calculates the greatest common divisor of two
integers, using Euclid's algorithm.
Pre: A > 0 && B > 0
Recommended: A > B*/
#define CALCULATE_GCD(A, B, OUT)\
{\
size_t a = A;\
size_t b = B;\
do\
{\
size_t tmp = b;\
b = a % b;\
a = tmp;\
} while (b != 0);\
\
OUT = a;\
}
/* lcm is an algorithm that calculates the least common multiple of two
integers.
Pre: A > 0 && B > 0
Recommended: A > B*/
#define CALCULATE_LCM(A, B, OUT)\
{\
CALCULATE_GCD(A, B, OUT);\
OUT = (A / OUT)*B;\
}
static int calculate_lcm_and_needs_backwards_lcmed
(size_t backwards_multiple, size_t received_size, size_t size_to_achieve,
size_t *plcm, size_t *pneeds_backwards_lcmed)
{
/* Now calculate lcm */
size_t max = backwards_multiple;
size_t min = MALLOC_ALIGNMENT;
size_t needs_backwards;
size_t needs_backwards_lcmed;
size_t lcm;
size_t current_forward;
/*Swap if necessary*/
if(max < min){
size_t tmp = min;
min = max;
max = tmp;
}
/*Check if it's power of two*/
if((backwards_multiple & (backwards_multiple-1)) == 0){
if(0 != (size_to_achieve & ((backwards_multiple-1)))){
USAGE_ERROR_ACTION(m, oldp);
return 0;
}
lcm = max;
/*If we want to use minbytes data to get a buffer between maxbytes
and minbytes if maxbytes can't be achieved, calculate the
biggest of all possibilities*/
current_forward = GET_TRUNCATED_PO2_SIZE(received_size, backwards_multiple);
needs_backwards = size_to_achieve - current_forward;
assert((needs_backwards % backwards_multiple) == 0);
needs_backwards_lcmed = GET_ROUNDED_PO2_SIZE(needs_backwards, lcm);
*plcm = lcm;
*pneeds_backwards_lcmed = needs_backwards_lcmed;
return 1;
}
/*Check if it's multiple of alignment*/
else if((backwards_multiple & (MALLOC_ALIGNMENT - 1u)) == 0){
lcm = backwards_multiple;
current_forward = GET_TRUNCATED_SIZE(received_size, backwards_multiple);
//No need to round needs_backwards because backwards_multiple == lcm
needs_backwards_lcmed = needs_backwards = size_to_achieve - current_forward;
assert((needs_backwards_lcmed & (MALLOC_ALIGNMENT - 1u)) == 0);
*plcm = lcm;
*pneeds_backwards_lcmed = needs_backwards_lcmed;
return 1;
}
/*Check if it's multiple of the half of the alignmment*/
else if((backwards_multiple & ((MALLOC_ALIGNMENT/2u) - 1u)) == 0){
lcm = backwards_multiple*2u;
current_forward = GET_TRUNCATED_SIZE(received_size, backwards_multiple);
needs_backwards_lcmed = needs_backwards = size_to_achieve - current_forward;
if(0 != (needs_backwards_lcmed & (MALLOC_ALIGNMENT-1)))
//while(0 != (needs_backwards_lcmed & (MALLOC_ALIGNMENT-1)))
needs_backwards_lcmed += backwards_multiple;
assert((needs_backwards_lcmed % lcm) == 0);
*plcm = lcm;
*pneeds_backwards_lcmed = needs_backwards_lcmed;
return 1;
}
/*Check if it's multiple of the quarter of the alignmment*/
else if((backwards_multiple & ((MALLOC_ALIGNMENT/4u) - 1u)) == 0){
size_t remainder;
lcm = backwards_multiple*4u;
current_forward = GET_TRUNCATED_SIZE(received_size, backwards_multiple);
needs_backwards_lcmed = needs_backwards = size_to_achieve - current_forward;
//while(0 != (needs_backwards_lcmed & (MALLOC_ALIGNMENT-1)))
//needs_backwards_lcmed += backwards_multiple;
if(0 != (remainder = ((needs_backwards_lcmed & (MALLOC_ALIGNMENT-1))>>(MALLOC_ALIGNMENT/8u)))){
if(backwards_multiple & MALLOC_ALIGNMENT/2u){
needs_backwards_lcmed += (remainder)*backwards_multiple;
}
else{
needs_backwards_lcmed += (4-remainder)*backwards_multiple;
}
}
assert((needs_backwards_lcmed % lcm) == 0);
*plcm = lcm;
*pneeds_backwards_lcmed = needs_backwards_lcmed;
return 1;
}
else{
CALCULATE_LCM(max, min, lcm);
/*If we want to use minbytes data to get a buffer between maxbytes
and minbytes if maxbytes can't be achieved, calculate the
biggest of all possibilities*/
current_forward = GET_TRUNCATED_SIZE(received_size, backwards_multiple);
needs_backwards = size_to_achieve - current_forward;
assert((needs_backwards % backwards_multiple) == 0);
needs_backwards_lcmed = GET_ROUNDED_SIZE(needs_backwards, lcm);
*plcm = lcm;
*pneeds_backwards_lcmed = needs_backwards_lcmed;
return 1;
}
}
static void *internal_grow_both_sides
(mstate m
,allocation_type command
,void *oldmem
,size_t minbytes
,size_t maxbytes
,size_t *received_size
,size_t backwards_multiple
,int only_preferred_backwards)
{
mchunkptr oldp = mem2chunk(oldmem);
size_t oldsize = chunksize(oldp);
*received_size = oldsize - overhead_for(oldp);
if(minbytes <= *received_size)
return oldmem;
if (RTCHECK(ok_address(m, oldp) && ok_inuse(oldp))) {
if(command & BOOST_CONTAINER_EXPAND_FWD){
if(try_realloc_chunk_with_min(m, oldp, request2size(minbytes), request2size(maxbytes), 0)){
check_inuse_chunk(m, oldp);
*received_size = DL_SIZE_IMPL(oldmem);
s_allocated_memory += chunksize(oldp) - oldsize;
return oldmem;
}
}
else{
*received_size = DL_SIZE_IMPL(oldmem);
if(*received_size >= maxbytes)
return oldmem;
}
/*
Should we check this?
if(backwards_multiple &&
(0 != (minbytes % backwards_multiple) &&
0 != (maxbytes % backwards_multiple)) ){
USAGE_ERROR_ACTION(m, oldp);
return 0;
}
*/
/* We reach here only if forward expansion fails */
if(!(command & BOOST_CONTAINER_EXPAND_BWD) || pinuse(oldp)){
return 0;
}
{
size_t prevsize = oldp->prev_foot;
if ((prevsize & USE_MMAP_BIT) != 0){
/*Return failure the previous chunk was mmapped.
mremap does not allow expanding to a fixed address (MREMAP_MAYMOVE) without
copying (MREMAP_MAYMOVE must be also set).*/
return 0;
}
else {
mchunkptr prev = chunk_minus_offset(oldp, prevsize);
size_t dsize = oldsize + prevsize;
size_t needs_backwards_lcmed;
size_t lcm;
/* Let's calculate the number of extra bytes of data before the current
block's begin. The value is a multiple of backwards_multiple
and the alignment*/
if(!calculate_lcm_and_needs_backwards_lcmed
( backwards_multiple, *received_size
, only_preferred_backwards ? maxbytes : minbytes
, &lcm, &needs_backwards_lcmed)
|| !RTCHECK(ok_address(m, prev))){
USAGE_ERROR_ACTION(m, oldp);
return 0;
}
/* Check if previous block has enough size */
else if(prevsize < needs_backwards_lcmed){
/* preferred size? */
return 0;
}
/* Now take all next space. This must succeed, as we've previously calculated the correct size */
if(command & BOOST_CONTAINER_EXPAND_FWD){
if(!try_realloc_chunk_with_min(m, oldp, request2size(*received_size), request2size(*received_size), 0)){
assert(0);
}
check_inuse_chunk(m, oldp);
*received_size = DL_SIZE_IMPL(oldmem);
s_allocated_memory += chunksize(oldp) - oldsize;
oldsize = chunksize(oldp);
dsize = oldsize + prevsize;
}
/* We need a minimum size to split the previous one */
if(prevsize >= (needs_backwards_lcmed + MIN_CHUNK_SIZE)){
mchunkptr r = chunk_minus_offset(oldp, needs_backwards_lcmed);
size_t rsize = oldsize + needs_backwards_lcmed;
size_t newprevsize = dsize - rsize;
int prev_was_dv = prev == m->dv;
assert(newprevsize >= MIN_CHUNK_SIZE);
if (prev_was_dv) {
m->dvsize = newprevsize;
}
else{/* if ((next->head & INUSE_BITS) == INUSE_BITS) { */
unlink_chunk(m, prev, prevsize);
insert_chunk(m, prev, newprevsize);
}
set_size_and_pinuse_of_free_chunk(prev, newprevsize);
clear_pinuse(r);
set_inuse(m, r, rsize);
check_malloced_chunk(m, chunk2mem(r), rsize);
*received_size = chunksize(r) - overhead_for(r);
s_allocated_memory += chunksize(r) - oldsize;
return chunk2mem(r);
}
/* Check if there is no place to create a new block and
the whole new block is multiple of the backwards expansion multiple */
else if(prevsize >= needs_backwards_lcmed && !(prevsize % lcm)) {
/* Just merge the whole previous block */
/* prevsize is multiple of lcm (and backwards_multiple)*/
*received_size += prevsize;
if (prev != m->dv) {
unlink_chunk(m, prev, prevsize);
}
else{
m->dvsize = 0;
m->dv = 0;
}
set_inuse(m, prev, dsize);
check_malloced_chunk(m, chunk2mem(prev), dsize);
s_allocated_memory += chunksize(prev) - oldsize;
return chunk2mem(prev);
}
else{
/* Previous block was big enough but there is no room
to create an empty block and taking the whole block does
not fulfill alignment requirements */
return 0;
}
}
}
}
else{
USAGE_ERROR_ACTION(m, oldmem);
return 0;
}
return 0;
}
/* This is similar to mmap_resize but:
* Only to shrink
* It takes min and max sizes
* Takes additional 'do_commit' argument to obtain the final
size before doing the real shrink operation.
*/
static int internal_mmap_shrink_in_place(mstate m, mchunkptr oldp, size_t nbmin, size_t nbmax, size_t *received_size, int do_commit)
{
size_t oldsize = chunksize(oldp);
*received_size = oldsize;
#if HAVE_MREMAP
if (is_small(nbmax)) /* Can't shrink mmap regions below small size */
return 0;
{
size_t effective_min = nbmin > MIN_LARGE_SIZE ? nbmin : MIN_LARGE_SIZE;
/* Keep old chunk if big enough but not too big */
if (oldsize >= effective_min + SIZE_T_SIZE &&
(oldsize - effective_min) <= (mparams.granularity << 1))
return 0;
/* Now calculate new sizes */
{
size_t offset = oldp->prev_foot;
size_t oldmmsize = oldsize + offset + MMAP_FOOT_PAD;
size_t newmmsize = mmap_align(effective_min + SIX_SIZE_T_SIZES + CHUNK_ALIGN_MASK);
*received_size = newmmsize;
if(!do_commit){
const int flags = 0; /* placate people compiling -Wunused */
char* cp = (char*)CALL_MREMAP((char*)oldp - offset,
oldmmsize, newmmsize, flags);
/*This must always succeed */
if(!cp){
USAGE_ERROR_ACTION(m, m);
return 0;
}
{
mchunkptr newp = (mchunkptr)(cp + offset);
size_t psize = newmmsize - offset - MMAP_FOOT_PAD;
newp->head = psize;
mark_inuse_foot(m, newp, psize);
chunk_plus_offset(newp, psize)->head = FENCEPOST_HEAD;
chunk_plus_offset(newp, psize+SIZE_T_SIZE)->head = 0;
if (cp < m->least_addr)
m->least_addr = cp;
if ((m->footprint += newmmsize - oldmmsize) > m->max_footprint)
m->max_footprint = m->footprint;
check_mmapped_chunk(m, newp);
}
}
}
return 1;
}
#else //#if HAVE_MREMAP
(void)m;
(void)oldp;
(void)nbmin;
(void)nbmax;
(void)received_size;
(void)do_commit;
return 0;
#endif //#if HAVE_MREMAP
}
static int internal_shrink(mstate m, void* oldmem, size_t minbytes, size_t maxbytes, size_t *received_size, int do_commit)
{
*received_size = chunksize(mem2chunk(oldmem)) - overhead_for(mem2chunk(oldmem));
if (minbytes >= MAX_REQUEST || maxbytes >= MAX_REQUEST) {
MALLOC_FAILURE_ACTION;
return 0;
}
else if(minbytes < MIN_REQUEST){
minbytes = MIN_REQUEST;
}
if (minbytes > maxbytes) {
return 0;
}
{
mchunkptr oldp = mem2chunk(oldmem);
size_t oldsize = chunksize(oldp);
mchunkptr next = chunk_plus_offset(oldp, oldsize);
void* extra = 0;
/* Try to either shrink or extend into top. Else malloc-copy-free*/
if (RTCHECK(ok_address(m, oldp) && ok_inuse(oldp) &&
ok_next(oldp, next) && ok_pinuse(next))) {
size_t nbmin = request2size(minbytes);
size_t nbmax = request2size(maxbytes);
if (nbmin > oldsize){
/* Return error if old size is too small */
}
else if (is_mmapped(oldp)){
return internal_mmap_shrink_in_place(m, oldp, nbmin, nbmax, received_size, do_commit);
}
else{ // nbmin <= oldsize /* already big enough*/
size_t nb = nbmin;
size_t rsize = oldsize - nb;
if (rsize >= MIN_CHUNK_SIZE) {
if(do_commit){
mchunkptr remainder = chunk_plus_offset(oldp, nb);
set_inuse(m, oldp, nb);
set_inuse(m, remainder, rsize);
s_allocated_memory -= rsize;
extra = chunk2mem(remainder);
mspace_free_lockless(m, extra);
check_inuse_chunk(m, oldp);
}
*received_size = nb - overhead_for(oldp);
return 1;
}
}
}
else {
USAGE_ERROR_ACTION(m, oldmem);
}
return 0;
}
}
#define INTERNAL_MULTIALLOC_DEFAULT_CONTIGUOUS_MEM 4096
#define SQRT_MAX_SIZE_T (((size_t)-1)>>(sizeof(size_t)*CHAR_BIT/2))
static int internal_node_multialloc
(mstate m, size_t n_elements, size_t element_size, size_t contiguous_elements, boost_cont_memchain *pchain) {
void* mem; /* malloced aggregate space */
mchunkptr p; /* corresponding chunk */
size_t remainder_size; /* remaining bytes while splitting */
flag_t was_enabled; /* to disable mmap */
size_t elements_per_segment = 0;
size_t element_req_size = request2size(element_size);
boost_cont_memchain_it prev_last_it = BOOST_CONTAINER_MEMCHAIN_LAST_IT(pchain);
/*Error if wrong element_size parameter */
if (!element_size ||
/*OR Error if n_elements less than contiguous_elements */
((contiguous_elements + 1) > (BOOST_CONTAINER_DL_MULTIALLOC_DEFAULT_CONTIGUOUS + 1) && n_elements < contiguous_elements) ||
/* OR Error if integer overflow */
(SQRT_MAX_SIZE_T < (element_req_size | contiguous_elements) &&
(MAX_SIZE_T / element_req_size) < contiguous_elements)) {
return 0;
}
switch (contiguous_elements) {
case BOOST_CONTAINER_DL_MULTIALLOC_DEFAULT_CONTIGUOUS:
{
/* Default contiguous, just check that we can store at least one element */
elements_per_segment = INTERNAL_MULTIALLOC_DEFAULT_CONTIGUOUS_MEM / element_req_size;
elements_per_segment += (size_t)(!elements_per_segment);
}
break;
case BOOST_CONTAINER_DL_MULTIALLOC_ALL_CONTIGUOUS:
/* All elements should be allocated in a single call */
elements_per_segment = n_elements;
break;
default:
/* Allocate in chunks of "contiguous_elements" */
elements_per_segment = contiguous_elements;
}
{
size_t i;
size_t next_i;
/*
Allocate the aggregate chunk. First disable direct-mmapping so
malloc won't use it, since we would not be able to later
free/realloc space internal to a segregated mmap region.
*/
was_enabled = use_mmap(m);
disable_mmap(m);
for (i = 0; i != n_elements; i = next_i)
{
size_t accum_size;
size_t n_elements_left = n_elements - i;
next_i = i + ((n_elements_left < elements_per_segment) ? n_elements_left : elements_per_segment);
accum_size = element_req_size * (next_i - i);
mem = mspace_malloc_lockless(m, accum_size - CHUNK_OVERHEAD);
if (mem == 0) {
BOOST_CONTAINER_MEMIT_NEXT(prev_last_it);
while (i) {
void *addr = BOOST_CONTAINER_MEMIT_ADDR(prev_last_it);
--i;
BOOST_CONTAINER_MEMIT_NEXT(prev_last_it);
s_allocated_memory -= chunksize(mem2chunk(addr));
mspace_free_lockless(m, addr);
}
if (was_enabled)
enable_mmap(m);
return 0;
}
p = mem2chunk(mem);
remainder_size = chunksize(p);
s_allocated_memory += remainder_size;
assert(!is_mmapped(p));
{ /* split out elements */
//void *mem_orig = mem;
//boost_cont_memchain_it last_it = BOOST_CONTAINER_MEMCHAIN_LAST_IT(pchain);
size_t num_elements = next_i - i;
size_t num_loops = num_elements - 1;
remainder_size -= element_req_size * num_loops;
while (num_loops) {
--num_loops;
//void **mem_prev = ((void**)mem);
set_size_and_pinuse_of_inuse_chunk(m, p, element_req_size);
BOOST_CONTAINER_MEMCHAIN_PUSH_BACK(pchain, mem);
p = chunk_plus_offset(p, element_req_size);
mem = chunk2mem(p);
//*mem_prev = mem;
}
set_size_and_pinuse_of_inuse_chunk(m, p, remainder_size);
BOOST_CONTAINER_MEMCHAIN_PUSH_BACK(pchain, mem);
//BOOST_CONTAINER_MEMCHAIN_INCORPORATE_AFTER(pchain, last_it, mem_orig, mem, num_elements);
}
}
if (was_enabled)
enable_mmap(m);
}
return 1;
}
#define BOOST_CONTAINER_DLMALLOC_SIMPLE_MULTIDEALLOC
#ifndef BOOST_CONTAINER_DLMALLOC_SIMPLE_MULTIDEALLOC
#define BOOST_ALLOC_PLUS_MEMCHAIN_MEM_JUMP_NEXT(THISMEM, NEXTMEM) \
*((void**)(THISMEM)) = *((void**)((NEXTMEM)))
//This function is based on internal_bulk_free
//replacing iteration over array[] with boost_cont_memchain.
//Instead of returning the unallocated nodes, returns a chain of non-deallocated nodes.
//After forward merging, backwards merging is also tried
static void internal_multialloc_free(mstate m, boost_cont_memchain *pchain)
{
#if FOOTERS
boost_cont_memchain ret_chain;
BOOST_CONTAINER_MEMCHAIN_INIT(&ret_chain);
#endif
if (!PREACTION(m)) {
boost_cont_memchain_it a_it = BOOST_CONTAINER_MEMCHAIN_BEGIN_IT(pchain);
while (!BOOST_CONTAINER_MEMCHAIN_IS_END_IT(pchain, a_it)) { /* Iterate though all memory holded by the chain */
void* a_mem = BOOST_CONTAINER_MEMIT_ADDR(a_it);
mchunkptr a_p = mem2chunk(a_mem);
size_t psize = chunksize(a_p);
#if FOOTERS
if (get_mstate_for(a_p) != m) {
BOOST_CONTAINER_MEMIT_NEXT(a_it);
BOOST_CONTAINER_MEMCHAIN_PUSH_BACK(&ret_chain, a_mem);
continue;
}
#endif
check_inuse_chunk(m, a_p);
if (RTCHECK(ok_address(m, a_p) && ok_inuse(a_p))) {
while (1) { /* Internal loop to speed up forward and backward merging (avoids some redundant checks) */
boost_cont_memchain_it b_it = a_it;
BOOST_CONTAINER_MEMIT_NEXT(b_it);
if (!BOOST_CONTAINER_MEMCHAIN_IS_END_IT(pchain, b_it)) {
void *b_mem = BOOST_CONTAINER_MEMIT_ADDR(b_it);
mchunkptr b_p = mem2chunk(b_mem);
if (b_p == next_chunk(a_p)) { /* b chunk is contiguous and next so b's size can be added to a */
psize += chunksize(b_p);
set_inuse(m, a_p, psize);
BOOST_ALLOC_PLUS_MEMCHAIN_MEM_JUMP_NEXT(a_mem, b_mem);
continue;
}
if (RTCHECK(ok_address(m, b_p) && ok_inuse(b_p))) {
/* b chunk is contiguous and previous so a's size can be added to b */
if (a_p == next_chunk(b_p)) {
psize += chunksize(b_p);
set_inuse(m, b_p, psize);
a_it = b_it;
a_p = b_p;
a_mem = b_mem;
continue;
}
}
}
/* Normal deallocation starts again in the outer loop */
a_it = b_it;
s_allocated_memory -= psize;
dispose_chunk(m, a_p, psize);
break;
}
}
else {
CORRUPTION_ERROR_ACTION(m);
break;
}
}
if (should_trim(m, m->topsize))
sys_trim(m, 0);
POSTACTION(m);
}
#if FOOTERS
{
boost_cont_memchain_it last_pchain = BOOST_CONTAINER_MEMCHAIN_LAST_IT(pchain);
BOOST_CONTAINER_MEMCHAIN_INIT(pchain);
BOOST_CONTAINER_MEMCHAIN_INCORPORATE_AFTER
(pchain
, last_pchain
, BOOST_CONTAINER_MEMCHAIN_FIRSTMEM(&ret_chain)
, BOOST_CONTAINER_MEMCHAIN_LASTMEM(&ret_chain)
, BOOST_CONTAINER_MEMCHAIN_SIZE(&ret_chain)
);
}
#endif
}
#else //BOOST_CONTAINER_DLMALLOC_SIMPLE_MULTIDEALLOC
//This function is based on internal_bulk_free
//replacing iteration over array[] with boost_cont_memchain.
//Instead of returning the unallocated nodes, returns a chain of non-deallocated nodes.
//After forward merging, backwards merging is also tried
static void internal_multialloc_free(mstate m, boost_cont_memchain *pchain)
{
if (!PREACTION(m)) {
boost_cont_memchain_it a_it = BOOST_CONTAINER_MEMCHAIN_BEGIN_IT(pchain);
while (!BOOST_CONTAINER_MEMCHAIN_IS_END_IT(pchain, a_it)) { /* Iterate though all memory holded by the chain */
void* a_mem = BOOST_CONTAINER_MEMIT_ADDR(a_it);
BOOST_CONTAINER_MEMIT_NEXT(a_it);
s_allocated_memory -= chunksize(mem2chunk(a_mem));
mspace_free_lockless(m, a_mem);
}
POSTACTION(m);
}
}
#endif //BOOST_CONTAINER_DLMALLOC_SIMPLE_MULTIDEALLOC
static int internal_multialloc_arrays
(mstate m, size_t n_elements, const size_t* sizes, size_t element_size, size_t contiguous_elements, boost_cont_memchain *pchain) {
void* mem; /* malloced aggregate space */
mchunkptr p; /* corresponding chunk */
size_t remainder_size; /* remaining bytes while splitting */
flag_t was_enabled; /* to disable mmap */
size_t size;
size_t boost_cont_multialloc_segmented_malloc_size;
size_t max_size;
/* Check overflow */
if(!element_size){
return 0;
}
max_size = MAX_REQUEST/element_size;
/* Different sizes*/
switch(contiguous_elements){
case BOOST_CONTAINER_DL_MULTIALLOC_DEFAULT_CONTIGUOUS:
/* Use default contiguous mem */
boost_cont_multialloc_segmented_malloc_size = INTERNAL_MULTIALLOC_DEFAULT_CONTIGUOUS_MEM;
break;
case BOOST_CONTAINER_DL_MULTIALLOC_ALL_CONTIGUOUS:
boost_cont_multialloc_segmented_malloc_size = MAX_REQUEST + CHUNK_OVERHEAD;
break;
default:
if(max_size < contiguous_elements){
return 0;
}
else{
/* The suggested buffer is just the the element count by the size */
boost_cont_multialloc_segmented_malloc_size = element_size*contiguous_elements;
}
}
{
size_t i;
size_t next_i;
/*
Allocate the aggregate chunk. First disable direct-mmapping so
malloc won't use it, since we would not be able to later
free/realloc space internal to a segregated mmap region.
*/
was_enabled = use_mmap(m);
disable_mmap(m);
for(i = 0, next_i = 0; i != n_elements; i = next_i)
{
int error = 0;
size_t accum_size;
for(accum_size = 0; next_i != n_elements; ++next_i){
size_t cur_array_size = sizes[next_i];
if(max_size < cur_array_size){
error = 1;
break;
}
else{
size_t reqsize = request2size(cur_array_size*element_size);
if(((boost_cont_multialloc_segmented_malloc_size - CHUNK_OVERHEAD) - accum_size) < reqsize){
if(!accum_size){
accum_size += reqsize;
++next_i;
}
break;
}
accum_size += reqsize;
}
}
mem = error ? 0 : mspace_malloc_lockless(m, accum_size - CHUNK_OVERHEAD);
if (mem == 0){
boost_cont_memchain_it it = BOOST_CONTAINER_MEMCHAIN_BEGIN_IT(pchain);
while(i--){
void *addr = BOOST_CONTAINER_MEMIT_ADDR(it);
BOOST_CONTAINER_MEMIT_NEXT(it);
s_allocated_memory -= chunksize(mem2chunk(addr));
mspace_free_lockless(m, addr);
}
if (was_enabled)
enable_mmap(m);
return 0;
}
p = mem2chunk(mem);
remainder_size = chunksize(p);
s_allocated_memory += remainder_size;
assert(!is_mmapped(p));
{ /* split out elements */
void *mem_orig = mem;
boost_cont_memchain_it last_it = BOOST_CONTAINER_MEMCHAIN_LAST_IT(pchain);
size_t num_elements = next_i-i;
for(++i; i != next_i; ++i) {
void **mem_prev = ((void**)mem);
size = request2size(sizes[i]*element_size);
remainder_size -= size;
set_size_and_pinuse_of_inuse_chunk(m, p, size);
p = chunk_plus_offset(p, size);
mem = chunk2mem(p);
*mem_prev = mem;
}
set_size_and_pinuse_of_inuse_chunk(m, p, remainder_size);
BOOST_CONTAINER_MEMCHAIN_INCORPORATE_AFTER(pchain, last_it, mem_orig, mem, num_elements);
}
}
if (was_enabled)
enable_mmap(m);
}
return 1;
}
int boost_cont_multialloc_arrays
(size_t n_elements, const size_t *sizes, size_t element_size, size_t contiguous_elements, boost_cont_memchain *pchain)
{
int ret = 0;
mstate ms = (mstate)gm;
ensure_initialization();
if (!ok_magic(ms)) {
USAGE_ERROR_ACTION(ms,ms);
}
else if (!PREACTION(ms)) {
ret = internal_multialloc_arrays(ms, n_elements, sizes, element_size, contiguous_elements, pchain);
POSTACTION(ms);
}
return ret;
}
/*Doug Lea malloc extensions*/
static boost_cont_malloc_stats_t get_malloc_stats(mstate m)
{
boost_cont_malloc_stats_t ret = { 0, 0, 0 };
ensure_initialization();
if (!PREACTION(m)) {
size_t maxfp = 0;
size_t fp = 0;
size_t used = 0;
check_malloc_state(m);
if (is_initialized(m)) {
msegmentptr s = &m->seg;
maxfp = m->max_footprint;
fp = m->footprint;
used = fp - (m->topsize + TOP_FOOT_SIZE);
while (s != 0) {
mchunkptr q = align_as_chunk(s->base);
while (segment_holds(s, q) &&
q != m->top && q->head != FENCEPOST_HEAD) {
if (!cinuse(q))
used -= chunksize(q);
q = next_chunk(q);
}
s = s->next;
}
}
ret.max_system_bytes = maxfp;
ret.system_bytes = fp;
ret.in_use_bytes = used;
POSTACTION(m);
}
return ret;
}
size_t boost_cont_size(const void *p)
{ return DL_SIZE_IMPL(p); }
void* boost_cont_malloc(size_t bytes)
{
size_t received_bytes;
ensure_initialization();
return boost_cont_allocation_command
(BOOST_CONTAINER_ALLOCATE_NEW, 1, bytes, bytes, &received_bytes, 0).first;
}
void boost_cont_free(void* mem)
{
mstate ms = (mstate)gm;
if (!ok_magic(ms)) {
USAGE_ERROR_ACTION(ms,ms);
}
else if (!PREACTION(ms)) {
if(mem)
s_allocated_memory -= chunksize(mem2chunk(mem));
mspace_free_lockless(ms, mem);
POSTACTION(ms);
}
}
void* boost_cont_memalign(size_t bytes, size_t alignment)
{
void *addr;
ensure_initialization();
addr = mspace_memalign(gm, alignment, bytes);
if(addr){
s_allocated_memory += chunksize(mem2chunk(addr));
}
return addr;
}
int boost_cont_multialloc_nodes
(size_t n_elements, size_t elem_size, size_t contiguous_elements, boost_cont_memchain *pchain)
{
int ret = 0;
mstate ms = (mstate)gm;
ensure_initialization();
if (!ok_magic(ms)) {
USAGE_ERROR_ACTION(ms,ms);
}
else if (!PREACTION(ms)) {
ret = internal_node_multialloc(ms, n_elements, elem_size, contiguous_elements, pchain);
POSTACTION(ms);
}
return ret;
}
size_t boost_cont_footprint()
{
return ((mstate)gm)->footprint;
}
size_t boost_cont_allocated_memory()
{
size_t alloc_mem = 0;
mstate m = (mstate)gm;
ensure_initialization();
if (!ok_magic(ms)) {
USAGE_ERROR_ACTION(ms,ms);
}
if (!PREACTION(m)) {
check_malloc_state(m);
if (is_initialized(m)) {
size_t nfree = SIZE_T_ONE; /* top always free */
size_t mfree = m->topsize + TOP_FOOT_SIZE;
msegmentptr s = &m->seg;
while (s != 0) {
mchunkptr q = align_as_chunk(s->base);
while (segment_holds(s, q) &&
q != m->top && q->head != FENCEPOST_HEAD) {
size_t sz = chunksize(q);
if (!is_inuse(q)) {
mfree += sz;
++nfree;
}
q = next_chunk(q);
}
s = s->next;
}
{
size_t uordblks = m->footprint - mfree;
if(nfree)
alloc_mem = (size_t)(uordblks - (nfree-1)*TOP_FOOT_SIZE);
else
alloc_mem = uordblks;
}
}
POSTACTION(m);
}
return alloc_mem;
}
size_t boost_cont_chunksize(const void *p)
{ return chunksize(mem2chunk(p)); }
int boost_cont_all_deallocated()
{ return !s_allocated_memory; }
boost_cont_malloc_stats_t boost_cont_malloc_stats()
{
mstate ms = (mstate)gm;
if (ok_magic(ms)) {
return get_malloc_stats(ms);
}
else {
boost_cont_malloc_stats_t r = { 0, 0, 0 };
USAGE_ERROR_ACTION(ms,ms);
return r;
}
}
size_t boost_cont_in_use_memory()
{ return s_allocated_memory; }
int boost_cont_trim(size_t pad)
{
ensure_initialization();
return dlmalloc_trim(pad);
}
int boost_cont_grow
(void* oldmem, size_t minbytes, size_t maxbytes, size_t *received)
{
mstate ms = (mstate)gm;
if (!ok_magic(ms)) {
USAGE_ERROR_ACTION(ms,ms);
return 0;
}
if (!PREACTION(ms)) {
mchunkptr p = mem2chunk(oldmem);
size_t oldsize = chunksize(p);
p = try_realloc_chunk_with_min(ms, p, request2size(minbytes), request2size(maxbytes), 0);
POSTACTION(ms);
if(p){
check_inuse_chunk(ms, p);
*received = DL_SIZE_IMPL(oldmem);
s_allocated_memory += chunksize(p) - oldsize;
}
return 0 != p;
}
return 0;
}
int boost_cont_shrink
(void* oldmem, size_t minbytes, size_t maxbytes, size_t *received, int do_commit)
{
mstate ms = (mstate)gm;
if (!ok_magic(ms)) {
USAGE_ERROR_ACTION(ms,ms);
return 0;
}
if (!PREACTION(ms)) {
int ret = internal_shrink(ms, oldmem, minbytes, maxbytes, received, do_commit);
POSTACTION(ms);
return 0 != ret;
}
return 0;
}
void* boost_cont_alloc
(size_t minbytes, size_t preferred_bytes, size_t *received_bytes)
{
//ensure_initialization provided by boost_cont_allocation_command
return boost_cont_allocation_command
(BOOST_CONTAINER_ALLOCATE_NEW, 1, minbytes, preferred_bytes, received_bytes, 0).first;
}
void boost_cont_multidealloc(boost_cont_memchain *pchain)
{
mstate ms = (mstate)gm;
if (!ok_magic(ms)) {
(void)ms;
USAGE_ERROR_ACTION(ms,ms);
}
internal_multialloc_free(ms, pchain);
}
int boost_cont_malloc_check()
{
#ifdef DEBUG
mstate ms = (mstate)gm;
ensure_initialization();
if (!ok_magic(ms)) {
(void)ms;
USAGE_ERROR_ACTION(ms,ms);
return 0;
}
check_malloc_state(ms);
return 1;
#else
return 1;
#endif
}
boost_cont_command_ret_t boost_cont_allocation_command
(allocation_type command, size_t sizeof_object, size_t limit_size
, size_t preferred_size, size_t *received_size, void *reuse_ptr)
{
boost_cont_command_ret_t ret = { 0, 0 };
ensure_initialization();
if(command & (BOOST_CONTAINER_SHRINK_IN_PLACE | BOOST_CONTAINER_TRY_SHRINK_IN_PLACE)){
int success = boost_cont_shrink( reuse_ptr, preferred_size, limit_size
, received_size, (command & BOOST_CONTAINER_SHRINK_IN_PLACE));
ret.first = success ? reuse_ptr : 0;
return ret;
}
*received_size = 0;
if(limit_size > preferred_size)
return ret;
{
mstate ms = (mstate)gm;
/*Expand in place*/
if (!PREACTION(ms)) {
#if FOOTERS
if(reuse_ptr){
mstate m = get_mstate_for(mem2chunk(reuse_ptr));
if (!ok_magic(m)) {
USAGE_ERROR_ACTION(m, reuse_ptr);
return ret;
}
}
#endif
if(reuse_ptr && (command & (BOOST_CONTAINER_EXPAND_FWD | BOOST_CONTAINER_EXPAND_BWD))){
void *r = internal_grow_both_sides
( ms, command, reuse_ptr, limit_size
, preferred_size, received_size, sizeof_object, 1);
if(r){
ret.first = r;
ret.second = 1;
goto postaction;
}
}
if(command & BOOST_CONTAINER_ALLOCATE_NEW){
void *addr = mspace_malloc_lockless(ms, preferred_size);
if(!addr) addr = mspace_malloc_lockless(ms, limit_size);
if(addr){
s_allocated_memory += chunksize(mem2chunk(addr));
*received_size = DL_SIZE_IMPL(addr);
}
ret.first = addr;
ret.second = 0;
if(addr){
goto postaction;
}
}
//Now try to expand both sides with min size
if(reuse_ptr && (command & (BOOST_CONTAINER_EXPAND_FWD | BOOST_CONTAINER_EXPAND_BWD))){
void *r = internal_grow_both_sides
( ms, command, reuse_ptr, limit_size
, preferred_size, received_size, sizeof_object, 0);
if(r){
ret.first = r;
ret.second = 1;
goto postaction;
}
}
postaction:
POSTACTION(ms);
}
}
return ret;
}
int boost_cont_mallopt(int param_number, int value)
{
return change_mparam(param_number, value);
}
void *boost_cont_sync_create()
{
void *p = boost_cont_malloc(sizeof(MLOCK_T));
if(p){
if(0 != INITIAL_LOCK((MLOCK_T*)p)){
boost_cont_free(p);
p = 0;
}
}
return p;
}
void boost_cont_sync_destroy(void *sync)
{
if(sync){
(void)DESTROY_LOCK((MLOCK_T*)sync);
boost_cont_free(sync);
}
}
int boost_cont_sync_lock(void *sync)
{ return 0 == (ACQUIRE_LOCK((MLOCK_T*)sync)); }
void boost_cont_sync_unlock(void *sync)
{ RELEASE_LOCK((MLOCK_T*)sync); }
int boost_cont_global_sync_lock()
{
int ret;
ensure_initialization();
ret = ACQUIRE_MALLOC_GLOBAL_LOCK();
return 0 == ret;
}
void boost_cont_global_sync_unlock()
{
RELEASE_MALLOC_GLOBAL_LOCK()
}
//#ifdef DL_DEBUG_DEFINED
// #undef DEBUG
//#endif
#ifdef _MSC_VER
#pragma warning (pop)
#endif
|