aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/restricted/aws/s2n/tls/s2n_tls13_handshake.c
blob: f6fc69cfdc60d57b89c8d183338daa6b2c45bdcb (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
/*
 * Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License").
 * You may not use this file except in compliance with the License.
 * A copy of the License is located at
 *
 *  http://aws.amazon.com/apache2.0
 *
 * or in the "license" file accompanying this file. This file is distributed
 * on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
 * express or implied. See the License for the specific language governing
 * permissions and limitations under the License.
 */

#include "tls/s2n_tls13_handshake.h"
#include "tls/s2n_cipher_suites.h"
#include "tls/s2n_key_log.h"
#include "tls/s2n_security_policies.h"

static int s2n_zero_sequence_number(struct s2n_connection *conn, s2n_mode mode)
{
    POSIX_ENSURE_REF(conn);
    POSIX_ENSURE_REF(conn->secure);
    struct s2n_blob sequence_number;
    if (mode == S2N_CLIENT) {
        POSIX_GUARD(s2n_blob_init(&sequence_number, conn->secure->client_sequence_number, sizeof(conn->secure->client_sequence_number)));
    } else {
        POSIX_GUARD(s2n_blob_init(&sequence_number, conn->secure->server_sequence_number, sizeof(conn->secure->server_sequence_number)));
    }
    POSIX_GUARD(s2n_blob_zero(&sequence_number));
    return S2N_SUCCESS;
}

int s2n_tls13_mac_verify(struct s2n_tls13_keys *keys, struct s2n_blob *finished_verify, struct s2n_blob *wire_verify)
{
    POSIX_ENSURE_REF(wire_verify->data);
    POSIX_ENSURE_EQ(wire_verify->size, keys->size);

    S2N_ERROR_IF(!s2n_constant_time_equals(finished_verify->data, wire_verify->data, keys->size), S2N_ERR_BAD_MESSAGE);

    return S2N_SUCCESS;
}

int s2n_tls13_keys_from_conn(struct s2n_tls13_keys *keys, struct s2n_connection *conn)
{
    POSIX_GUARD(s2n_tls13_keys_init(keys, conn->secure->cipher_suite->prf_alg));
    return S2N_SUCCESS;
}

int s2n_tls13_compute_ecc_shared_secret(struct s2n_connection *conn, struct s2n_blob *shared_secret) {
    POSIX_ENSURE_REF(conn);

    const struct s2n_ecc_preferences *ecc_preferences = NULL;
    POSIX_GUARD(s2n_connection_get_ecc_preferences(conn, &ecc_preferences));
    POSIX_ENSURE_REF(ecc_preferences);

    struct s2n_ecc_evp_params *server_key = &conn->kex_params.server_ecc_evp_params;
    POSIX_ENSURE_REF(server_key);
    POSIX_ENSURE_REF(server_key->negotiated_curve);

    struct s2n_ecc_evp_params *client_key  = &conn->kex_params.client_ecc_evp_params;
    POSIX_ENSURE_REF(client_key);
    POSIX_ENSURE_REF(client_key->negotiated_curve);

    POSIX_ENSURE_EQ(server_key->negotiated_curve, client_key->negotiated_curve);

    if (conn->mode == S2N_CLIENT) {
        POSIX_GUARD(s2n_ecc_evp_compute_shared_secret_from_params(client_key, server_key, shared_secret));
    } else {
        POSIX_GUARD(s2n_ecc_evp_compute_shared_secret_from_params(server_key, client_key, shared_secret));
    }

    return S2N_SUCCESS;
}

/* Computes the ECDHE+PQKEM hybrid shared secret as defined in
 * https://tools.ietf.org/html/draft-stebila-tls-hybrid-design */
int s2n_tls13_compute_pq_hybrid_shared_secret(struct s2n_connection *conn, struct s2n_blob *shared_secret) {
    POSIX_ENSURE_REF(conn);
    POSIX_ENSURE_REF(shared_secret);

    /* conn->kex_params.server_ecc_evp_params should be set only during a classic/non-hybrid handshake */
    POSIX_ENSURE_EQ(NULL, conn->kex_params.server_ecc_evp_params.negotiated_curve);
    POSIX_ENSURE_EQ(NULL, conn->kex_params.server_ecc_evp_params.evp_pkey);

    struct s2n_kem_group_params *server_kem_group_params = &conn->kex_params.server_kem_group_params;
    POSIX_ENSURE_REF(server_kem_group_params);
    struct s2n_ecc_evp_params *server_ecc_params = &server_kem_group_params->ecc_params;
    POSIX_ENSURE_REF(server_ecc_params);

    struct s2n_kem_group_params *client_kem_group_params = &conn->kex_params.client_kem_group_params;
    POSIX_ENSURE_REF(client_kem_group_params);
    struct s2n_ecc_evp_params *client_ecc_params = &client_kem_group_params->ecc_params;
    POSIX_ENSURE_REF(client_ecc_params);

    DEFER_CLEANUP(struct s2n_blob ecdhe_shared_secret = { 0 }, s2n_free_or_wipe);

    /* Compute the ECDHE shared secret, and retrieve the PQ shared secret. */
    if (conn->mode == S2N_CLIENT) {
        POSIX_GUARD(s2n_ecc_evp_compute_shared_secret_from_params(client_ecc_params, server_ecc_params, &ecdhe_shared_secret));
    } else {
        POSIX_GUARD(s2n_ecc_evp_compute_shared_secret_from_params(server_ecc_params, client_ecc_params, &ecdhe_shared_secret));
    }

    struct s2n_blob *pq_shared_secret = &client_kem_group_params->kem_params.shared_secret;
    POSIX_ENSURE_REF(pq_shared_secret);
    POSIX_ENSURE_REF(pq_shared_secret->data);

    const struct s2n_kem_group *negotiated_kem_group = conn->kex_params.server_kem_group_params.kem_group;
    POSIX_ENSURE_REF(negotiated_kem_group);
    POSIX_ENSURE_REF(negotiated_kem_group->kem);

    POSIX_ENSURE_EQ(pq_shared_secret->size, negotiated_kem_group->kem->shared_secret_key_length);

    /* Construct the concatenated/hybrid shared secret */
    uint32_t hybrid_shared_secret_size = ecdhe_shared_secret.size + negotiated_kem_group->kem->shared_secret_key_length;
    POSIX_GUARD(s2n_alloc(shared_secret, hybrid_shared_secret_size));
    struct s2n_stuffer stuffer_combiner = { 0 };
    POSIX_GUARD(s2n_stuffer_init(&stuffer_combiner, shared_secret));
    POSIX_GUARD(s2n_stuffer_write(&stuffer_combiner, &ecdhe_shared_secret));
    POSIX_GUARD(s2n_stuffer_write(&stuffer_combiner, pq_shared_secret));

    return S2N_SUCCESS;
}

static int s2n_tls13_pq_hybrid_supported(struct s2n_connection *conn) {
    return conn->kex_params.server_kem_group_params.kem_group != NULL;
}

int s2n_tls13_compute_shared_secret(struct s2n_connection *conn, struct s2n_blob *shared_secret)
{
    POSIX_ENSURE_REF(conn);

    if (s2n_tls13_pq_hybrid_supported(conn)) {
        POSIX_GUARD(s2n_tls13_compute_pq_hybrid_shared_secret(conn, shared_secret));
    } else {
        POSIX_GUARD(s2n_tls13_compute_ecc_shared_secret(conn, shared_secret));
    }

    POSIX_GUARD_RESULT(s2n_connection_wipe_all_keyshares(conn));

    /* It would make more sense to wipe the PSK secrets in s2n_tls13_handle_early_secret,
     * but at that point we don't know whether or not the server will request a HRR request
     * and we'll have to use the secrets again.
     *
     * Instead, wipe them here when we wipe all the other connection secrets. */
    POSIX_GUARD_RESULT(s2n_psk_parameters_wipe_secrets(&conn->psk_params));

    return S2N_SUCCESS;
}

int s2n_update_application_traffic_keys(struct s2n_connection *conn, s2n_mode mode, keyupdate_status status)
{
    POSIX_ENSURE_REF(conn);
    POSIX_ENSURE_REF(conn->secure);
    
    /* get tls13 key context */
    s2n_tls13_connection_keys(keys, conn);

    struct s2n_session_key *old_key;
    struct s2n_blob old_app_secret;
    struct s2n_blob app_iv;

    if (mode == S2N_CLIENT) {
        old_key = &conn->secure->client_key;
        POSIX_GUARD(s2n_blob_init(&old_app_secret, conn->secrets.tls13.client_app_secret, keys.size));
        POSIX_GUARD(s2n_blob_init(&app_iv, conn->secure->client_implicit_iv, S2N_TLS13_FIXED_IV_LEN));
    } else {
        old_key = &conn->secure->server_key;
        POSIX_GUARD(s2n_blob_init(&old_app_secret, conn->secrets.tls13.server_app_secret, keys.size));
        POSIX_GUARD(s2n_blob_init(&app_iv, conn->secure->server_implicit_iv, S2N_TLS13_FIXED_IV_LEN));  
    }

    /* Produce new application secret */
    s2n_stack_blob(app_secret_update, keys.size, S2N_TLS13_SECRET_MAX_LEN);

    /* Derives next generation of traffic secret */
    POSIX_GUARD(s2n_tls13_update_application_traffic_secret(&keys, &old_app_secret, &app_secret_update));

    s2n_tls13_key_blob(app_key, conn->secure->cipher_suite->record_alg->cipher->key_material_size);

    /* Derives next generation of traffic key */
    POSIX_GUARD(s2n_tls13_derive_traffic_keys(&keys, &app_secret_update, &app_key, &app_iv));
    if (status == RECEIVING) {
        POSIX_GUARD(conn->secure->cipher_suite->record_alg->cipher->set_decryption_key(old_key, &app_key));
    } else {
        POSIX_GUARD(conn->secure->cipher_suite->record_alg->cipher->set_encryption_key(old_key, &app_key));
    }

    /* According to https://tools.ietf.org/html/rfc8446#section-5.3:
     * Each sequence number is set to zero at the beginning of a connection and
     * whenever the key is changed; the first record transmitted under a particular traffic key
     * MUST use sequence number 0.
     */
    POSIX_GUARD(s2n_zero_sequence_number(conn, mode));
    
    /* Save updated secret */
    struct s2n_stuffer old_secret_stuffer = {0};
    POSIX_GUARD(s2n_stuffer_init(&old_secret_stuffer, &old_app_secret));
    POSIX_GUARD(s2n_stuffer_write_bytes(&old_secret_stuffer, app_secret_update.data, keys.size));

    return S2N_SUCCESS;
}