aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/restricted/aws/s2n/pq-crypto/sike_r1/sidh_r1.c
blob: 7f3c63fd8593e545e5c7cfa4c03174fc8ce3a80d (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
/********************************************************************************************
* Supersingular Isogeny Key Encapsulation Library
*
* Abstract: ephemeral supersingular isogeny Diffie-Hellman key exchange (SIDH)
*********************************************************************************************/

#include "sike_r1_namespace.h"
#include "P503_internal_r1.h"
#include "pq-crypto/s2n_pq_random.h"
#include "utils/s2n_safety.h"

static void clear_words(void* mem, digit_t nwords)
{ // Clear digits from memory. "nwords" indicates the number of digits to be zeroed.
  // This function uses the volatile type qualifier to inform the compiler not to optimize out the memory clearing.
    unsigned int i;
    volatile digit_t *v = mem;

    for (i = 0; i < nwords; i++) {
        v[i] = 0;
    }
}

static void init_basis(const digit_t *gen, f2elm_t *XP, f2elm_t *XQ, f2elm_t *XR)
{ // Initialization of basis points

    fpcopy(gen,                  XP->e[0]);
    fpcopy(gen +   NWORDS_FIELD, XP->e[1]);
    fpcopy(gen + 2*NWORDS_FIELD, XQ->e[0]);
    fpzero(XQ->e[1]);
    fpcopy(gen + 3*NWORDS_FIELD, XR->e[0]);
    fpcopy(gen + 4*NWORDS_FIELD, XR->e[1]);
}


static void fp2_encode(const f2elm_t *x, unsigned char *enc)
{ // Conversion of GF(p^2) element from Montgomery to standard representation, and encoding by removing leading 0 bytes
    unsigned int i;
    f2elm_t t;

    from_fp2mont(x, &t);
    for (i = 0; i < FP2_ENCODED_BYTES / 2; i++) {
        enc[i] = ((unsigned char*)t.e)[i];
        enc[i + FP2_ENCODED_BYTES / 2] = ((unsigned char*)t.e)[i + MAXBITS_FIELD / 8];
    }
}


static void fp2_decode(const unsigned char *enc, f2elm_t *x)
{ // Parse byte sequence back into GF(p^2) element, and conversion to Montgomery representation
    unsigned int i;

    for (i = 0; i < 2*(MAXBITS_FIELD / 8); i++) ((unsigned char *)x->e)[i] = 0;
    for (i = 0; i < FP2_ENCODED_BYTES / 2; i++) {
        ((unsigned char*)x->e)[i] = enc[i];
        ((unsigned char*)x->e)[i + MAXBITS_FIELD / 8] = enc[i + FP2_ENCODED_BYTES / 2];
    }
    to_fp2mont(x, x);
}

int random_mod_order_B(unsigned char* random_digits)
{  // Generation of Bob's secret key
   // Outputs random value in [0, 2^Floor(Log(2, oB)) - 1]
    unsigned long long nbytes = NBITS_TO_NBYTES(OBOB_BITS-1);

    clear_words((void*)random_digits, MAXWORDS_ORDER);
    GUARD_AS_POSIX(s2n_get_random_bytes(random_digits, nbytes));
    random_digits[nbytes-1] &= MASK_BOB;     // Masking last byte

    return S2N_SUCCESS;
}


int EphemeralKeyGeneration_A(const digit_t* PrivateKeyA, unsigned char* PublicKeyA)
{ // Alice's ephemeral public key generation
  // Input:  a private key PrivateKeyA in the range [0, 2^eA - 1].
  // Output: the public key PublicKeyA consisting of 3 elements in GF(p^2) which are encoded by removing leading 0 bytes.
    point_proj_t R, phiP = {0}, phiQ = {0}, phiR = {0}, pts[MAX_INT_POINTS_ALICE];
    f2elm_t _XPA, _XQA, _XRA, coeff[3], _A24plus = {0}, _C24 = {0}, _A = {0};
    f2elm_t *XPA=&_XPA, *XQA=&_XQA, *XRA=&_XRA, *A24plus=&_A24plus, *C24=&_C24, *A=&_A;
    unsigned int i, row, m, index = 0, pts_index[MAX_INT_POINTS_ALICE], npts = 0, ii = 0;


    // Initialize basis points
    init_basis((const digit_t*)A_gen, XPA, XQA, XRA);
    init_basis((const digit_t*)B_gen, &phiP->X, &phiQ->X, &phiR->X);
    fpcopy((const digit_t*)&Montgomery_one, (phiP->Z.e)[0]);
    fpcopy((const digit_t*)&Montgomery_one, (phiQ->Z.e)[0]);
    fpcopy((const digit_t*)&Montgomery_one, (phiR->Z.e)[0]);

    // Initialize constants
    fpcopy((const digit_t*)&Montgomery_one, A24plus->e[0]);
    fp2add(A24plus, A24plus, C24);

    // Retrieve kernel point
    LADDER3PT(XPA, XQA, XRA, PrivateKeyA, ALICE, R, A);

    // Traverse tree
    index = 0;
    for (row = 1; row < MAX_Alice; row++) {
        while (index < MAX_Alice-row) {
            fp2copy(&R->X, &pts[npts]->X);
            fp2copy(&R->Z, &pts[npts]->Z);
            pts_index[npts++] = index;
            m = strat_Alice[ii++];
            xDBLe(R, R, A24plus, C24, (int)(2*m));
            index += m;
        }
        get_4_isog(R, A24plus, C24, coeff);

        for (i = 0; i < npts; i++) {
            eval_4_isog(pts[i], coeff);
        }
        eval_4_isog(phiP, coeff);
        eval_4_isog(phiQ, coeff);
        eval_4_isog(phiR, coeff);

        fp2copy(&pts[npts-1]->X, &R->X);
        fp2copy(&pts[npts-1]->Z, &R->Z);
        index = pts_index[npts-1];
        npts -= 1;
    }

    get_4_isog(R, A24plus, C24, coeff);
    eval_4_isog(phiP, coeff);
    eval_4_isog(phiQ, coeff);
    eval_4_isog(phiR, coeff);

    inv_3_way(&phiP->Z, &phiQ->Z, &phiR->Z);
    fp2mul_mont(&phiP->X, &phiP->Z, &phiP->X);
    fp2mul_mont(&phiQ->X, &phiQ->Z, &phiQ->X);
    fp2mul_mont(&phiR->X, &phiR->Z, &phiR->X);

    // Format public key
    fp2_encode(&phiP->X, PublicKeyA);
    fp2_encode(&phiQ->X, PublicKeyA + FP2_ENCODED_BYTES);
    fp2_encode(&phiR->X, PublicKeyA + 2*FP2_ENCODED_BYTES);

    return S2N_SUCCESS;
}


int EphemeralKeyGeneration_B(const digit_t* PrivateKeyB, unsigned char* PublicKeyB)
{ // Bob's ephemeral public key generation
  // Input:  a private key PrivateKeyB in the range [0, 2^Floor(Log(2,oB)) - 1].
  // Output: the public key PublicKeyB consisting of 3 elements in GF(p^2) which are encoded by removing leading 0 bytes.
    point_proj_t R, phiP = {0}, phiQ = {0}, phiR = {0}, pts[MAX_INT_POINTS_BOB];
    f2elm_t _XPB, _XQB, _XRB, coeff[3], _A24plus = {0}, _A24minus = {0}, _A = {0};
    f2elm_t *XPB=&_XPB, *XQB=&_XQB, *XRB=&_XRB, *A24plus=&_A24plus, *A24minus=&_A24minus, *A=&_A;
    unsigned int i, row, m, index = 0, pts_index[MAX_INT_POINTS_BOB], npts = 0, ii = 0;

    // Initialize basis points
    init_basis((const digit_t*)B_gen, XPB, XQB, XRB);
    init_basis((const digit_t*)A_gen, &phiP->X, &phiQ->X, &phiR->X);
    fpcopy((const digit_t*)&Montgomery_one, (phiP->Z.e)[0]);
    fpcopy((const digit_t*)&Montgomery_one, (phiQ->Z.e)[0]);
    fpcopy((const digit_t*)&Montgomery_one, (phiR->Z.e)[0]);

    // Initialize constants
    fpcopy((const digit_t*)&Montgomery_one, A24plus->e[0]);
    fp2add(A24plus, A24plus, A24plus);
    fp2copy(A24plus, A24minus);
    fp2neg(A24minus);

    // Retrieve kernel point
    LADDER3PT(XPB, XQB, XRB, PrivateKeyB, BOB, R, A);

    // Traverse tree
    index = 0;
    for (row = 1; row < MAX_Bob; row++) {
        while (index < MAX_Bob-row) {
            fp2copy(&R->X, &pts[npts]->X);
            fp2copy(&R->Z, &pts[npts]->Z);
            pts_index[npts++] = index;
            m = strat_Bob[ii++];
            xTPLe(R, R, A24minus, A24plus, (int)m);
            index += m;
        }
        get_3_isog(R, A24minus, A24plus, coeff);

        for (i = 0; i < npts; i++) {
            eval_3_isog(pts[i], coeff);
        }
        eval_3_isog(phiP, coeff);
        eval_3_isog(phiQ, coeff);
        eval_3_isog(phiR, coeff);

        fp2copy(&pts[npts-1]->X, &R->X);
        fp2copy(&pts[npts-1]->Z, &R->Z);
        index = pts_index[npts-1];
        npts -= 1;
    }

    get_3_isog(R, A24minus, A24plus, coeff);
    eval_3_isog(phiP, coeff);
    eval_3_isog(phiQ, coeff);
    eval_3_isog(phiR, coeff);

    inv_3_way(&phiP->Z, &phiQ->Z, &phiR->Z);
    fp2mul_mont(&phiP->X, &phiP->Z, &phiP->X);
    fp2mul_mont(&phiQ->X, &phiQ->Z, &phiQ->X);
    fp2mul_mont(&phiR->X, &phiR->Z, &phiR->X);

    // Format public key
    fp2_encode(&phiP->X, PublicKeyB);
    fp2_encode(&phiQ->X, PublicKeyB + FP2_ENCODED_BYTES);
    fp2_encode(&phiR->X, PublicKeyB + 2*FP2_ENCODED_BYTES);

    return S2N_SUCCESS;
}


int EphemeralSecretAgreement_A(const digit_t* PrivateKeyA, const unsigned char* PublicKeyB, unsigned char* SharedSecretA)
{ // Alice's ephemeral shared secret computation
  // It produces a shared secret key SharedSecretA using her secret key PrivateKeyA and Bob's public key PublicKeyB
  // Inputs: Alice's PrivateKeyA is an integer in the range [0, oA-1].
  //         Bob's PublicKeyB consists of 3 elements in GF(p^2) encoded by removing leading 0 bytes.
  // Output: a shared secret SharedSecretA that consists of one element in GF(p^2) encoded by removing leading 0 bytes.
    point_proj_t R, pts[MAX_INT_POINTS_ALICE];
    f2elm_t coeff[3], PKB[3], _jinv;
    f2elm_t _A24plus = {0}, _C24 = {0}, _A = {0};
    f2elm_t *jinv=&_jinv, *A24plus=&_A24plus, *C24=&_C24, *A=&_A;
    unsigned int i, row, m, index = 0, pts_index[MAX_INT_POINTS_ALICE], npts = 0, ii = 0;

    // Initialize images of Bob's basis
    fp2_decode(PublicKeyB, &PKB[0]);
    fp2_decode(PublicKeyB + FP2_ENCODED_BYTES, &PKB[1]);
    fp2_decode(PublicKeyB + 2*FP2_ENCODED_BYTES, &PKB[2]);

    // Initialize constants
    get_A(&PKB[0], &PKB[1], &PKB[2], A); // TODO: Can return projective A?
    fpadd((const digit_t*)&Montgomery_one, (const digit_t*)&Montgomery_one, C24->e[0]);
    fp2add(A, C24, A24plus);
    fpadd(C24->e[0], C24->e[0], C24->e[0]);

    // Retrieve kernel point
    LADDER3PT(&PKB[0], &PKB[1], &PKB[2], PrivateKeyA, ALICE, R, A);

    // Traverse tree
    index = 0;
    for (row = 1; row < MAX_Alice; row++) {
        while (index < MAX_Alice-row) {
            fp2copy(&R->X, &pts[npts]->X);
            fp2copy(&R->Z, &pts[npts]->Z);
            pts_index[npts++] = index;
            m = strat_Alice[ii++];
            xDBLe(R, R, A24plus, C24, (int)(2*m));
            index += m;
        }
        get_4_isog(R, A24plus, C24, coeff);

        for (i = 0; i < npts; i++) {
            eval_4_isog(pts[i], coeff);
        }

        fp2copy(&pts[npts-1]->X, &R->X);
        fp2copy(&pts[npts-1]->Z, &R->Z);
        index = pts_index[npts-1];
        npts -= 1;
    }

    get_4_isog(R, A24plus, C24, coeff);
    fp2div2(C24, C24);
    fp2sub(A24plus, C24, A24plus);
    fp2div2(C24, C24);
    j_inv(A24plus, C24, jinv);
    fp2_encode(jinv, SharedSecretA);    // Format shared secret

    return S2N_SUCCESS;
}


int EphemeralSecretAgreement_B(const digit_t* PrivateKeyB, const unsigned char* PublicKeyA, unsigned char* SharedSecretB)
{ // Bob's ephemeral shared secret computation
  // It produces a shared secret key SharedSecretB using his secret key PrivateKeyB and Alice's public key PublicKeyA
  // Inputs: Bob's PrivateKeyB is an integer in the range [0, 2^Floor(Log(2,oB)) - 1].
  //         Alice's PublicKeyA consists of 3 elements in GF(p^2) encoded by removing leading 0 bytes.
  // Output: a shared secret SharedSecretB that consists of one element in GF(p^2) encoded by removing leading 0 bytes.
    point_proj_t R, pts[MAX_INT_POINTS_BOB];
    f2elm_t coeff[3], PKB[3], _jinv;
    f2elm_t _A24plus = {0}, _A24minus = {0}, _A = {0};
    f2elm_t *jinv=&_jinv, *A24plus=&_A24plus, *A24minus=&_A24minus, *A=&_A;
    unsigned int i, row, m, index = 0, pts_index[MAX_INT_POINTS_BOB], npts = 0, ii = 0;

    // Initialize images of Alice's basis
    fp2_decode(PublicKeyA, &PKB[0]);
    fp2_decode(PublicKeyA + FP2_ENCODED_BYTES, &PKB[1]);
    fp2_decode(PublicKeyA + 2*FP2_ENCODED_BYTES, &PKB[2]);

    // Initialize constants
    get_A(&PKB[0], &PKB[1], &PKB[2], A); // TODO: Can return projective A?
    fpadd((const digit_t*)&Montgomery_one, (const digit_t*)&Montgomery_one, A24minus->e[0]);
    fp2add(A, A24minus, A24plus);
    fp2sub(A, A24minus, A24minus);

    // Retrieve kernel point
    LADDER3PT(&PKB[0], &PKB[1], &PKB[2], PrivateKeyB, BOB, R, A);

    // Traverse tree
    index = 0;
    for (row = 1; row < MAX_Bob; row++) {
        while (index < MAX_Bob-row) {
            fp2copy(&R->X, &pts[npts]->X);
            fp2copy(&R->Z, &pts[npts]->Z);
            pts_index[npts++] = index;
            m = strat_Bob[ii++];
            xTPLe(R, R, A24minus, A24plus, (int)m);
            index += m;
        }
        get_3_isog(R, A24minus, A24plus, coeff);

        for (i = 0; i < npts; i++) {
            eval_3_isog(pts[i], coeff);
        }

        fp2copy(&pts[npts-1]->X, &R->X);
        fp2copy(&pts[npts-1]->Z, &R->Z);
        index = pts_index[npts-1];
        npts -= 1;
    }

    get_3_isog(R, A24minus, A24plus, coeff);
    fp2add(A24plus, A24minus, A);
    fp2add(A, A, A);
    fp2sub(A24plus, A24minus, A24plus);
    j_inv(A, A24plus, jinv);
    fp2_encode(jinv, SharedSecretB);    // Format shared secret

    return S2N_SUCCESS;
}