1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
|
// Simple, thoroughly commented implementation of 128-bit AES / Rijndael using C
// Chris Hulbert - chris.hulbert@gmail.com - http://splinter.com.au/blog
// References:
// http://en.wikipedia.org/wiki/Advanced_Encryption_Standard
// http://en.wikipedia.org/wiki/Rijndael_key_schedule
// http://en.wikipedia.org/wiki/Rijndael_mix_columns
// http://en.wikipedia.org/wiki/Rijndael_S-box
// This code is public domain, or any OSI-approved license, your choice. No warranty.
// SPDX-License-Identifier: MIT
#include <assert.h>
#include <stdio.h>
#include <string.h>
#include "aes.h"
typedef unsigned char byte;
// Here are all the lookup tables for the row shifts, rcon, s-boxes, and galois field multiplications
static const byte shift_rows_table[] = {0, 5, 10, 15, 4, 9, 14, 3, 8, 13, 2, 7, 12, 1, 6, 11};
static const byte shift_rows_table_inv[] = {0, 13, 10, 7, 4, 1, 14, 11, 8, 5, 2, 15, 12, 9, 6, 3};
static const byte lookup_rcon[] = {
0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36, 0x6c, 0xd8, 0xab, 0x4d, 0x9a
};
static const byte lookup_sbox[] = {
0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76,
0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0,
0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15,
0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75,
0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84,
0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf,
0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8,
0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2,
0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73,
0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb,
0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79,
0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08,
0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a,
0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e,
0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf,
0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16
};
static const byte lookup_sbox_inv[] = {
0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb,
0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb,
0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e,
0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25,
0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92,
0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84,
0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06,
0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b,
0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73,
0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e,
0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b,
0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4,
0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f,
0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef,
0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61,
0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d
};
static const byte lookup_g2[] = {
0x00, 0x02, 0x04, 0x06, 0x08, 0x0a, 0x0c, 0x0e, 0x10, 0x12, 0x14, 0x16, 0x18, 0x1a, 0x1c, 0x1e,
0x20, 0x22, 0x24, 0x26, 0x28, 0x2a, 0x2c, 0x2e, 0x30, 0x32, 0x34, 0x36, 0x38, 0x3a, 0x3c, 0x3e,
0x40, 0x42, 0x44, 0x46, 0x48, 0x4a, 0x4c, 0x4e, 0x50, 0x52, 0x54, 0x56, 0x58, 0x5a, 0x5c, 0x5e,
0x60, 0x62, 0x64, 0x66, 0x68, 0x6a, 0x6c, 0x6e, 0x70, 0x72, 0x74, 0x76, 0x78, 0x7a, 0x7c, 0x7e,
0x80, 0x82, 0x84, 0x86, 0x88, 0x8a, 0x8c, 0x8e, 0x90, 0x92, 0x94, 0x96, 0x98, 0x9a, 0x9c, 0x9e,
0xa0, 0xa2, 0xa4, 0xa6, 0xa8, 0xaa, 0xac, 0xae, 0xb0, 0xb2, 0xb4, 0xb6, 0xb8, 0xba, 0xbc, 0xbe,
0xc0, 0xc2, 0xc4, 0xc6, 0xc8, 0xca, 0xcc, 0xce, 0xd0, 0xd2, 0xd4, 0xd6, 0xd8, 0xda, 0xdc, 0xde,
0xe0, 0xe2, 0xe4, 0xe6, 0xe8, 0xea, 0xec, 0xee, 0xf0, 0xf2, 0xf4, 0xf6, 0xf8, 0xfa, 0xfc, 0xfe,
0x1b, 0x19, 0x1f, 0x1d, 0x13, 0x11, 0x17, 0x15, 0x0b, 0x09, 0x0f, 0x0d, 0x03, 0x01, 0x07, 0x05,
0x3b, 0x39, 0x3f, 0x3d, 0x33, 0x31, 0x37, 0x35, 0x2b, 0x29, 0x2f, 0x2d, 0x23, 0x21, 0x27, 0x25,
0x5b, 0x59, 0x5f, 0x5d, 0x53, 0x51, 0x57, 0x55, 0x4b, 0x49, 0x4f, 0x4d, 0x43, 0x41, 0x47, 0x45,
0x7b, 0x79, 0x7f, 0x7d, 0x73, 0x71, 0x77, 0x75, 0x6b, 0x69, 0x6f, 0x6d, 0x63, 0x61, 0x67, 0x65,
0x9b, 0x99, 0x9f, 0x9d, 0x93, 0x91, 0x97, 0x95, 0x8b, 0x89, 0x8f, 0x8d, 0x83, 0x81, 0x87, 0x85,
0xbb, 0xb9, 0xbf, 0xbd, 0xb3, 0xb1, 0xb7, 0xb5, 0xab, 0xa9, 0xaf, 0xad, 0xa3, 0xa1, 0xa7, 0xa5,
0xdb, 0xd9, 0xdf, 0xdd, 0xd3, 0xd1, 0xd7, 0xd5, 0xcb, 0xc9, 0xcf, 0xcd, 0xc3, 0xc1, 0xc7, 0xc5,
0xfb, 0xf9, 0xff, 0xfd, 0xf3, 0xf1, 0xf7, 0xf5, 0xeb, 0xe9, 0xef, 0xed, 0xe3, 0xe1, 0xe7, 0xe5
};
static const byte lookup_g3[] = {
0x00, 0x03, 0x06, 0x05, 0x0c, 0x0f, 0x0a, 0x09, 0x18, 0x1b, 0x1e, 0x1d, 0x14, 0x17, 0x12, 0x11,
0x30, 0x33, 0x36, 0x35, 0x3c, 0x3f, 0x3a, 0x39, 0x28, 0x2b, 0x2e, 0x2d, 0x24, 0x27, 0x22, 0x21,
0x60, 0x63, 0x66, 0x65, 0x6c, 0x6f, 0x6a, 0x69, 0x78, 0x7b, 0x7e, 0x7d, 0x74, 0x77, 0x72, 0x71,
0x50, 0x53, 0x56, 0x55, 0x5c, 0x5f, 0x5a, 0x59, 0x48, 0x4b, 0x4e, 0x4d, 0x44, 0x47, 0x42, 0x41,
0xc0, 0xc3, 0xc6, 0xc5, 0xcc, 0xcf, 0xca, 0xc9, 0xd8, 0xdb, 0xde, 0xdd, 0xd4, 0xd7, 0xd2, 0xd1,
0xf0, 0xf3, 0xf6, 0xf5, 0xfc, 0xff, 0xfa, 0xf9, 0xe8, 0xeb, 0xee, 0xed, 0xe4, 0xe7, 0xe2, 0xe1,
0xa0, 0xa3, 0xa6, 0xa5, 0xac, 0xaf, 0xaa, 0xa9, 0xb8, 0xbb, 0xbe, 0xbd, 0xb4, 0xb7, 0xb2, 0xb1,
0x90, 0x93, 0x96, 0x95, 0x9c, 0x9f, 0x9a, 0x99, 0x88, 0x8b, 0x8e, 0x8d, 0x84, 0x87, 0x82, 0x81,
0x9b, 0x98, 0x9d, 0x9e, 0x97, 0x94, 0x91, 0x92, 0x83, 0x80, 0x85, 0x86, 0x8f, 0x8c, 0x89, 0x8a,
0xab, 0xa8, 0xad, 0xae, 0xa7, 0xa4, 0xa1, 0xa2, 0xb3, 0xb0, 0xb5, 0xb6, 0xbf, 0xbc, 0xb9, 0xba,
0xfb, 0xf8, 0xfd, 0xfe, 0xf7, 0xf4, 0xf1, 0xf2, 0xe3, 0xe0, 0xe5, 0xe6, 0xef, 0xec, 0xe9, 0xea,
0xcb, 0xc8, 0xcd, 0xce, 0xc7, 0xc4, 0xc1, 0xc2, 0xd3, 0xd0, 0xd5, 0xd6, 0xdf, 0xdc, 0xd9, 0xda,
0x5b, 0x58, 0x5d, 0x5e, 0x57, 0x54, 0x51, 0x52, 0x43, 0x40, 0x45, 0x46, 0x4f, 0x4c, 0x49, 0x4a,
0x6b, 0x68, 0x6d, 0x6e, 0x67, 0x64, 0x61, 0x62, 0x73, 0x70, 0x75, 0x76, 0x7f, 0x7c, 0x79, 0x7a,
0x3b, 0x38, 0x3d, 0x3e, 0x37, 0x34, 0x31, 0x32, 0x23, 0x20, 0x25, 0x26, 0x2f, 0x2c, 0x29, 0x2a,
0x0b, 0x08, 0x0d, 0x0e, 0x07, 0x04, 0x01, 0x02, 0x13, 0x10, 0x15, 0x16, 0x1f, 0x1c, 0x19, 0x1a
};
static const byte lookup_g9[] = {
0x00, 0x09, 0x12, 0x1b, 0x24, 0x2d, 0x36, 0x3f, 0x48, 0x41, 0x5a, 0x53, 0x6c, 0x65, 0x7e, 0x77,
0x90, 0x99, 0x82, 0x8b, 0xb4, 0xbd, 0xa6, 0xaf, 0xd8, 0xd1, 0xca, 0xc3, 0xfc, 0xf5, 0xee, 0xe7,
0x3b, 0x32, 0x29, 0x20, 0x1f, 0x16, 0x0d, 0x04, 0x73, 0x7a, 0x61, 0x68, 0x57, 0x5e, 0x45, 0x4c,
0xab, 0xa2, 0xb9, 0xb0, 0x8f, 0x86, 0x9d, 0x94, 0xe3, 0xea, 0xf1, 0xf8, 0xc7, 0xce, 0xd5, 0xdc,
0x76, 0x7f, 0x64, 0x6d, 0x52, 0x5b, 0x40, 0x49, 0x3e, 0x37, 0x2c, 0x25, 0x1a, 0x13, 0x08, 0x01,
0xe6, 0xef, 0xf4, 0xfd, 0xc2, 0xcb, 0xd0, 0xd9, 0xae, 0xa7, 0xbc, 0xb5, 0x8a, 0x83, 0x98, 0x91,
0x4d, 0x44, 0x5f, 0x56, 0x69, 0x60, 0x7b, 0x72, 0x05, 0x0c, 0x17, 0x1e, 0x21, 0x28, 0x33, 0x3a,
0xdd, 0xd4, 0xcf, 0xc6, 0xf9, 0xf0, 0xeb, 0xe2, 0x95, 0x9c, 0x87, 0x8e, 0xb1, 0xb8, 0xa3, 0xaa,
0xec, 0xe5, 0xfe, 0xf7, 0xc8, 0xc1, 0xda, 0xd3, 0xa4, 0xad, 0xb6, 0xbf, 0x80, 0x89, 0x92, 0x9b,
0x7c, 0x75, 0x6e, 0x67, 0x58, 0x51, 0x4a, 0x43, 0x34, 0x3d, 0x26, 0x2f, 0x10, 0x19, 0x02, 0x0b,
0xd7, 0xde, 0xc5, 0xcc, 0xf3, 0xfa, 0xe1, 0xe8, 0x9f, 0x96, 0x8d, 0x84, 0xbb, 0xb2, 0xa9, 0xa0,
0x47, 0x4e, 0x55, 0x5c, 0x63, 0x6a, 0x71, 0x78, 0x0f, 0x06, 0x1d, 0x14, 0x2b, 0x22, 0x39, 0x30,
0x9a, 0x93, 0x88, 0x81, 0xbe, 0xb7, 0xac, 0xa5, 0xd2, 0xdb, 0xc0, 0xc9, 0xf6, 0xff, 0xe4, 0xed,
0x0a, 0x03, 0x18, 0x11, 0x2e, 0x27, 0x3c, 0x35, 0x42, 0x4b, 0x50, 0x59, 0x66, 0x6f, 0x74, 0x7d,
0xa1, 0xa8, 0xb3, 0xba, 0x85, 0x8c, 0x97, 0x9e, 0xe9, 0xe0, 0xfb, 0xf2, 0xcd, 0xc4, 0xdf, 0xd6,
0x31, 0x38, 0x23, 0x2a, 0x15, 0x1c, 0x07, 0x0e, 0x79, 0x70, 0x6b, 0x62, 0x5d, 0x54, 0x4f, 0x46
};
static const byte lookup_g11[] = {
0x00, 0x0b, 0x16, 0x1d, 0x2c, 0x27, 0x3a, 0x31, 0x58, 0x53, 0x4e, 0x45, 0x74, 0x7f, 0x62, 0x69,
0xb0, 0xbb, 0xa6, 0xad, 0x9c, 0x97, 0x8a, 0x81, 0xe8, 0xe3, 0xfe, 0xf5, 0xc4, 0xcf, 0xd2, 0xd9,
0x7b, 0x70, 0x6d, 0x66, 0x57, 0x5c, 0x41, 0x4a, 0x23, 0x28, 0x35, 0x3e, 0x0f, 0x04, 0x19, 0x12,
0xcb, 0xc0, 0xdd, 0xd6, 0xe7, 0xec, 0xf1, 0xfa, 0x93, 0x98, 0x85, 0x8e, 0xbf, 0xb4, 0xa9, 0xa2,
0xf6, 0xfd, 0xe0, 0xeb, 0xda, 0xd1, 0xcc, 0xc7, 0xae, 0xa5, 0xb8, 0xb3, 0x82, 0x89, 0x94, 0x9f,
0x46, 0x4d, 0x50, 0x5b, 0x6a, 0x61, 0x7c, 0x77, 0x1e, 0x15, 0x08, 0x03, 0x32, 0x39, 0x24, 0x2f,
0x8d, 0x86, 0x9b, 0x90, 0xa1, 0xaa, 0xb7, 0xbc, 0xd5, 0xde, 0xc3, 0xc8, 0xf9, 0xf2, 0xef, 0xe4,
0x3d, 0x36, 0x2b, 0x20, 0x11, 0x1a, 0x07, 0x0c, 0x65, 0x6e, 0x73, 0x78, 0x49, 0x42, 0x5f, 0x54,
0xf7, 0xfc, 0xe1, 0xea, 0xdb, 0xd0, 0xcd, 0xc6, 0xaf, 0xa4, 0xb9, 0xb2, 0x83, 0x88, 0x95, 0x9e,
0x47, 0x4c, 0x51, 0x5a, 0x6b, 0x60, 0x7d, 0x76, 0x1f, 0x14, 0x09, 0x02, 0x33, 0x38, 0x25, 0x2e,
0x8c, 0x87, 0x9a, 0x91, 0xa0, 0xab, 0xb6, 0xbd, 0xd4, 0xdf, 0xc2, 0xc9, 0xf8, 0xf3, 0xee, 0xe5,
0x3c, 0x37, 0x2a, 0x21, 0x10, 0x1b, 0x06, 0x0d, 0x64, 0x6f, 0x72, 0x79, 0x48, 0x43, 0x5e, 0x55,
0x01, 0x0a, 0x17, 0x1c, 0x2d, 0x26, 0x3b, 0x30, 0x59, 0x52, 0x4f, 0x44, 0x75, 0x7e, 0x63, 0x68,
0xb1, 0xba, 0xa7, 0xac, 0x9d, 0x96, 0x8b, 0x80, 0xe9, 0xe2, 0xff, 0xf4, 0xc5, 0xce, 0xd3, 0xd8,
0x7a, 0x71, 0x6c, 0x67, 0x56, 0x5d, 0x40, 0x4b, 0x22, 0x29, 0x34, 0x3f, 0x0e, 0x05, 0x18, 0x13,
0xca, 0xc1, 0xdc, 0xd7, 0xe6, 0xed, 0xf0, 0xfb, 0x92, 0x99, 0x84, 0x8f, 0xbe, 0xb5, 0xa8, 0xa3
};
static const byte lookup_g13[] = {
0x00, 0x0d, 0x1a, 0x17, 0x34, 0x39, 0x2e, 0x23, 0x68, 0x65, 0x72, 0x7f, 0x5c, 0x51, 0x46, 0x4b,
0xd0, 0xdd, 0xca, 0xc7, 0xe4, 0xe9, 0xfe, 0xf3, 0xb8, 0xb5, 0xa2, 0xaf, 0x8c, 0x81, 0x96, 0x9b,
0xbb, 0xb6, 0xa1, 0xac, 0x8f, 0x82, 0x95, 0x98, 0xd3, 0xde, 0xc9, 0xc4, 0xe7, 0xea, 0xfd, 0xf0,
0x6b, 0x66, 0x71, 0x7c, 0x5f, 0x52, 0x45, 0x48, 0x03, 0x0e, 0x19, 0x14, 0x37, 0x3a, 0x2d, 0x20,
0x6d, 0x60, 0x77, 0x7a, 0x59, 0x54, 0x43, 0x4e, 0x05, 0x08, 0x1f, 0x12, 0x31, 0x3c, 0x2b, 0x26,
0xbd, 0xb0, 0xa7, 0xaa, 0x89, 0x84, 0x93, 0x9e, 0xd5, 0xd8, 0xcf, 0xc2, 0xe1, 0xec, 0xfb, 0xf6,
0xd6, 0xdb, 0xcc, 0xc1, 0xe2, 0xef, 0xf8, 0xf5, 0xbe, 0xb3, 0xa4, 0xa9, 0x8a, 0x87, 0x90, 0x9d,
0x06, 0x0b, 0x1c, 0x11, 0x32, 0x3f, 0x28, 0x25, 0x6e, 0x63, 0x74, 0x79, 0x5a, 0x57, 0x40, 0x4d,
0xda, 0xd7, 0xc0, 0xcd, 0xee, 0xe3, 0xf4, 0xf9, 0xb2, 0xbf, 0xa8, 0xa5, 0x86, 0x8b, 0x9c, 0x91,
0x0a, 0x07, 0x10, 0x1d, 0x3e, 0x33, 0x24, 0x29, 0x62, 0x6f, 0x78, 0x75, 0x56, 0x5b, 0x4c, 0x41,
0x61, 0x6c, 0x7b, 0x76, 0x55, 0x58, 0x4f, 0x42, 0x09, 0x04, 0x13, 0x1e, 0x3d, 0x30, 0x27, 0x2a,
0xb1, 0xbc, 0xab, 0xa6, 0x85, 0x88, 0x9f, 0x92, 0xd9, 0xd4, 0xc3, 0xce, 0xed, 0xe0, 0xf7, 0xfa,
0xb7, 0xba, 0xad, 0xa0, 0x83, 0x8e, 0x99, 0x94, 0xdf, 0xd2, 0xc5, 0xc8, 0xeb, 0xe6, 0xf1, 0xfc,
0x67, 0x6a, 0x7d, 0x70, 0x53, 0x5e, 0x49, 0x44, 0x0f, 0x02, 0x15, 0x18, 0x3b, 0x36, 0x21, 0x2c,
0x0c, 0x01, 0x16, 0x1b, 0x38, 0x35, 0x22, 0x2f, 0x64, 0x69, 0x7e, 0x73, 0x50, 0x5d, 0x4a, 0x47,
0xdc, 0xd1, 0xc6, 0xcb, 0xe8, 0xe5, 0xf2, 0xff, 0xb4, 0xb9, 0xae, 0xa3, 0x80, 0x8d, 0x9a, 0x97
};
static const byte lookup_g14[] = {
0x00, 0x0e, 0x1c, 0x12, 0x38, 0x36, 0x24, 0x2a, 0x70, 0x7e, 0x6c, 0x62, 0x48, 0x46, 0x54, 0x5a,
0xe0, 0xee, 0xfc, 0xf2, 0xd8, 0xd6, 0xc4, 0xca, 0x90, 0x9e, 0x8c, 0x82, 0xa8, 0xa6, 0xb4, 0xba,
0xdb, 0xd5, 0xc7, 0xc9, 0xe3, 0xed, 0xff, 0xf1, 0xab, 0xa5, 0xb7, 0xb9, 0x93, 0x9d, 0x8f, 0x81,
0x3b, 0x35, 0x27, 0x29, 0x03, 0x0d, 0x1f, 0x11, 0x4b, 0x45, 0x57, 0x59, 0x73, 0x7d, 0x6f, 0x61,
0xad, 0xa3, 0xb1, 0xbf, 0x95, 0x9b, 0x89, 0x87, 0xdd, 0xd3, 0xc1, 0xcf, 0xe5, 0xeb, 0xf9, 0xf7,
0x4d, 0x43, 0x51, 0x5f, 0x75, 0x7b, 0x69, 0x67, 0x3d, 0x33, 0x21, 0x2f, 0x05, 0x0b, 0x19, 0x17,
0x76, 0x78, 0x6a, 0x64, 0x4e, 0x40, 0x52, 0x5c, 0x06, 0x08, 0x1a, 0x14, 0x3e, 0x30, 0x22, 0x2c,
0x96, 0x98, 0x8a, 0x84, 0xae, 0xa0, 0xb2, 0xbc, 0xe6, 0xe8, 0xfa, 0xf4, 0xde, 0xd0, 0xc2, 0xcc,
0x41, 0x4f, 0x5d, 0x53, 0x79, 0x77, 0x65, 0x6b, 0x31, 0x3f, 0x2d, 0x23, 0x09, 0x07, 0x15, 0x1b,
0xa1, 0xaf, 0xbd, 0xb3, 0x99, 0x97, 0x85, 0x8b, 0xd1, 0xdf, 0xcd, 0xc3, 0xe9, 0xe7, 0xf5, 0xfb,
0x9a, 0x94, 0x86, 0x88, 0xa2, 0xac, 0xbe, 0xb0, 0xea, 0xe4, 0xf6, 0xf8, 0xd2, 0xdc, 0xce, 0xc0,
0x7a, 0x74, 0x66, 0x68, 0x42, 0x4c, 0x5e, 0x50, 0x0a, 0x04, 0x16, 0x18, 0x32, 0x3c, 0x2e, 0x20,
0xec, 0xe2, 0xf0, 0xfe, 0xd4, 0xda, 0xc8, 0xc6, 0x9c, 0x92, 0x80, 0x8e, 0xa4, 0xaa, 0xb8, 0xb6,
0x0c, 0x02, 0x10, 0x1e, 0x34, 0x3a, 0x28, 0x26, 0x7c, 0x72, 0x60, 0x6e, 0x44, 0x4a, 0x58, 0x56,
0x37, 0x39, 0x2b, 0x25, 0x0f, 0x01, 0x13, 0x1d, 0x47, 0x49, 0x5b, 0x55, 0x7f, 0x71, 0x63, 0x6d,
0xd7, 0xd9, 0xcb, 0xc5, 0xef, 0xe1, 0xf3, 0xfd, 0xa7, 0xa9, 0xbb, 0xb5, 0x9f, 0x91, 0x83, 0x8d
};
// Xor's all elements in a n byte array a by b
static void xor (byte *a, const byte *b, int n) {
int i;
for (i = 0; i < n; i++) {
a[i] ^= b[i];
}
}
// Xor the current cipher state by a specific round key
static void xor_round_key(byte *state, const byte *keys, int round) {
xor(state, keys + round * 16, 16);
}
// Apply the rijndael s-box to all elements in an array
// http://en.wikipedia.org/wiki/Rijndael_S-box
static void sub_bytes(byte *a, int n) {
int i;
for (i = 0; i < n; i++) {
a[i] = lookup_sbox[a[i]];
}
}
static void sub_bytes_inv(byte *a, int n) {
int i;
for (i = 0; i < n; i++) {
a[i] = lookup_sbox_inv[a[i]];
}
}
// Rotate the first four bytes of the input eight bits to the left
static inline void rot_word(byte *a) {
byte temp = a[0];
a[0] = a[1];
a[1] = a[2];
a[2] = a[3];
a[3] = temp;
}
// Perform the core key schedule transform on 4 bytes, as part of the key expansion process
// http://en.wikipedia.org/wiki/Rijndael_key_schedule#Key_schedule_core
static void key_schedule_core(byte *a, int i) {
byte temp = a[0]; // Rotate the output eight bits to the left
a[0] = a[1];
a[1] = a[2];
a[2] = a[3];
a[3] = temp;
sub_bytes(a, 4); // Apply Rijndael's S-box on all four individual bytes in the output word
a[0] ^= lookup_rcon[i]; // On just the first (leftmost) byte of the output word, perform the rcon operation with i
// as the input, and exclusive or the rcon output with the first byte of the output word
}
// Expand the 16-byte key to 11 round keys (176 bytes)
// http://en.wikipedia.org/wiki/Rijndael_key_schedule#The_key_schedule
void OQS_AES128_ECB_load_schedule(const uint8_t *key, void **_schedule, int for_encryption) {
*_schedule = malloc(16 * 11);
OQS_EXIT_IF_NULLPTR(*_schedule);
uint8_t *schedule = (uint8_t *) *_schedule;
int bytes = 16; // The count of how many bytes we've created so far
int i = 1; // The rcon iteration value i is set to 1
int j; // For repeating the second stage 3 times
byte t[4]; // Temporary working area known as 't' in the Wiki article
memcpy(schedule, key, 16); // The first 16 bytes of the expanded key are simply the encryption key
while (bytes < 176) { // Until we have 176 bytes of expanded key, we do the following:
memcpy(t, schedule + bytes - 4, 4); // We assign the value of the previous four bytes in the expanded key to t
key_schedule_core(t, i); // We perform the key schedule core on t, with i as the rcon iteration value
i++; // We increment i by 1
xor(t, schedule + bytes - 16, 4); // We exclusive-or t with the four-byte block 16 bytes before the new expanded key.
memcpy(schedule + bytes, t, 4); // This becomes the next 4 bytes in the expanded key
bytes += 4; // Keep track of how many expanded key bytes we've added
// We then do the following three times to create the next twelve bytes
for (j = 0; j < 3; j++) {
memcpy(t, schedule + bytes - 4, 4); // We assign the value of the previous 4 bytes in the expanded key to t
xor(t, schedule + bytes - 16, 4); // We exclusive-or t with the four-byte block n bytes before
memcpy(schedule + bytes, t, 4); // This becomes the next 4 bytes in the expanded key
bytes += 4; // Keep track of how many expanded key bytes we've added
}
}
}
void OQS_AES128_free_schedule(void *schedule) {
if (schedule != NULL) {
OQS_MEM_secure_free(schedule, 176);
}
}
// Expand the 16-byte key to 15 round keys (240 bytes)
// http://en.wikipedia.org/wiki/Rijndael_key_schedule#The_key_schedule
void OQS_AES256_ECB_load_schedule(const uint8_t *key, void **_schedule, int for_encryption) {
*_schedule = malloc(16 * 15);
OQS_EXIT_IF_NULLPTR(*_schedule);
uint8_t *schedule = (uint8_t *) *_schedule;
int i = 0; // The count of how many iterations we've done
uint8_t t[4]; // Temporary working area
// The first 32 bytes of the expanded key are simply the encryption key
memcpy(schedule, key, 8 * 4);
// The remaining 240-32 bytes of the expanded key are computed in one of three ways:
for (i = 8; i < 4 * 15; i++) {
if (i % 8 == 0) {
memcpy(t, schedule + 4 * (i - 1), 4); // We assign the value of the previous 4 bytes in the expanded key to t
sub_bytes(t, 4); // We apply byte-wise substitution to t
rot_word(t); // We rotate t one byte left
t[0] ^= lookup_rcon[i / 8]; // We xor in the round constant
xor(t, schedule + 4 * (i - 8), 4); // We xor in the four-byte block n bytes before
memcpy(schedule + 4 * i, t, 4); // This becomes the next 4 bytes in the expanded key
} else if (i % 8 == 4) {
memcpy(t, schedule + 4 * (i - 1), 4); // We assign the value of the previous 4 bytes in the expanded key to t
sub_bytes(t, 4); // We apply byte-wise substitution to t
xor(t, schedule + 4 * (i - 8), 4); // We xor in the four-byte block n bytes before
memcpy(schedule + 4 * i, t, 4); // This becomes the next 4 bytes in the expanded key
} else {
memcpy(t, schedule + 4 * (i - 1), 4); // We assign the value of the previous 4 bytes in the expanded key to t
xor(t, schedule + 4 * (i - 8), 4); // We xor in the four-byte block n bytes before
memcpy(schedule + 4 * i, t, 4); // This becomes the next 4 bytes in the expanded key
}
}
}
void OQS_AES256_CTR_load_schedule(const uint8_t *key, void **_schedule) {
OQS_AES256_ECB_load_schedule(key, _schedule, 1);
}
/** copied from common.c **/
void OQS_MEM_cleanse(void *ptr, size_t len) {
#if defined(_WIN32)
SecureZeroMemory(ptr, len);
#elif defined(HAVE_MEMSET_S)
if (0U < len && memset_s(ptr, (rsize_t)len, 0, (rsize_t)len) != 0) {
abort();
}
#else
typedef void *(*memset_t)(void *, int, size_t);
static volatile memset_t memset_func = memset;
memset_func(ptr, 0, len);
#endif
}
void OQS_MEM_secure_free(void *ptr, size_t len) {
if (ptr != NULL) {
OQS_MEM_cleanse(ptr, len);
free(ptr); // IGNORE free-check
}
}
void OQS_AES256_free_schedule(void *schedule) {
if (schedule != NULL) {
OQS_MEM_secure_free(schedule, 16 * 15);
}
}
// Apply the shift rows step on the 16 byte cipher state
// http://en.wikipedia.org/wiki/Advanced_Encryption_Standard#The_ShiftRows_step
static void shift_rows(byte *state) {
int i;
byte temp[16];
memcpy(temp, state, 16);
for (i = 0; i < 16; i++) {
state[i] = temp[shift_rows_table[i]];
}
}
static void shift_rows_inv(byte *state) {
int i;
byte temp[16];
memcpy(temp, state, 16);
for (i = 0; i < 16; i++) {
state[i] = temp[shift_rows_table_inv[i]];
}
}
// Perform the mix columns matrix on one column of 4 bytes
// http://en.wikipedia.org/wiki/Rijndael_mix_columns
static void mix_col(byte *state) {
byte a0 = state[0];
byte a1 = state[1];
byte a2 = state[2];
byte a3 = state[3];
state[0] = lookup_g2[a0] ^ lookup_g3[a1] ^ a2 ^ a3;
state[1] = lookup_g2[a1] ^ lookup_g3[a2] ^ a3 ^ a0;
state[2] = lookup_g2[a2] ^ lookup_g3[a3] ^ a0 ^ a1;
state[3] = lookup_g2[a3] ^ lookup_g3[a0] ^ a1 ^ a2;
}
// Perform the mix columns matrix on each column of the 16 bytes
static void mix_cols(byte *state) {
mix_col(state);
mix_col(state + 4);
mix_col(state + 8);
mix_col(state + 12);
}
// Perform the inverse mix columns matrix on one column of 4 bytes
// http://en.wikipedia.org/wiki/Rijndael_mix_columns
static void mix_col_inv(byte *state) {
byte a0 = state[0];
byte a1 = state[1];
byte a2 = state[2];
byte a3 = state[3];
state[0] = lookup_g14[a0] ^ lookup_g9[a3] ^ lookup_g13[a2] ^ lookup_g11[a1];
state[1] = lookup_g14[a1] ^ lookup_g9[a0] ^ lookup_g13[a3] ^ lookup_g11[a2];
state[2] = lookup_g14[a2] ^ lookup_g9[a1] ^ lookup_g13[a0] ^ lookup_g11[a3];
state[3] = lookup_g14[a3] ^ lookup_g9[a2] ^ lookup_g13[a1] ^ lookup_g11[a0];
}
// Perform the inverse mix columns matrix on each column of the 16 bytes
static void mix_cols_inv(byte *state) {
mix_col_inv(state);
mix_col_inv(state + 4);
mix_col_inv(state + 8);
mix_col_inv(state + 12);
}
void oqs_aes128_enc_sch_block_c(const uint8_t *plaintext, const void *_schedule, uint8_t *ciphertext) {
const uint8_t *schedule = (const uint8_t *) _schedule;
int i; // To count the rounds
// First Round
memcpy(ciphertext, plaintext, 16);
xor_round_key(ciphertext, schedule, 0);
// Middle rounds
for (i = 0; i < 9; i++) {
sub_bytes(ciphertext, 16);
shift_rows(ciphertext);
mix_cols(ciphertext);
xor_round_key(ciphertext, schedule, i + 1);
}
// Final Round
sub_bytes(ciphertext, 16);
shift_rows(ciphertext);
xor_round_key(ciphertext, schedule, 10);
}
void oqs_aes128_dec_sch_block_c(const uint8_t *ciphertext, const void *_schedule, uint8_t *plaintext) {
const uint8_t *schedule = (const uint8_t *) _schedule;
int i; // To count the rounds
// Reverse the final Round
memcpy(plaintext, ciphertext, 16);
xor_round_key(plaintext, schedule, 10);
shift_rows_inv(plaintext);
sub_bytes_inv(plaintext, 16);
// Reverse the middle rounds
for (i = 0; i < 9; i++) {
xor_round_key(plaintext, schedule, 9 - i);
mix_cols_inv(plaintext);
shift_rows_inv(plaintext);
sub_bytes_inv(plaintext, 16);
}
// Reverse the first Round
xor_round_key(plaintext, schedule, 0);
}
void oqs_aes256_enc_sch_block_c(const uint8_t *plaintext, const void *_schedule, uint8_t *ciphertext) {
const uint8_t *schedule = (const uint8_t *) _schedule;
int i; // To count the rounds
// First Round
memcpy(ciphertext, plaintext, 16);
xor_round_key(ciphertext, schedule, 0);
// Middle rounds
for (i = 0; i < 13; i++) {
sub_bytes(ciphertext, 16);
shift_rows(ciphertext);
mix_cols(ciphertext);
xor_round_key(ciphertext, schedule, i + 1);
}
// Final Round
sub_bytes(ciphertext, 16);
shift_rows(ciphertext);
xor_round_key(ciphertext, schedule, 14);
}
void oqs_aes256_dec_sch_block_c(const uint8_t *ciphertext, const void *_schedule, uint8_t *plaintext) {
const uint8_t *schedule = (const uint8_t *) _schedule;
int i; // To count the rounds
// Reverse the final Round
memcpy(plaintext, ciphertext, 16);
xor_round_key(plaintext, schedule, 14);
shift_rows_inv(plaintext);
sub_bytes_inv(plaintext, 16);
// Reverse the middle rounds
for (i = 0; i < 13; i++) {
xor_round_key(plaintext, schedule, 13 - i);
mix_cols_inv(plaintext);
shift_rows_inv(plaintext);
sub_bytes_inv(plaintext, 16);
}
// Reverse the first Round
xor_round_key(plaintext, schedule, 0);
}
void OQS_AES128_ECB_enc(const uint8_t *plaintext, const size_t plaintext_len, const uint8_t *key, uint8_t *ciphertext) {
void *schedule = NULL;
OQS_AES128_ECB_load_schedule(key, &schedule, 1);
OQS_AES128_ECB_enc_sch(plaintext, plaintext_len, schedule, ciphertext);
OQS_AES128_free_schedule(schedule);
}
void OQS_AES128_ECB_enc_sch(const uint8_t *plaintext, const size_t plaintext_len, const void *schedule, uint8_t *ciphertext) {
assert(plaintext_len % 16 == 0);
for (size_t block = 0; block < plaintext_len / 16; block++) {
oqs_aes128_enc_sch_block_c(plaintext + (16 * block), schedule, ciphertext + (16 * block));
}
}
void OQS_AES128_ECB_dec(const uint8_t *ciphertext, const size_t ciphertext_len, const uint8_t *key, uint8_t *plaintext) {
void *schedule = NULL;
OQS_AES128_ECB_load_schedule(key, &schedule, 0);
OQS_AES128_ECB_dec_sch(ciphertext, ciphertext_len, schedule, plaintext);
OQS_AES128_free_schedule(schedule);
}
void OQS_AES128_ECB_dec_sch(const uint8_t *ciphertext, const size_t ciphertext_len, const void *schedule, uint8_t *plaintext) {
assert(ciphertext_len % 16 == 0);
for (size_t block = 0; block < ciphertext_len / 16; block++) {
oqs_aes128_dec_sch_block_c(ciphertext + (16 * block), schedule, plaintext + (16 * block));
}
}
void OQS_AES256_ECB_enc(const uint8_t *plaintext, const size_t plaintext_len, const uint8_t *key, uint8_t *ciphertext) {
void *schedule = NULL;
OQS_AES256_ECB_load_schedule(key, &schedule, 1);
OQS_AES256_ECB_enc_sch(plaintext, plaintext_len, schedule, ciphertext);
OQS_AES256_free_schedule(schedule);
}
void OQS_AES256_ECB_enc_sch(const uint8_t *plaintext, const size_t plaintext_len, const void *schedule, uint8_t *ciphertext) {
assert(plaintext_len % 16 == 0);
for (size_t block = 0; block < plaintext_len / 16; block++) {
oqs_aes256_enc_sch_block_c(plaintext + (16 * block), schedule, ciphertext + (16 * block));
}
}
void OQS_AES256_ECB_dec(const uint8_t *ciphertext, const size_t ciphertext_len, const uint8_t *key, uint8_t *plaintext) {
void *schedule = NULL;
OQS_AES256_ECB_load_schedule(key, &schedule, 0);
OQS_AES256_ECB_dec_sch(ciphertext, ciphertext_len, schedule, plaintext);
OQS_AES256_free_schedule(schedule);
}
void OQS_AES256_ECB_dec_sch(const uint8_t *ciphertext, const size_t ciphertext_len, const void *schedule, uint8_t *plaintext) {
assert(ciphertext_len % 16 == 0);
for (size_t block = 0; block < ciphertext_len / 16; block++) {
oqs_aes256_dec_sch_block_c(ciphertext + (16 * block), schedule, plaintext + (16 * block));
}
}
static inline uint32_t UINT32_TO_BE(const uint32_t x) {
union {
uint32_t val;
uint8_t bytes[4];
} y;
/* As part of the union, these bytes get read when y.val is read */
y.bytes[0] = (x >> 24) & 0xFF;
y.bytes[1] = (x >> 16) & 0xFF;
y.bytes[2] = (x >> 8) & 0xFF;
/* cppcheck-suppress unreadVariable */
y.bytes[3] = x & 0xFF;
return y.val;
}
#define BE_TO_UINT32(n) (uint32_t)((((uint8_t *) &(n))[0] << 24) | (((uint8_t *) &(n))[1] << 16) | (((uint8_t *) &(n))[2] << 8) | (((uint8_t *) &(n))[3] << 0))
void OQS_AES256_CTR_sch(const uint8_t *iv, size_t iv_len, const void *schedule, uint8_t *out, size_t out_len) {
uint8_t block[16];
uint32_t ctr;
uint32_t ctr_be;
memcpy(block, iv, 12);
if (iv_len == 12) {
ctr = 0;
} else if (iv_len == 16) {
memcpy(&ctr_be, &iv[12], 4);
/* ctr_be gets cast to a uint8_t* before being accessed; the non-zero indices are valid */
/* cppcheck-suppress objectIndex */
ctr = BE_TO_UINT32(ctr_be);
} else {
exit(EXIT_FAILURE);
}
while (out_len >= 16) {
ctr_be = UINT32_TO_BE(ctr);
memcpy(&block[12], (uint8_t *) &ctr_be, 4);
oqs_aes256_enc_sch_block_c(block, schedule, out);
out += 16;
out_len -= 16;
ctr++;
}
if (out_len > 0) {
uint8_t tmp[16];
ctr_be = UINT32_TO_BE(ctr);
memcpy(&block[12], (uint8_t *) &ctr_be, 4);
oqs_aes256_enc_sch_block_c(block, schedule, tmp);
memcpy(out, tmp, out_len);
}
}
|