aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/restricted/aws/s2n/pq-crypto/bike_r2/bike_r2_kem.c
blob: 3539827d14e8e92412a81ed48fd9a38abc1681bb (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
/* Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
 * SPDX-License-Identifier: Apache-2.0"
 *
 * Written by Nir Drucker, Shay Gueron, and Dusan Kostic,
 * AWS Cryptographic Algorithms Group.
 * (ndrucker@amazon.com, gueron@amazon.com, dkostic@amazon.com)
 */

#include "decode.h"
#include "gf2x.h"
#include "sampling.h"
#include "sha.h"
#include "tls/s2n_kem.h"

_INLINE_ void
split_e(OUT split_e_t *splitted_e, IN const e_t *e)
{
  // Copy lower bytes (e0)
  memcpy(splitted_e->val[0].raw, e->raw, R_SIZE);

  // Now load second value
  for(uint32_t i = R_SIZE; i < N_SIZE; ++i)
  {
    splitted_e->val[1].raw[i - R_SIZE] =
        ((e->raw[i] << LAST_R_BYTE_TRAIL) | (e->raw[i - 1] >> LAST_R_BYTE_LEAD));
  }

  // Fix corner case
  if(N_SIZE < (2ULL * R_SIZE))
  {
    splitted_e->val[1].raw[R_SIZE - 1] = (e->raw[N_SIZE - 1] >> LAST_R_BYTE_LEAD);
  }

  // Fix last value
  splitted_e->val[0].raw[R_SIZE - 1] &= LAST_R_BYTE_MASK;
  splitted_e->val[1].raw[R_SIZE - 1] &= LAST_R_BYTE_MASK;
}

_INLINE_ void
translate_hash_to_ss(OUT ss_t *ss, IN sha_hash_t *hash)
{
  bike_static_assert(sizeof(*hash) >= sizeof(*ss), hash_size_lt_ss_size);
  memcpy(ss->raw, hash->u.raw, sizeof(*ss));
}

_INLINE_ void
translate_hash_to_seed(OUT seed_t *seed, IN sha_hash_t *hash)
{
  bike_static_assert(sizeof(*hash) >= sizeof(*seed), hash_size_lt_seed_size);
  memcpy(seed->raw, hash->u.raw, sizeof(*seed));
}

_INLINE_ ret_t
calc_pk(OUT pk_t *pk, IN const seed_t *g_seed, IN const pad_sk_t p_sk)
{
  // PK is dbl padded because modmul require some scratch space for the
  // multiplication result
  dbl_pad_pk_t p_pk = {0};

  // Intialized padding to zero
  DEFER_CLEANUP(padded_r_t g = {0}, padded_r_cleanup);

  GUARD(sample_uniform_r_bits(&g.val, g_seed, MUST_BE_ODD));

  // Calculate (g0, g1) = (g*h1, g*h0)
  GUARD(gf2x_mod_mul((uint64_t *)&p_pk[0], (const uint64_t *)&g,
                     (const uint64_t *)&p_sk[1]));
  GUARD(gf2x_mod_mul((uint64_t *)&p_pk[1], (const uint64_t *)&g,
                     (const uint64_t *)&p_sk[0]));

  // Copy the data to the output parameters.
  pk->val[0] = p_pk[0].val;
  pk->val[1] = p_pk[1].val;

  print("g:  ", (const uint64_t *)g.val.raw, R_BITS);
  print("g0: ", (const uint64_t *)&p_pk[0], R_BITS);
  print("g1: ", (uint64_t *)&p_pk[1], R_BITS);

  return SUCCESS;
}

// The function H is required by BIKE-1- Round 2 variant. It uses the
// extract-then-expand paradigm, based on SHA384 and AES256-CTR PRNG, to produce
// e from (m*f0, m*f1):
_INLINE_ ret_t
function_h(OUT split_e_t *splitted_e, IN const r_t *in0, IN const r_t *in1)
{
  DEFER_CLEANUP(generic_param_n_t tmp, generic_param_n_cleanup);
  DEFER_CLEANUP(sha_hash_t hash_seed = {0}, sha_hash_cleanup);
  DEFER_CLEANUP(seed_t seed_for_hash, seed_cleanup);
  DEFER_CLEANUP(aes_ctr_prf_state_t prf_state = {0}, finalize_aes_ctr_prf);

  tmp.val[0] = *in0;
  tmp.val[1] = *in1;

  // Hash (m*f0, m*f1) to generate a seed:
  sha(&hash_seed, sizeof(tmp), (uint8_t *)&tmp);

  // Format the seed as a 32-bytes input:
  translate_hash_to_seed(&seed_for_hash, &hash_seed);

  // Use the seed to generate a sparse error vector e:
  DMSG("    Generating random error.\n");
  GUARD(init_aes_ctr_prf_state(&prf_state, MAX_AES_INVOKATION, &seed_for_hash));

  DEFER_CLEANUP(padded_e_t e, padded_e_cleanup);
  DEFER_CLEANUP(ALIGN(8) compressed_idx_t_t dummy, compressed_idx_t_cleanup);

  GUARD(generate_sparse_rep((uint64_t *)&e, dummy.val, T1, N_BITS, sizeof(e),
                            &prf_state));
  split_e(splitted_e, &e.val);

  return SUCCESS;
}

_INLINE_ ret_t
encrypt(OUT ct_t *ct, OUT split_e_t *mf, IN const pk_t *pk, IN const seed_t *seed)
{
  DEFER_CLEANUP(padded_r_t m = {0}, padded_r_cleanup);

  DMSG("    Sampling m.\n");
  GUARD(sample_uniform_r_bits(&m.val, seed, NO_RESTRICTION));

  // Pad the public key
  pad_pk_t p_pk = {0};
  p_pk[0].val   = pk->val[0];
  p_pk[1].val   = pk->val[1];

  // Pad the ciphertext
  pad_ct_t p_ct = {0};
  p_ct[0].val   = ct->val[0];
  p_ct[1].val   = ct->val[1];

  DEFER_CLEANUP(dbl_pad_ct_t mf_int = {0}, dbl_pad_ct_cleanup);

  DMSG("    Computing m*f0 and m*f1.\n");
  GUARD(
      gf2x_mod_mul((uint64_t *)&mf_int[0], (uint64_t *)&m, (uint64_t *)&p_pk[0]));
  GUARD(
      gf2x_mod_mul((uint64_t *)&mf_int[1], (uint64_t *)&m, (uint64_t *)&p_pk[1]));

  DEFER_CLEANUP(split_e_t splitted_e, split_e_cleanup);

  DMSG("    Computing the hash function e <- H(m*f0, m*f1).\n");
  GUARD(function_h(&splitted_e, &mf_int[0].val, &mf_int[1].val));

  DMSG("    Addding Error to the ciphertext.\n");
  GUARD(gf2x_add(p_ct[0].val.raw, mf_int[0].val.raw, splitted_e.val[0].raw,
                 R_SIZE));
  GUARD(gf2x_add(p_ct[1].val.raw, mf_int[1].val.raw, splitted_e.val[1].raw,
                 R_SIZE));

  // Copy the data to the output parameters.
  ct->val[0] = p_ct[0].val;
  ct->val[1] = p_ct[1].val;

  // Copy the internal mf to the output parameters.
  mf->val[0] = mf_int[0].val;
  mf->val[1] = mf_int[1].val;

  print("e0: ", (uint64_t *)splitted_e.val[0].raw, R_BITS);
  print("e1: ", (uint64_t *)splitted_e.val[1].raw, R_BITS);
  print("c0: ", (uint64_t *)p_ct[0].val.raw, R_BITS);
  print("c1: ", (uint64_t *)p_ct[1].val.raw, R_BITS);

  return SUCCESS;
}

_INLINE_ ret_t
reencrypt(OUT pad_ct_t ce,
          OUT split_e_t *e2,
          IN const split_e_t *e,
          IN const ct_t *l_ct)
{
  // Compute (c0 + e0') and (c1 + e1')
  GUARD(gf2x_add(ce[0].val.raw, l_ct->val[0].raw, e->val[0].raw, R_SIZE));
  GUARD(gf2x_add(ce[1].val.raw, l_ct->val[1].raw, e->val[1].raw, R_SIZE));

  // (e0'', e1'') <-- H(c0 + e0', c1 + e1')
  GUARD(function_h(e2, &ce[0].val, &ce[1].val));

  return SUCCESS;
}

// Generate the Shared Secret K(mf0, mf1, c) by either
// K(c0+e0', c1+e1', c) or K(sigma0, sigma1, c)
_INLINE_ void
get_ss(OUT ss_t *out, IN const r_t *in0, IN const r_t *in1, IN const ct_t *ct)
{
  DMSG("    Enter get_ss.\n");

  uint8_t tmp[4 * R_SIZE];
  memcpy(tmp, in0->raw, R_SIZE);
  memcpy(tmp + R_SIZE, in1->raw, R_SIZE);
  memcpy(tmp + 2 * R_SIZE, ct, sizeof(*ct));

  // Calculate the hash digest
  DEFER_CLEANUP(sha_hash_t hash = {0}, sha_hash_cleanup);
  sha(&hash, sizeof(tmp), tmp);

  // Truncate the resulting digest, to produce the key K, by copying only the
  // desired number of LSBs.
  translate_hash_to_ss(out, &hash);

  secure_clean(tmp, sizeof(tmp));
  DMSG("    Exit get_ss.\n");
}
////////////////////////////////////////////////////////////////////////////////
// The three APIs below (keypair, encapsulate, decapsulate) are defined by NIST:
////////////////////////////////////////////////////////////////////////////////
int
BIKE1_L1_R2_crypto_kem_keypair(OUT unsigned char *pk, OUT unsigned char *sk)
{
  notnull_check(sk);
  notnull_check(pk);

  // Convert to this implementation types
  pk_t *l_pk = (pk_t *)pk;
  DEFER_CLEANUP(ALIGN(8) sk_t l_sk = {0}, sk_cleanup);

  // For DRBG and AES_PRF
  DEFER_CLEANUP(seeds_t seeds = {0}, seeds_cleanup);
  DEFER_CLEANUP(aes_ctr_prf_state_t h_prf_state = {0}, aes_ctr_prf_state_cleanup);

  // For sigma0/1/2
  DEFER_CLEANUP(aes_ctr_prf_state_t s_prf_state = {0}, aes_ctr_prf_state_cleanup);

  // Padded for internal use only (the padded data is not released).
  DEFER_CLEANUP(pad_sk_t p_sk = {0}, pad_sk_cleanup);

  // Get the entropy seeds.
  GUARD(get_seeds(&seeds));

  DMSG("  Enter crypto_kem_keypair.\n");
  DMSG("    Calculating the secret key.\n");

  // h0 and h1 use the same context
  GUARD(init_aes_ctr_prf_state(&h_prf_state, MAX_AES_INVOKATION, &seeds.seed[0]));

  // sigma0/1/2 use the same context.
  GUARD(init_aes_ctr_prf_state(&s_prf_state, MAX_AES_INVOKATION, &seeds.seed[2]));

  GUARD(generate_sparse_rep((uint64_t *)&p_sk[0], l_sk.wlist[0].val, DV, R_BITS,
                            sizeof(p_sk[0]), &h_prf_state));

  // Sample the sigmas
  GUARD(sample_uniform_r_bits_with_fixed_prf_context(&l_sk.sigma0, &s_prf_state,
                                                     NO_RESTRICTION));
  GUARD(sample_uniform_r_bits_with_fixed_prf_context(&l_sk.sigma1, &s_prf_state,
                                                     NO_RESTRICTION));

  GUARD(generate_sparse_rep((uint64_t *)&p_sk[1], l_sk.wlist[1].val, DV, R_BITS,
                            sizeof(p_sk[1]), &h_prf_state));

  // Copy data
  l_sk.bin[0] = p_sk[0].val;
  l_sk.bin[1] = p_sk[1].val;

  DMSG("    Calculating the public key.\n");

  GUARD(calc_pk(l_pk, &seeds.seed[1], p_sk));

  memcpy(sk, &l_sk, sizeof(l_sk));

  print("h0: ", (uint64_t *)&l_sk.bin[0], R_BITS);
  print("h1: ", (uint64_t *)&l_sk.bin[1], R_BITS);
  print("h0c:", (uint64_t *)&l_sk.wlist[0], SIZEOF_BITS(compressed_idx_dv_t));
  print("h1c:", (uint64_t *)&l_sk.wlist[1], SIZEOF_BITS(compressed_idx_dv_t));
  print("sigma0: ", (uint64_t *)l_sk.sigma0.raw, R_BITS);
  print("sigma1: ", (uint64_t *)l_sk.sigma1.raw, R_BITS);

  DMSG("  Exit crypto_kem_keypair.\n");

  return SUCCESS;
}

// Encapsulate - pk is the public key,
//               ct is a key encapsulation message (ciphertext),
//               ss is the shared secret.
int
BIKE1_L1_R2_crypto_kem_enc(OUT unsigned char *     ct,
                           OUT unsigned char *     ss,
                           IN const unsigned char *pk)
{
  DMSG("  Enter crypto_kem_enc.\n");

  // Convert to the types that are used by this implementation
  const pk_t *l_pk = (const pk_t *)pk;
  ct_t *      l_ct = (ct_t *)ct;
  ss_t *      l_ss = (ss_t *)ss;

  notnull_check(pk);
  notnull_check(ct);
  notnull_check(ss);

  // For NIST DRBG_CTR
  DEFER_CLEANUP(seeds_t seeds = {0}, seeds_cleanup);

  // Get the entropy seeds.
  GUARD(get_seeds(&seeds));

  DMSG("    Encrypting.\n");
  // In fact, seed[0] should be used.
  // Here, we stay consistent with BIKE's reference code
  // that chooses the seconde seed.
  DEFER_CLEANUP(split_e_t mf, split_e_cleanup);
  GUARD(encrypt(l_ct, &mf, l_pk, &seeds.seed[1]));

  DMSG("    Generating shared secret.\n");
  get_ss(l_ss, &mf.val[0], &mf.val[1], l_ct);

  print("ss: ", (uint64_t *)l_ss->raw, SIZEOF_BITS(*l_ss));
  DMSG("  Exit crypto_kem_enc.\n");
  return SUCCESS;
}

// Decapsulate - ct is a key encapsulation message (ciphertext),
//               sk is the private key,
//               ss is the shared secret
int
BIKE1_L1_R2_crypto_kem_dec(OUT unsigned char *     ss,
                           IN const unsigned char *ct,
                           IN const unsigned char *sk)
{
  DMSG("  Enter crypto_kem_dec.\n");

  // Convert to the types used by this implementation
  const ct_t *l_ct = (const ct_t *)ct;
  ss_t *      l_ss = (ss_t *)ss;
  notnull_check(sk);
  notnull_check(ct);
  notnull_check(ss);

  DEFER_CLEANUP(ALIGN(8) sk_t l_sk, sk_cleanup);
  memcpy(&l_sk, sk, sizeof(l_sk));

  // Force zero initialization.
  DEFER_CLEANUP(syndrome_t syndrome = {0}, syndrome_cleanup);
  DEFER_CLEANUP(split_e_t e, split_e_cleanup);

  DMSG("  Computing s.\n");
  GUARD(compute_syndrome(&syndrome, l_ct, &l_sk));

  DMSG("  Decoding.\n");
  uint32_t dec_ret = decode(&e, &syndrome, l_ct, &l_sk) != SUCCESS ? 0 : 1;

  DEFER_CLEANUP(split_e_t e2, split_e_cleanup);
  DEFER_CLEANUP(pad_ct_t ce, pad_ct_cleanup);
  GUARD(reencrypt(ce, &e2, &e, l_ct));

  // Check if the decoding is successful.
  // Check if the error weight equals T1.
  // Check if (e0', e1') == (e0'', e1'').
  volatile uint32_t success_cond;
  success_cond = dec_ret;
  success_cond &= secure_cmp32(T1, r_bits_vector_weight(&e.val[0]) +
                                       r_bits_vector_weight(&e.val[1]));
  success_cond &= secure_cmp((uint8_t *)&e, (uint8_t *)&e2, sizeof(e));

  ss_t ss_succ = {0};
  ss_t ss_fail = {0};

  get_ss(&ss_succ, &ce[0].val, &ce[1].val, l_ct);
  get_ss(&ss_fail, &l_sk.sigma0, &l_sk.sigma1, l_ct);

  uint8_t mask = ~secure_l32_mask(0, success_cond);
  for(uint32_t i = 0; i < sizeof(*l_ss); i++)
  {
    l_ss->raw[i] = (mask & ss_succ.raw[i]) | (~mask & ss_fail.raw[i]);
  }

  DMSG("  Exit crypto_kem_dec.\n");
  return SUCCESS;
}