aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/restricted/aws/s2n/pq-crypto/bike_r1/utilities.h
blob: be8f4b9b1012b0fa8fcaf8bf06f5d02016d8707d (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
/* Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
 * SPDX-License-Identifier: Apache-2.0"
 *
 * Written by Nir Drucker and Shay Gueron
 * AWS Cryptographic Algorithms Group.
 * (ndrucker@amazon.com, gueron@amazon.com)
 */

#pragma once

#include "cleanup.h"

#ifndef bswap_64
#  define bswap_64(x) __builtin_bswap64(x)
#endif

// Printing values in Little Endian
void
print_LE(IN const uint64_t *in, IN uint32_t bits_num);

// Printing values in Big Endian
void
print_BE(IN const uint64_t *in, IN uint32_t bits_num);

// Printing number is required only in verbose level 2 or above
#if VERBOSE >= 2
#  ifdef PRINT_IN_BE
// Print in Big Endian
#    define print(name, in, bits_num) \
      do                              \
      {                               \
        EDMSG(name);                  \
        print_BE(in, bits_num);       \
      } while(0)
#  else
// Print in Little Endian
#    define print(name, in, bits_num) \
      do                              \
      {                               \
        EDMSG(name);                  \
        print_LE(in, bits_num);       \
      } while(0)
#  endif
#else
// No prints at all
#  define print(name, in, bits_num)
#endif

// Comparing value in a constant time manner
_INLINE_ uint32_t
secure_cmp(IN const uint8_t *a, IN const uint8_t *b, IN const uint32_t size)
{
  volatile uint8_t res = 0;

  for(uint32_t i = 0; i < size; ++i)
  {
    res |= (a[i] ^ b[i]);
  }

  return (0 == res);
}

uint64_t
r_bits_vector_weight(IN const r_t *in);

// Constant time
_INLINE_ uint32_t
iszero(IN const uint8_t *s, IN const uint32_t len)
{
  volatile uint32_t res = 0;
  for(uint64_t i = 0; i < len; i++)
  {
    res |= s[i];
  }
  return (0 == res);
}

// BSR returns ceil(log2(val))
_INLINE_ uint8_t
bit_scan_reverse(uint64_t val)
{
  // index is always smaller than 64
  uint8_t index = 0;

  while(val != 0)
  {
    val >>= 1;
    index++;
  }

  return index;
}

// Return 1 if equal 0 otherwise
_INLINE_ uint32_t
secure_cmp32(IN const uint32_t v1, IN const uint32_t v2)
{
#if defined(__aarch64__)
  uint32_t res;
  __asm__ __volatile__("cmp  %w1, %w2; \n "
                       "cset %w0, EQ; \n"
                       : "=r"(res)
                       : "r"(v1), "r"(v2)
                       :);
  return res;
#elif defined(__x86_64__) || defined(__i386__)
  uint32_t res;
  __asm__ __volatile__("xor  %%edx, %%edx; \n"
                       "cmp  %1, %2; \n "
                       "sete %%dl; \n"
                       "mov %%edx, %0; \n"
                       : "=r"(res)
                       : "r"(v1), "r"(v2)
                       : "rdx");
  return res;
#else
  // Insecure comparison: The main purpose of secure_cmp32 is to avoid
  // branches and thus to prevent potential side channel attacks. To do that
  // we normally leverage some CPU special instructions such as "sete"
  // (for __x86_64__) and "cset" (for __aarch64__). When dealing with general
  // CPU architectures, the interpretation of the line below is left for the
  // compiler, which may lead to an insecure branch.
  return (v1 == v2 ? 1 : 0);
#endif
}

// Return 0 if v1 < v2, (-1) otherwise
_INLINE_ uint32_t
secure_l32_mask(IN const uint32_t v1, IN const uint32_t v2)
{
#if defined(__aarch64__)
  uint32_t res;
  __asm__ __volatile__("cmp  %w2, %w1; \n "
                       "cset %w0, HI; \n"
                       : "=r"(res)
                       : "r"(v1), "r"(v2)
                       :);
  return (res - 1);
#elif defined(__x86_64__) || defined(__i386__)
  uint32_t res;
  __asm__ __volatile__("xor  %%edx, %%edx; \n"
                       "cmp  %1, %2; \n "
                       "setl %%dl; \n"
                       "dec %%edx; \n"
                       "mov %%edx, %0; \n"

                       : "=r"(res)
                       : "r"(v2), "r"(v1)
                       : "rdx");

  return res;
#else
  // If v1 >= v2 then the subtraction result is 0^32||(v1-v2)
  // else it will be 1^32||(v2-v1+1). Subsequently, negating the upper
  // 32 bits gives 0 if v1 < v2 and otherwise (-1).
  return ~((uint32_t)(((uint64_t)v1 - (uint64_t)v2) >> 32));
#endif
}