1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
|
/*
* Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License").
* You may not use this file except in compliance with the License.
* A copy of the License is located at
*
* http://aws.amazon.com/apache2.0
*
* or in the "license" file accompanying this file. This file is distributed
* on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either
* express or implied. See the License for the specific language governing
* permissions and limitations under the License.
*/
#include "crypto/s2n_drbg.h"
#include <openssl/evp.h>
#include <sys/param.h>
#include "utils/s2n_blob.h"
#include "utils/s2n_random.h"
#include "utils/s2n_safety.h"
static bool ignore_prediction_resistance_for_testing = false;
#define s2n_drbg_key_size(drgb) EVP_CIPHER_CTX_key_length((drbg)->ctx)
#define s2n_drbg_seed_size(drgb) (S2N_DRBG_BLOCK_SIZE + s2n_drbg_key_size(drgb))
/* This function is the same as s2n_increment_sequence_number
but it does not check for overflow, since overflow is
acceptable in DRBG */
S2N_RESULT s2n_increment_drbg_counter(struct s2n_blob *counter)
{
for (uint32_t i = counter->size; i > 0; i--) {
counter->data[i - 1] += 1;
if (counter->data[i - 1]) {
break;
}
/* seq[i] wrapped, so let it carry */
}
return S2N_RESULT_OK;
}
static S2N_RESULT s2n_drbg_block_encrypt(EVP_CIPHER_CTX *ctx, uint8_t in[S2N_DRBG_BLOCK_SIZE], uint8_t out[S2N_DRBG_BLOCK_SIZE])
{
RESULT_ENSURE_REF(ctx);
/* len is set by EVP_EncryptUpdate and checked post operation */
int len = S2N_DRBG_BLOCK_SIZE;
RESULT_GUARD_OSSL(EVP_EncryptUpdate(ctx, out, &len, in, S2N_DRBG_BLOCK_SIZE), S2N_ERR_DRBG);
RESULT_ENSURE_EQ(len, S2N_DRBG_BLOCK_SIZE);
return S2N_RESULT_OK;
}
static S2N_RESULT s2n_drbg_bits(struct s2n_drbg *drbg, struct s2n_blob *out)
{
RESULT_ENSURE_REF(drbg);
RESULT_ENSURE_REF(drbg->ctx);
RESULT_ENSURE_REF(out);
struct s2n_blob value = { 0 };
RESULT_GUARD_POSIX(s2n_blob_init(&value, drbg->v, sizeof(drbg->v)));
int block_aligned_size = out->size - (out->size % S2N_DRBG_BLOCK_SIZE);
/* Per NIST SP800-90A 10.2.1.2: */
for (int i = 0; i < block_aligned_size; i += S2N_DRBG_BLOCK_SIZE) {
RESULT_GUARD(s2n_increment_drbg_counter(&value));
RESULT_GUARD(s2n_drbg_block_encrypt(drbg->ctx, drbg->v, out->data + i));
drbg->bytes_used += S2N_DRBG_BLOCK_SIZE;
}
if (out->size <= block_aligned_size) {
return S2N_RESULT_OK;
}
uint8_t spare_block[S2N_DRBG_BLOCK_SIZE];
RESULT_GUARD(s2n_increment_drbg_counter(&value));
RESULT_GUARD(s2n_drbg_block_encrypt(drbg->ctx, drbg->v, spare_block));
drbg->bytes_used += S2N_DRBG_BLOCK_SIZE;
RESULT_CHECKED_MEMCPY(out->data + block_aligned_size, spare_block, out->size - block_aligned_size);
return S2N_RESULT_OK;
}
static S2N_RESULT s2n_drbg_update(struct s2n_drbg *drbg, struct s2n_blob *provided_data)
{
RESULT_ENSURE_REF(drbg);
RESULT_ENSURE_REF(drbg->ctx);
RESULT_ENSURE_REF(provided_data);
RESULT_STACK_BLOB(temp_blob, s2n_drbg_seed_size(drgb), S2N_DRBG_MAX_SEED_SIZE);
RESULT_ENSURE_EQ(provided_data->size, s2n_drbg_seed_size(drbg));
RESULT_GUARD(s2n_drbg_bits(drbg, &temp_blob));
/* XOR in the provided data */
for (uint32_t i = 0; i < provided_data->size; i++) {
temp_blob.data[i] ^= provided_data->data[i];
}
/* Update the key and value */
RESULT_GUARD_OSSL(EVP_EncryptInit_ex(drbg->ctx, NULL, NULL, temp_blob.data, NULL), S2N_ERR_DRBG);
RESULT_CHECKED_MEMCPY(drbg->v, temp_blob.data + s2n_drbg_key_size(drbg), S2N_DRBG_BLOCK_SIZE);
return S2N_RESULT_OK;
}
static S2N_RESULT s2n_drbg_mix_in_entropy(struct s2n_drbg *drbg, struct s2n_blob *entropy, struct s2n_blob *ps)
{
RESULT_ENSURE_REF(drbg);
RESULT_ENSURE_REF(drbg->ctx);
RESULT_ENSURE_REF(entropy);
RESULT_ENSURE_GTE(entropy->size, ps->size);
for (uint32_t i = 0; i < ps->size; i++) {
entropy->data[i] ^= ps->data[i];
}
RESULT_GUARD(s2n_drbg_update(drbg, entropy));
return S2N_RESULT_OK;
}
static S2N_RESULT s2n_drbg_seed(struct s2n_drbg *drbg, struct s2n_blob *ps)
{
RESULT_STACK_BLOB(blob, s2n_drbg_seed_size(drbg), S2N_DRBG_MAX_SEED_SIZE);
RESULT_GUARD(s2n_get_seed_entropy(&blob));
RESULT_GUARD(s2n_drbg_mix_in_entropy(drbg, &blob, ps));
drbg->bytes_used = 0;
return S2N_RESULT_OK;
}
static S2N_RESULT s2n_drbg_mix(struct s2n_drbg *drbg, struct s2n_blob *ps)
{
if (s2n_unlikely(ignore_prediction_resistance_for_testing)) {
RESULT_ENSURE(s2n_in_unit_test(), S2N_ERR_NOT_IN_UNIT_TEST);
return S2N_RESULT_OK;
}
RESULT_STACK_BLOB(blob, s2n_drbg_seed_size(drbg), S2N_DRBG_MAX_SEED_SIZE);
RESULT_GUARD(s2n_get_mix_entropy(&blob));
RESULT_GUARD(s2n_drbg_mix_in_entropy(drbg, &blob, ps));
drbg->mixes += 1;
return S2N_RESULT_OK;
}
S2N_RESULT s2n_drbg_instantiate(struct s2n_drbg *drbg, struct s2n_blob *personalization_string, const s2n_drbg_mode mode)
{
RESULT_ENSURE_REF(drbg);
RESULT_ENSURE_REF(personalization_string);
drbg->ctx = EVP_CIPHER_CTX_new();
RESULT_GUARD_PTR(drbg->ctx);
RESULT_EVP_CTX_INIT(drbg->ctx);
switch (mode) {
case S2N_AES_128_CTR_NO_DF_PR:
RESULT_GUARD_OSSL(EVP_EncryptInit_ex(drbg->ctx, EVP_aes_128_ecb(), NULL, NULL, NULL), S2N_ERR_DRBG);
break;
case S2N_AES_256_CTR_NO_DF_PR:
RESULT_GUARD_OSSL(EVP_EncryptInit_ex(drbg->ctx, EVP_aes_256_ecb(), NULL, NULL, NULL), S2N_ERR_DRBG);
break;
default:
RESULT_BAIL(S2N_ERR_DRBG);
}
RESULT_ENSURE_LTE(s2n_drbg_key_size(drbg), S2N_DRBG_MAX_KEY_SIZE);
RESULT_ENSURE_LTE(s2n_drbg_seed_size(drbg), S2N_DRBG_MAX_SEED_SIZE);
static const uint8_t zero_key[S2N_DRBG_MAX_KEY_SIZE] = { 0 };
/* Start off with zeroed data, per 10.2.1.3.1 item 4 and 5 */
memset(drbg->v, 0, sizeof(drbg->v));
RESULT_GUARD_OSSL(EVP_EncryptInit_ex(drbg->ctx, NULL, NULL, zero_key, NULL), S2N_ERR_DRBG);
/* Copy the personalization string */
RESULT_STACK_BLOB(ps, s2n_drbg_seed_size(drbg), S2N_DRBG_MAX_SEED_SIZE);
RESULT_GUARD_POSIX(s2n_blob_zero(&ps));
RESULT_CHECKED_MEMCPY(ps.data, personalization_string->data, MIN(ps.size, personalization_string->size));
/* Seed the DRBG */
RESULT_GUARD(s2n_drbg_seed(drbg, &ps));
return S2N_RESULT_OK;
}
S2N_RESULT s2n_drbg_generate(struct s2n_drbg *drbg, struct s2n_blob *blob)
{
RESULT_ENSURE_REF(drbg);
RESULT_ENSURE_REF(drbg->ctx);
RESULT_STACK_BLOB(zeros, s2n_drbg_seed_size(drbg), S2N_DRBG_MAX_SEED_SIZE);
RESULT_ENSURE(blob->size <= S2N_DRBG_GENERATE_LIMIT, S2N_ERR_DRBG_REQUEST_SIZE);
/* Mix in additional entropy for every randomness generation call. This
* defense mechanism is referred to as "prediction resistance".
* If we ever relax this defense, we must:
* 1. Implement reseeding according to limit specified in
* NIST SP800-90A 10.2.1 Table 3.
* 2. Re-consider whether the current fork detection strategy is still
* sufficient.
*/
RESULT_GUARD(s2n_drbg_mix(drbg, &zeros));
RESULT_GUARD(s2n_drbg_bits(drbg, blob));
RESULT_GUARD(s2n_drbg_update(drbg, &zeros));
return S2N_RESULT_OK;
}
S2N_RESULT s2n_drbg_wipe(struct s2n_drbg *drbg)
{
RESULT_ENSURE_REF(drbg);
if (drbg->ctx) {
RESULT_GUARD_OSSL(EVP_CIPHER_CTX_cleanup(drbg->ctx), S2N_ERR_DRBG);
EVP_CIPHER_CTX_free(drbg->ctx);
drbg->ctx = NULL;
}
*drbg = (struct s2n_drbg){ 0 };
return S2N_RESULT_OK;
}
S2N_RESULT s2n_drbg_bytes_used(struct s2n_drbg *drbg, uint64_t *bytes_used)
{
RESULT_ENSURE_REF(drbg);
RESULT_ENSURE_REF(bytes_used);
*bytes_used = drbg->bytes_used;
return S2N_RESULT_OK;
}
S2N_RESULT s2n_ignore_prediction_resistance_for_testing(bool ignore_bool)
{
RESULT_ENSURE(s2n_in_unit_test(), S2N_ERR_NOT_IN_UNIT_TEST);
ignore_prediction_resistance_for_testing = ignore_bool;
return S2N_RESULT_OK;
}
|