1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
|
/**
* Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
* SPDX-License-Identifier: Apache-2.0.
*/
#include <aws/io/event_loop.h>
#include <aws/io/host_resolver.h>
#include <aws/common/atomics.h>
#include <aws/common/clock.h>
#include <aws/common/condition_variable.h>
#include <aws/common/hash_table.h>
#include <aws/common/lru_cache.h>
#include <aws/common/mutex.h>
#include <aws/common/string.h>
#include <aws/common/task_scheduler.h>
#include <aws/common/thread.h>
#include <aws/io/logging.h>
#include <inttypes.h>
const uint64_t NS_PER_SEC = 1000000000;
const size_t AWS_DEFAULT_DNS_TTL = 30;
int aws_host_address_copy(const struct aws_host_address *from, struct aws_host_address *to) {
to->allocator = from->allocator;
to->address = aws_string_new_from_string(to->allocator, from->address);
to->host = aws_string_new_from_string(to->allocator, from->host);
to->record_type = from->record_type;
to->use_count = from->use_count;
to->connection_failure_count = from->connection_failure_count;
to->expiry = from->expiry;
to->weight = from->weight;
return AWS_OP_SUCCESS;
}
void aws_host_address_move(struct aws_host_address *from, struct aws_host_address *to) {
to->allocator = from->allocator;
to->address = from->address;
to->host = from->host;
to->record_type = from->record_type;
to->use_count = from->use_count;
to->connection_failure_count = from->connection_failure_count;
to->expiry = from->expiry;
to->weight = from->weight;
AWS_ZERO_STRUCT(*from);
}
void aws_host_address_clean_up(struct aws_host_address *address) {
if (address->address) {
aws_string_destroy((void *)address->address);
}
if (address->host) {
aws_string_destroy((void *)address->host);
}
AWS_ZERO_STRUCT(*address);
}
int aws_host_resolver_resolve_host(
struct aws_host_resolver *resolver,
const struct aws_string *host_name,
aws_on_host_resolved_result_fn *res,
const struct aws_host_resolution_config *config,
void *user_data) {
AWS_ASSERT(resolver->vtable && resolver->vtable->resolve_host);
return resolver->vtable->resolve_host(resolver, host_name, res, config, user_data);
}
int aws_host_resolver_purge_cache(struct aws_host_resolver *resolver) {
AWS_ASSERT(resolver->vtable && resolver->vtable->purge_cache);
return resolver->vtable->purge_cache(resolver);
}
int aws_host_resolver_purge_cache_with_callback(
struct aws_host_resolver *resolver,
aws_simple_completion_callback *on_purge_cache_complete_callback,
void *user_data) {
AWS_PRECONDITION(resolver);
AWS_PRECONDITION(resolver->vtable);
if (!resolver->vtable->purge_cache_with_callback) {
AWS_LOGF_ERROR(AWS_LS_IO_DNS, "purge_cache_with_callback function is not supported");
return aws_raise_error(AWS_ERROR_UNSUPPORTED_OPERATION);
}
return resolver->vtable->purge_cache_with_callback(resolver, on_purge_cache_complete_callback, user_data);
}
int aws_host_resolver_purge_host_cache(
struct aws_host_resolver *resolver,
const struct aws_host_resolver_purge_host_options *options) {
AWS_PRECONDITION(resolver);
AWS_PRECONDITION(resolver->vtable);
if (!resolver->vtable->purge_host_cache) {
AWS_LOGF_ERROR(AWS_LS_IO_DNS, "purge_host_cache function is not supported");
return aws_raise_error(AWS_ERROR_UNSUPPORTED_OPERATION);
}
return resolver->vtable->purge_host_cache(resolver, options);
}
int aws_host_resolver_record_connection_failure(
struct aws_host_resolver *resolver,
const struct aws_host_address *address) {
AWS_ASSERT(resolver->vtable && resolver->vtable->record_connection_failure);
return resolver->vtable->record_connection_failure(resolver, address);
}
/*
* Used by both the resolver for its lifetime state as well as individual host entries for theirs.
*/
enum default_resolver_state {
DRS_ACTIVE,
DRS_SHUTTING_DOWN,
};
struct default_host_resolver {
struct aws_allocator *allocator;
/*
* Mutually exclusion for the whole resolver, includes all member data and all host_entry_table operations. Once
* an entry is retrieved, this lock MAY be dropped but certain logic may hold both the resolver and the entry lock.
* The two locks must be taken in that order.
*/
struct aws_mutex resolver_lock;
/* host_name (aws_string*) -> host_entry* */
struct aws_hash_table host_entry_table;
/* Hash table of listener entries per host name. We keep this decoupled from the host entry table to allow for
* listeners to be added/removed regardless of whether or not a corresponding host entry exists.
*
* Any time the listener list in the listener entry becomes empty, we remove the entry from the table. This
* includes when a resolver thread moves all of the available listeners to its local list.
*/
/* host_name (aws_string*) -> host_listener_entry* */
struct aws_hash_table listener_entry_table;
enum default_resolver_state state;
/*
* Tracks the number of launched resolution threads that have not yet invoked their shutdown completion
* callback.
*/
uint32_t pending_host_entry_shutdown_completion_callbacks;
/*
* Function to use to query current time. Overridable in construction options.
*/
aws_io_clock_fn *system_clock_fn;
struct aws_event_loop_group *event_loop_group;
};
struct host_entry {
/* immutable post-creation */
struct aws_allocator *allocator;
struct aws_host_resolver *resolver;
struct aws_thread resolver_thread;
const struct aws_string *host_name;
int64_t resolve_frequency_ns;
struct aws_host_resolution_config resolution_config;
/* synchronized data and its lock */
struct aws_mutex entry_lock;
struct aws_condition_variable entry_signal;
struct aws_cache *aaaa_records;
struct aws_cache *a_records;
struct aws_cache *failed_connection_aaaa_records;
struct aws_cache *failed_connection_a_records;
struct aws_linked_list pending_resolution_callbacks;
uint32_t resolves_since_last_request;
uint64_t last_resolve_request_timestamp_ns;
enum default_resolver_state state;
struct aws_array_list new_addresses;
struct aws_array_list expired_addresses;
aws_simple_completion_callback *on_host_purge_complete;
void *on_host_purge_complete_user_data;
};
/*
* A host entry's caches hold things of this type. By using this and not the host_address directly, our
* on_remove callbacks for the cache have access to the host_entry. We wouldn't need to do this if those
* callbacks supported user data injection, but they don't and too many internal code bases already depend
* on the public API.
*/
struct aws_host_address_cache_entry {
struct aws_host_address address;
struct host_entry *entry;
};
int aws_host_address_cache_entry_copy(
const struct aws_host_address_cache_entry *from,
struct aws_host_address_cache_entry *to) {
if (aws_host_address_copy(&from->address, &to->address)) {
return AWS_OP_ERR;
}
to->entry = from->entry;
return AWS_OP_SUCCESS;
}
static void s_shutdown_host_entry(struct host_entry *entry) {
aws_mutex_lock(&entry->entry_lock);
entry->state = DRS_SHUTTING_DOWN;
/*
* intentionally signal under the lock; we can't guarantee the resolver
* is still around once the lock is released.
*/
aws_condition_variable_notify_all(&entry->entry_signal);
aws_mutex_unlock(&entry->entry_lock);
}
struct host_purge_callback_options {
struct aws_allocator *allocator;
struct aws_ref_count ref_count;
aws_simple_completion_callback *on_purge_cache_complete_callback;
void *user_data;
};
static void s_host_purge_callback_options_destroy(void *user_data) {
struct host_purge_callback_options *options = user_data;
options->on_purge_cache_complete_callback(options->user_data);
aws_mem_release(options->allocator, options);
}
static struct host_purge_callback_options *s_host_purge_callback_options_new(
struct aws_allocator *allocator,
aws_simple_completion_callback *on_purge_cache_complete_callback,
void *user_data) {
struct host_purge_callback_options *purge_callback_options =
aws_mem_calloc(allocator, 1, sizeof(struct host_purge_callback_options));
purge_callback_options->allocator = allocator;
aws_ref_count_init(
&purge_callback_options->ref_count, purge_callback_options, s_host_purge_callback_options_destroy);
purge_callback_options->on_purge_cache_complete_callback = on_purge_cache_complete_callback;
purge_callback_options->user_data = user_data;
return purge_callback_options;
}
static void s_purge_cache_callback(void *user_data) {
struct host_purge_callback_options *purge_callback_options = user_data;
aws_ref_count_release(&purge_callback_options->ref_count);
}
/*
* resolver lock must be held before calling this function
*/
static void s_clear_default_resolver_entry_table_synced(struct default_host_resolver *resolver) {
struct aws_hash_table *table = &resolver->host_entry_table;
for (struct aws_hash_iter iter = aws_hash_iter_begin(table); !aws_hash_iter_done(&iter);
aws_hash_iter_next(&iter)) {
struct host_entry *entry = iter.element.value;
s_shutdown_host_entry(entry);
}
aws_hash_table_clear(table);
}
static int s_resolver_purge_cache(struct aws_host_resolver *resolver) {
struct default_host_resolver *default_host_resolver = resolver->impl;
aws_mutex_lock(&default_host_resolver->resolver_lock);
s_clear_default_resolver_entry_table_synced(default_host_resolver);
aws_mutex_unlock(&default_host_resolver->resolver_lock);
return AWS_OP_SUCCESS;
}
static void s_purge_host_cache_callback_task(struct aws_task *task, void *arg, enum aws_task_status status) {
(void)status;
struct host_purge_callback_options *options = arg;
aws_mem_release(options->allocator, task);
aws_ref_count_release(&options->ref_count);
}
static void s_sechdule_purge_cache_callback_async(
struct default_host_resolver *default_host_resolver,
struct host_purge_callback_options *purge_callback_options) {
struct aws_task *task = aws_mem_calloc(default_host_resolver->allocator, 1, sizeof(struct aws_task));
aws_task_init(task, s_purge_host_cache_callback_task, purge_callback_options, "async_purge_host_callback_task");
struct aws_event_loop *loop = aws_event_loop_group_get_next_loop(default_host_resolver->event_loop_group);
AWS_FATAL_ASSERT(loop != NULL);
aws_event_loop_schedule_task_now(loop, task);
}
static int s_resolver_purge_cache_with_callback(
struct aws_host_resolver *resolver,
aws_simple_completion_callback *on_purge_cache_complete_callback,
void *user_data) {
if (!on_purge_cache_complete_callback) {
return s_resolver_purge_cache(resolver);
}
struct default_host_resolver *default_host_resolver = resolver->impl;
aws_mutex_lock(&default_host_resolver->resolver_lock);
struct aws_hash_table *table = &default_host_resolver->host_entry_table;
struct host_purge_callback_options *purge_callback_options = s_host_purge_callback_options_new(
default_host_resolver->allocator, on_purge_cache_complete_callback, user_data);
/* purge all cache */
for (struct aws_hash_iter iter = aws_hash_iter_begin(table); !aws_hash_iter_done(&iter);
aws_hash_iter_next(&iter)) {
struct host_entry *entry = iter.element.value;
/* acquire a refernce to wait for the callback to trigger */
aws_ref_count_acquire(&purge_callback_options->ref_count);
aws_mutex_lock(&entry->entry_lock);
entry->on_host_purge_complete = s_purge_cache_callback;
entry->on_host_purge_complete_user_data = purge_callback_options;
entry->state = DRS_SHUTTING_DOWN;
aws_mutex_unlock(&entry->entry_lock);
}
aws_hash_table_clear(table);
aws_mutex_unlock(&default_host_resolver->resolver_lock);
/* release the original reference async */
s_sechdule_purge_cache_callback_async(default_host_resolver, purge_callback_options);
return AWS_OP_SUCCESS;
}
static void s_cleanup_default_resolver(struct aws_host_resolver *resolver) {
struct default_host_resolver *default_host_resolver = resolver->impl;
aws_event_loop_group_release(default_host_resolver->event_loop_group);
aws_hash_table_clean_up(&default_host_resolver->host_entry_table);
aws_hash_table_clean_up(&default_host_resolver->listener_entry_table);
aws_mutex_clean_up(&default_host_resolver->resolver_lock);
aws_simple_completion_callback *shutdown_callback = resolver->shutdown_options.shutdown_callback_fn;
void *shutdown_completion_user_data = resolver->shutdown_options.shutdown_callback_user_data;
aws_mem_release(resolver->allocator, resolver);
/* invoke shutdown completion finally */
if (shutdown_callback != NULL) {
shutdown_callback(shutdown_completion_user_data);
}
}
static void resolver_destroy(struct aws_host_resolver *resolver) {
struct default_host_resolver *default_host_resolver = resolver->impl;
bool cleanup_resolver = false;
aws_mutex_lock(&default_host_resolver->resolver_lock);
AWS_FATAL_ASSERT(default_host_resolver->state == DRS_ACTIVE);
s_clear_default_resolver_entry_table_synced(default_host_resolver);
default_host_resolver->state = DRS_SHUTTING_DOWN;
if (default_host_resolver->pending_host_entry_shutdown_completion_callbacks == 0) {
cleanup_resolver = true;
}
aws_mutex_unlock(&default_host_resolver->resolver_lock);
if (cleanup_resolver) {
s_cleanup_default_resolver(resolver);
}
}
struct pending_callback {
aws_on_host_resolved_result_fn *callback;
void *user_data;
struct aws_linked_list_node node;
};
static void s_clear_address_list(struct aws_array_list *address_list) {
for (size_t i = 0; i < aws_array_list_length(address_list); ++i) {
struct aws_host_address *address = NULL;
aws_array_list_get_at_ptr(address_list, (void **)&address, i);
aws_host_address_clean_up(address);
}
aws_array_list_clear(address_list);
}
static void s_clean_up_host_entry(struct host_entry *entry) {
if (entry == NULL) {
return;
}
/*
* This can happen if the resolver's final reference drops while an unanswered query is pending on an entry.
*
* You could add an assertion that the resolver is in the shut down state if this condition hits but that
* requires additional locking just to make the assert.
*/
if (!aws_linked_list_empty(&entry->pending_resolution_callbacks)) {
aws_raise_error(AWS_IO_DNS_HOST_REMOVED_FROM_CACHE);
}
while (!aws_linked_list_empty(&entry->pending_resolution_callbacks)) {
struct aws_linked_list_node *resolution_callback_node =
aws_linked_list_pop_front(&entry->pending_resolution_callbacks);
struct pending_callback *pending_callback =
AWS_CONTAINER_OF(resolution_callback_node, struct pending_callback, node);
pending_callback->callback(
entry->resolver, entry->host_name, AWS_IO_DNS_HOST_REMOVED_FROM_CACHE, NULL, pending_callback->user_data);
aws_mem_release(entry->allocator, pending_callback);
}
aws_cache_destroy(entry->aaaa_records);
aws_cache_destroy(entry->a_records);
aws_cache_destroy(entry->failed_connection_a_records);
aws_cache_destroy(entry->failed_connection_aaaa_records);
aws_string_destroy((void *)entry->host_name);
s_clear_address_list(&entry->new_addresses);
aws_array_list_clean_up(&entry->new_addresses);
s_clear_address_list(&entry->expired_addresses);
aws_array_list_clean_up(&entry->expired_addresses);
aws_mem_release(entry->allocator, entry);
}
static void s_on_host_entry_shutdown_completion(void *user_data) {
struct host_entry *entry = user_data;
struct aws_host_resolver *resolver = entry->resolver;
struct default_host_resolver *default_host_resolver = resolver->impl;
s_clean_up_host_entry(entry);
bool cleanup_resolver = false;
aws_mutex_lock(&default_host_resolver->resolver_lock);
--default_host_resolver->pending_host_entry_shutdown_completion_callbacks;
if (default_host_resolver->state == DRS_SHUTTING_DOWN &&
default_host_resolver->pending_host_entry_shutdown_completion_callbacks == 0) {
cleanup_resolver = true;
}
aws_mutex_unlock(&default_host_resolver->resolver_lock);
if (cleanup_resolver) {
s_cleanup_default_resolver(resolver);
}
}
static int s_copy_address_into_array_list(struct aws_host_address *address, struct aws_array_list *address_list) {
/*
* This is the worst.
*
* We have to copy the cache address while we still have a write lock. Otherwise, connection failures
* can sneak in and destroy our address by moving the address to/from the various lru caches.
*
* But there's no nice copy construction into an array list, so we get to
* (1) Push a zeroed dummy element onto the array list
* (2) Get its pointer
* (3) Call aws_host_address_copy onto it. If that fails, pop the dummy element.
*/
struct aws_host_address dummy;
AWS_ZERO_STRUCT(dummy);
if (aws_array_list_push_back(address_list, &dummy)) {
return AWS_OP_ERR;
}
struct aws_host_address *dest_copy = NULL;
aws_array_list_get_at_ptr(address_list, (void **)&dest_copy, aws_array_list_length(address_list) - 1);
AWS_FATAL_ASSERT(dest_copy != NULL);
if (aws_host_address_copy(address, dest_copy)) {
aws_array_list_pop_back(address_list);
return AWS_OP_ERR;
}
return AWS_OP_SUCCESS;
}
static uint64_t s_get_system_time_for_default_resolver(struct aws_host_resolver *resolver) {
struct default_host_resolver *default_resolver = resolver->impl;
uint64_t timestamp = 0;
(*default_resolver->system_clock_fn)(×tamp);
return timestamp;
}
/* this only ever gets called after resolution has already run. We expect that the entry's lock
has been acquired for writing before this function is called and released afterwards. */
static inline void process_records(
struct host_entry *host_entry,
struct aws_cache *records,
struct aws_cache *failed_records) {
struct aws_host_resolver *resolver = host_entry->resolver;
uint64_t timestamp = s_get_system_time_for_default_resolver(resolver);
size_t record_count = aws_cache_get_element_count(records);
size_t expired_records = 0;
/* since this only ever gets called after resolution has already run, we're in a dns outage
* if everything is expired. Leave an element so we can keep trying. */
for (size_t index = 0; index < record_count && expired_records < record_count - 1; ++index) {
struct aws_host_address_cache_entry *lru_element_entry = aws_lru_cache_use_lru_element(records);
if (lru_element_entry->address.expiry < timestamp) {
AWS_LOGF_DEBUG(
AWS_LS_IO_DNS,
"static: purging expired record %s for %s",
lru_element_entry->address.address->bytes,
lru_element_entry->address.host->bytes);
expired_records++;
aws_cache_remove(records, lru_element_entry->address.address);
}
}
record_count = aws_cache_get_element_count(records);
AWS_LOGF_TRACE(AWS_LS_IO_DNS, "static: remaining record count for host %d", (int)record_count);
/* if we don't have any known good addresses, take the least recently used, but not expired address with a history
* of spotty behavior and upgrade it for reuse. If it's expired, leave it and let the resolve fail. Better to fail
* than accidentally give a kids' app an IP address to somebody's adult website when the IP address gets rebound to
* a different endpoint. The moral of the story here is to not disable SSL verification! */
if (!record_count) {
size_t failed_count = aws_cache_get_element_count(failed_records);
for (size_t index = 0; index < failed_count; ++index) {
struct aws_host_address_cache_entry *lru_element_entry = aws_lru_cache_use_lru_element(failed_records);
if (timestamp >= lru_element_entry->address.expiry) {
continue;
}
struct aws_host_address_cache_entry *to_add =
aws_mem_calloc(host_entry->allocator, 1, sizeof(struct aws_host_address_cache_entry));
if (to_add == NULL) {
continue;
}
if (aws_host_address_cache_entry_copy(lru_element_entry, to_add) ||
aws_cache_put(records, to_add->address.address, to_add)) {
aws_host_address_clean_up(&to_add->address);
aws_mem_release(host_entry->allocator, to_add);
continue;
}
/*
* Promoting an address from failed to good should trigger the new address callback
*/
s_copy_address_into_array_list(&lru_element_entry->address, &host_entry->new_addresses);
AWS_LOGF_INFO(
AWS_LS_IO_DNS,
"static: promoting spotty record %s for %s back to good list",
lru_element_entry->address.address->bytes,
lru_element_entry->address.host->bytes);
aws_cache_remove(failed_records, lru_element_entry->address.address);
/* we only want to promote one per process run.*/
break;
}
}
}
static int s_resolver_purge_host_cache(
struct aws_host_resolver *resolver,
const struct aws_host_resolver_purge_host_options *options) {
AWS_PRECONDITION(resolver);
if (options == NULL) {
AWS_LOGF_ERROR(AWS_LS_IO_DNS, "Cannot purge host cache; options structure is NULL.");
return aws_raise_error(AWS_ERROR_INVALID_ARGUMENT);
}
struct default_host_resolver *default_host_resolver = resolver->impl;
AWS_LOGF_INFO(AWS_LS_IO_DNS, "id=%p: purging record for %s", (void *)resolver, options->host->bytes);
aws_mutex_lock(&default_host_resolver->resolver_lock);
struct aws_hash_element *element = NULL;
aws_hash_table_find(&default_host_resolver->host_entry_table, options->host, &element);
/* Success if entry doesn't exist in cache. */
if (element == NULL) {
aws_mutex_unlock(&default_host_resolver->resolver_lock);
if (options->on_host_purge_complete_callback != NULL) {
/* Schedule completion callback asynchronouly */
struct host_purge_callback_options *purge_callback_options = s_host_purge_callback_options_new(
default_host_resolver->allocator, options->on_host_purge_complete_callback, options->user_data);
s_sechdule_purge_cache_callback_async(default_host_resolver, purge_callback_options);
}
return AWS_OP_SUCCESS;
}
struct host_entry *host_entry = element->value;
AWS_FATAL_ASSERT(host_entry);
/* Setup the on_host_purge_complete callback. */
aws_mutex_lock(&host_entry->entry_lock);
AWS_FATAL_ASSERT(!host_entry->on_host_purge_complete);
AWS_FATAL_ASSERT(!host_entry->on_host_purge_complete_user_data);
host_entry->on_host_purge_complete = options->on_host_purge_complete_callback;
host_entry->on_host_purge_complete_user_data = options->user_data;
aws_mutex_unlock(&host_entry->entry_lock);
s_shutdown_host_entry(host_entry);
aws_hash_table_remove_element(&default_host_resolver->host_entry_table, element);
aws_mutex_unlock(&default_host_resolver->resolver_lock);
return AWS_OP_SUCCESS;
}
static int resolver_record_connection_failure(
struct aws_host_resolver *resolver,
const struct aws_host_address *address) {
struct default_host_resolver *default_host_resolver = resolver->impl;
AWS_LOGF_INFO(
AWS_LS_IO_DNS,
"id=%p: recording failure for record %s for %s, moving to bad list",
(void *)resolver,
address->address->bytes,
address->host->bytes);
aws_mutex_lock(&default_host_resolver->resolver_lock);
struct aws_hash_element *element = NULL;
if (aws_hash_table_find(&default_host_resolver->host_entry_table, address->host, &element)) {
aws_mutex_unlock(&default_host_resolver->resolver_lock);
return AWS_OP_ERR;
}
struct host_entry *host_entry = NULL;
if (element != NULL) {
host_entry = element->value;
AWS_FATAL_ASSERT(host_entry);
}
if (host_entry) {
struct aws_host_address_cache_entry *cached_address_entry = NULL;
aws_mutex_lock(&host_entry->entry_lock);
aws_mutex_unlock(&default_host_resolver->resolver_lock);
struct aws_cache *address_table =
address->record_type == AWS_ADDRESS_RECORD_TYPE_AAAA ? host_entry->aaaa_records : host_entry->a_records;
struct aws_cache *failed_table = address->record_type == AWS_ADDRESS_RECORD_TYPE_AAAA
? host_entry->failed_connection_aaaa_records
: host_entry->failed_connection_a_records;
aws_cache_find(address_table, address->address, (void **)&cached_address_entry);
struct aws_host_address_cache_entry *address_entry_copy = NULL;
if (cached_address_entry) {
address_entry_copy = aws_mem_calloc(resolver->allocator, 1, sizeof(struct aws_host_address_cache_entry));
if (!address_entry_copy || aws_host_address_cache_entry_copy(cached_address_entry, address_entry_copy)) {
goto error_host_entry_cleanup;
}
/*
* This will trigger an expiration callback since the good caches add the removed address to the
* host_entry's expired list, via the cache's on_delete callback
*/
if (aws_cache_remove(address_table, cached_address_entry->address.address)) {
goto error_host_entry_cleanup;
}
address_entry_copy->address.connection_failure_count += 1;
if (aws_cache_put(failed_table, address_entry_copy->address.address, address_entry_copy)) {
goto error_host_entry_cleanup;
}
} else {
if (aws_cache_find(failed_table, address->address, (void **)&cached_address_entry)) {
goto error_host_entry_cleanup;
}
if (cached_address_entry) {
cached_address_entry->address.connection_failure_count += 1;
}
}
aws_mutex_unlock(&host_entry->entry_lock);
return AWS_OP_SUCCESS;
error_host_entry_cleanup:
if (address_entry_copy) {
aws_host_address_clean_up(&address_entry_copy->address);
aws_mem_release(resolver->allocator, address_entry_copy);
}
aws_mutex_unlock(&host_entry->entry_lock);
return AWS_OP_ERR;
}
aws_mutex_unlock(&default_host_resolver->resolver_lock);
return AWS_OP_SUCCESS;
}
/*
* A bunch of convenience functions for the host resolver background thread function
*/
static struct aws_host_address_cache_entry *s_find_cached_address_entry_aux(
struct aws_cache *primary_records,
struct aws_cache *fallback_records,
const struct aws_string *address) {
struct aws_host_address_cache_entry *found = NULL;
aws_cache_find(primary_records, address, (void **)&found);
if (found == NULL) {
aws_cache_find(fallback_records, address, (void **)&found);
}
return found;
}
/*
* Looks in both the good and failed connection record sets for a given host record
*/
static struct aws_host_address_cache_entry *s_find_cached_address_entry(
struct host_entry *entry,
const struct aws_string *address,
enum aws_address_record_type record_type) {
switch (record_type) {
case AWS_ADDRESS_RECORD_TYPE_AAAA:
return s_find_cached_address_entry_aux(entry->aaaa_records, entry->failed_connection_aaaa_records, address);
case AWS_ADDRESS_RECORD_TYPE_A:
return s_find_cached_address_entry_aux(entry->a_records, entry->failed_connection_a_records, address);
default:
return NULL;
}
}
static struct aws_host_address_cache_entry *s_get_lru_address_entry_aux(
struct aws_cache *primary_records,
struct aws_cache *fallback_records) {
struct aws_host_address_cache_entry *address_entry = aws_lru_cache_use_lru_element(primary_records);
if (address_entry == NULL) {
aws_lru_cache_use_lru_element(fallback_records);
}
return address_entry;
}
/*
* Looks in both the good and failed connection record sets for the LRU host record
*/
static struct aws_host_address_cache_entry *s_get_lru_address(
struct host_entry *entry,
enum aws_address_record_type record_type) {
switch (record_type) {
case AWS_ADDRESS_RECORD_TYPE_AAAA:
return s_get_lru_address_entry_aux(entry->aaaa_records, entry->failed_connection_aaaa_records);
case AWS_ADDRESS_RECORD_TYPE_A:
return s_get_lru_address_entry_aux(entry->a_records, entry->failed_connection_a_records);
default:
return NULL;
}
}
static void s_update_address_cache(
struct host_entry *host_entry,
struct aws_array_list *address_list,
uint64_t new_expiration) {
AWS_PRECONDITION(host_entry);
AWS_PRECONDITION(address_list);
for (size_t i = 0; i < aws_array_list_length(address_list); ++i) {
struct aws_host_address *fresh_resolved_address = NULL;
aws_array_list_get_at_ptr(address_list, (void **)&fresh_resolved_address, i);
struct aws_host_address_cache_entry *address_to_cache_entry = s_find_cached_address_entry(
host_entry, fresh_resolved_address->address, fresh_resolved_address->record_type);
if (address_to_cache_entry) {
address_to_cache_entry->address.expiry = new_expiration;
AWS_LOGF_TRACE(
AWS_LS_IO_DNS,
"static: updating expiry for %s for host %s to %llu",
address_to_cache_entry->address.address->bytes,
host_entry->host_name->bytes,
(unsigned long long)new_expiration);
} else {
address_to_cache_entry =
aws_mem_calloc(host_entry->allocator, 1, sizeof(struct aws_host_address_cache_entry));
aws_host_address_move(fresh_resolved_address, &address_to_cache_entry->address);
address_to_cache_entry->address.expiry = new_expiration;
address_to_cache_entry->entry = host_entry;
struct aws_cache *address_table =
address_to_cache_entry->address.record_type == AWS_ADDRESS_RECORD_TYPE_AAAA ? host_entry->aaaa_records
: host_entry->a_records;
if (aws_cache_put(address_table, address_to_cache_entry->address.address, address_to_cache_entry)) {
AWS_LOGF_ERROR(
AWS_LS_IO_DNS,
"static: could not add new address to host entry cache for host '%s' in "
"s_update_address_cache.",
host_entry->host_name->bytes);
continue;
}
AWS_LOGF_DEBUG(
AWS_LS_IO_DNS,
"static: new address resolved %s for host %s caching",
address_to_cache_entry->address.address->bytes,
host_entry->host_name->bytes);
struct aws_host_address new_address_copy;
if (aws_host_address_copy(&address_to_cache_entry->address, &new_address_copy)) {
AWS_LOGF_ERROR(
AWS_LS_IO_DNS,
"static: could not copy address for new-address list for host '%s' in s_update_address_cache.",
host_entry->host_name->bytes);
continue;
}
if (aws_array_list_push_back(&host_entry->new_addresses, &new_address_copy)) {
aws_host_address_clean_up(&new_address_copy);
AWS_LOGF_ERROR(
AWS_LS_IO_DNS,
"static: could not push address to new-address list for host '%s' in s_update_address_cache.",
host_entry->host_name->bytes);
continue;
}
}
}
}
static void s_copy_address_into_callback_set(
struct aws_host_address_cache_entry *entry,
struct aws_array_list *callback_addresses,
const struct aws_string *host_name) {
if (entry != NULL) {
if (s_copy_address_into_array_list(&entry->address, callback_addresses)) {
AWS_LOGF_ERROR(
AWS_LS_IO_DNS,
"static: failed to vend address %s for host %s to caller",
entry->address.address->bytes,
host_name->bytes);
return;
}
entry->address.use_count += 1;
AWS_LOGF_TRACE(
AWS_LS_IO_DNS,
"static: vending address %s for host %s to caller",
entry->address.address->bytes,
host_name->bytes);
}
}
static bool s_host_entry_finished_pred(void *user_data) {
struct host_entry *entry = user_data;
return entry->state == DRS_SHUTTING_DOWN;
}
static bool s_host_entry_finished_or_pending_request_pred(void *user_data) {
struct host_entry *entry = user_data;
return entry->state == DRS_SHUTTING_DOWN || !aws_linked_list_empty(&entry->pending_resolution_callbacks);
}
static const uint64_t AWS_MINIMUM_WAIT_BETWEEN_DNS_QUERIES_NS = 100000000; /* 100 ms */
static void aws_host_resolver_thread(void *arg) {
struct host_entry *host_entry = arg;
uint64_t max_no_solicitation_interval = aws_timestamp_convert(
aws_max_u64(1, host_entry->resolution_config.max_ttl), AWS_TIMESTAMP_SECS, AWS_TIMESTAMP_NANOS, NULL);
uint64_t wait_between_resolves_interval =
aws_min_u64(max_no_solicitation_interval, host_entry->resolve_frequency_ns);
uint64_t shutdown_only_wait_time = AWS_MINIMUM_WAIT_BETWEEN_DNS_QUERIES_NS;
uint64_t request_interruptible_wait_time = 0;
if (wait_between_resolves_interval > shutdown_only_wait_time) {
request_interruptible_wait_time = wait_between_resolves_interval - shutdown_only_wait_time;
}
struct aws_linked_list listener_list;
aws_linked_list_init(&listener_list);
struct aws_linked_list listener_destroy_list;
aws_linked_list_init(&listener_destroy_list);
bool keep_going = true;
struct aws_array_list address_list;
AWS_ZERO_STRUCT(address_list);
struct aws_array_list new_address_list;
AWS_ZERO_STRUCT(new_address_list);
struct aws_array_list expired_address_list;
AWS_ZERO_STRUCT(expired_address_list);
if (aws_array_list_init_dynamic(&address_list, host_entry->allocator, 4, sizeof(struct aws_host_address))) {
goto done;
}
if (aws_array_list_init_dynamic(&new_address_list, host_entry->allocator, 4, sizeof(struct aws_host_address))) {
goto done;
}
if (aws_array_list_init_dynamic(&expired_address_list, host_entry->allocator, 4, sizeof(struct aws_host_address))) {
goto done;
}
while (keep_going) {
/* resolve and then process each record */
int err_code = AWS_ERROR_SUCCESS;
if (host_entry->resolution_config.impl(
host_entry->allocator, host_entry->host_name, &address_list, host_entry->resolution_config.impl_data)) {
err_code = aws_last_error();
}
if (err_code == AWS_ERROR_SUCCESS) {
AWS_LOGF_DEBUG(
AWS_LS_IO_DNS,
"static, resolving host %s successful, returned %d addresses",
aws_string_c_str(host_entry->host_name),
(int)aws_array_list_length(&address_list));
} else {
AWS_LOGF_WARN(
AWS_LS_IO_DNS,
"static, resolving host %s failed, ec %d (%s)",
aws_string_c_str(host_entry->host_name),
err_code,
aws_error_debug_str(err_code));
}
uint64_t timestamp = s_get_system_time_for_default_resolver(host_entry->resolver);
uint64_t new_expiry = timestamp + (host_entry->resolution_config.max_ttl * NS_PER_SEC);
struct aws_linked_list pending_resolve_copy;
aws_linked_list_init(&pending_resolve_copy);
/*
* Within the lock we
* (1) Update the cache with the newly resolved addresses
* (2) Process all held addresses looking for expired or promotable ones
* (3) Prep for callback invocations
*/
aws_mutex_lock(&host_entry->entry_lock);
if (!err_code) {
s_update_address_cache(host_entry, &address_list, new_expiry);
}
/*
* process and clean_up records in the entry. occasionally, failed connect records will be upgraded
* for retry.
*/
process_records(host_entry, host_entry->aaaa_records, host_entry->failed_connection_aaaa_records);
process_records(host_entry, host_entry->a_records, host_entry->failed_connection_a_records);
aws_linked_list_swap_contents(&pending_resolve_copy, &host_entry->pending_resolution_callbacks);
aws_mutex_unlock(&host_entry->entry_lock);
/*
* Clean up resolved addressed outside of the lock
*/
s_clear_address_list(&address_list);
struct aws_host_address address_array[2];
AWS_ZERO_ARRAY(address_array);
/*
* Perform the actual subscriber notifications
*/
while (!aws_linked_list_empty(&pending_resolve_copy)) {
struct aws_linked_list_node *resolution_callback_node = aws_linked_list_pop_front(&pending_resolve_copy);
struct pending_callback *pending_callback =
AWS_CONTAINER_OF(resolution_callback_node, struct pending_callback, node);
struct aws_array_list callback_address_list;
aws_array_list_init_static(&callback_address_list, address_array, 2, sizeof(struct aws_host_address));
aws_mutex_lock(&host_entry->entry_lock);
s_copy_address_into_callback_set(
s_get_lru_address(host_entry, AWS_ADDRESS_RECORD_TYPE_AAAA),
&callback_address_list,
host_entry->host_name);
s_copy_address_into_callback_set(
s_get_lru_address(host_entry, AWS_ADDRESS_RECORD_TYPE_A),
&callback_address_list,
host_entry->host_name);
aws_mutex_unlock(&host_entry->entry_lock);
size_t callback_address_list_size = aws_array_list_length(&callback_address_list);
if (callback_address_list_size > 0) {
AWS_LOGF_DEBUG(
AWS_LS_IO_DNS,
"static, invoking resolution callback for host %s with %d addresses",
aws_string_c_str(host_entry->host_name),
(int)callback_address_list_size);
} else {
AWS_LOGF_DEBUG(
AWS_LS_IO_DNS,
"static, invoking resolution callback for host %s with failure",
aws_string_c_str(host_entry->host_name));
}
if (callback_address_list_size > 0) {
pending_callback->callback(
host_entry->resolver,
host_entry->host_name,
AWS_OP_SUCCESS,
&callback_address_list,
pending_callback->user_data);
} else {
int error_code = (err_code != AWS_ERROR_SUCCESS) ? err_code : AWS_IO_DNS_QUERY_FAILED;
pending_callback->callback(
host_entry->resolver, host_entry->host_name, error_code, NULL, pending_callback->user_data);
}
s_clear_address_list(&callback_address_list);
aws_mem_release(host_entry->allocator, pending_callback);
}
aws_mutex_lock(&host_entry->entry_lock);
++host_entry->resolves_since_last_request;
/*
* A long resolve frequency matched with a connection failure can induce a state of DNS starvation, where
* additional resolution requests go into the queue but since there's no good records and the thread is sleeping
* for a long time, nothing happens.
*
* While we could make the wait predicate also check the queue of requests, there is a worry that a
* host that can't be resolved (user error, dns record removal, etc...) could lead to a "spammy" scenario
* where the thread generates DNS requests extremely quickly, ie, the sleep becomes almost instant.
*
* We'd like to be able to express the wait here as something a bit more complex:
*
* "Wait until either (1) shutdown notice, or (2) a small amount of time has passed and there are pending
* requests, or (3) the resolution interval has passed"
*
* While seemingly complicated, we can do this actually just by chaining two waits:
*
* (1) The first wait is for a short amount of time and only predicates on the shutdown notice
* (2) The second wait is for the remaining frequency interval and predicates on either the shutdown notice
* or a pending resolve request
*
* This leaves us with wait behavior where:
* (1) Shutdown always fully interrupts and immediately causes the thread function to complete
* (2) Absent shutdown, there is always a controllable, non-trivial sleep between resolves
* (3) Starvation is avoided as pending requests can wake the resolver thread independent of resolution
* frequency
*/
aws_condition_variable_wait_for_pred(
&host_entry->entry_signal,
&host_entry->entry_lock,
shutdown_only_wait_time,
s_host_entry_finished_pred,
host_entry);
if (request_interruptible_wait_time > 0) {
aws_condition_variable_wait_for_pred(
&host_entry->entry_signal,
&host_entry->entry_lock,
request_interruptible_wait_time,
s_host_entry_finished_or_pending_request_pred,
host_entry);
}
aws_mutex_unlock(&host_entry->entry_lock);
/*
* This is a bit awkward that we unlock the entry and then relock both the resolver and the entry, but it
* is mandatory that -- in order to maintain the consistent view of the resolver table (entry exist => entry
* is alive and can be queried) -- we have the resolver lock as well before making the decision to remove
* the entry from the table and terminate the thread.
*/
struct default_host_resolver *resolver = host_entry->resolver->impl;
aws_mutex_lock(&resolver->resolver_lock);
aws_mutex_lock(&host_entry->entry_lock);
uint64_t now = s_get_system_time_for_default_resolver(host_entry->resolver);
/*
* The only way we terminate the loop with pending queries is if the resolver itself has no more references
* to it and is going away. In that case, the pending queries will be completed (with failure) by the
* final clean up of this entry.
*/
if (aws_linked_list_empty(&host_entry->pending_resolution_callbacks) &&
host_entry->last_resolve_request_timestamp_ns + max_no_solicitation_interval < now) {
host_entry->state = DRS_SHUTTING_DOWN;
}
keep_going = host_entry->state == DRS_ACTIVE;
if (!keep_going) {
aws_hash_table_remove(&resolver->host_entry_table, host_entry->host_name, NULL, NULL);
}
aws_array_list_swap_contents(&host_entry->new_addresses, &new_address_list);
aws_array_list_swap_contents(&host_entry->expired_addresses, &expired_address_list);
aws_mutex_unlock(&host_entry->entry_lock);
aws_mutex_unlock(&resolver->resolver_lock);
s_clear_address_list(&new_address_list);
s_clear_address_list(&expired_address_list);
}
AWS_LOGF_DEBUG(
AWS_LS_IO_DNS,
"static: Either no requests have been made for an address for %s for the duration "
"of the ttl, or this thread is being forcibly shutdown. Killing thread.",
host_entry->host_name->bytes);
done:
AWS_FATAL_ASSERT(aws_array_list_length(&address_list) == 0);
AWS_FATAL_ASSERT(aws_array_list_length(&new_address_list) == 0);
AWS_FATAL_ASSERT(aws_array_list_length(&expired_address_list) == 0);
aws_array_list_clean_up(&address_list);
aws_array_list_clean_up(&new_address_list);
aws_array_list_clean_up(&expired_address_list);
/* trigger the purge complete callback */
if (host_entry->on_host_purge_complete != NULL) {
host_entry->on_host_purge_complete(host_entry->on_host_purge_complete_user_data);
}
/* please don't fail */
aws_thread_current_at_exit(s_on_host_entry_shutdown_completion, host_entry);
}
static void on_cache_entry_removed_helper(struct aws_host_address_cache_entry *entry) {
AWS_LOGF_DEBUG(
AWS_LS_IO_DNS,
"static: purging address %s for host %s from "
"the cache due to cache eviction or shutdown",
entry->address.address->bytes,
entry->address.host->bytes);
struct aws_allocator *allocator = entry->address.allocator;
aws_host_address_clean_up(&entry->address);
aws_mem_release(allocator, entry);
}
static void on_good_address_entry_removed(void *value) {
struct aws_host_address_cache_entry *entry = value;
if (entry == NULL) {
return;
}
s_copy_address_into_array_list(&entry->address, &entry->entry->expired_addresses);
on_cache_entry_removed_helper(entry);
}
static void on_failed_address_entry_removed(void *value) {
struct aws_host_address_cache_entry *entry = value;
on_cache_entry_removed_helper(entry);
}
/*
* The resolver lock must be held before calling this function
*/
static inline int create_and_init_host_entry(
struct aws_host_resolver *resolver,
const struct aws_string *host_name,
aws_on_host_resolved_result_fn *res,
const struct aws_host_resolution_config *config,
uint64_t timestamp,
void *user_data) {
struct host_entry *new_host_entry = aws_mem_calloc(resolver->allocator, 1, sizeof(struct host_entry));
if (!new_host_entry) {
return AWS_OP_ERR;
}
new_host_entry->resolver = resolver;
new_host_entry->allocator = resolver->allocator;
new_host_entry->last_resolve_request_timestamp_ns = timestamp;
new_host_entry->resolves_since_last_request = 0;
new_host_entry->resolve_frequency_ns =
(config->resolve_frequency_ns != 0) ? config->resolve_frequency_ns : NS_PER_SEC;
new_host_entry->state = DRS_ACTIVE;
bool thread_init = false;
struct pending_callback *pending_callback = NULL;
const struct aws_string *host_string_copy = aws_string_new_from_string(resolver->allocator, host_name);
if (AWS_UNLIKELY(!host_string_copy)) {
goto setup_host_entry_error;
}
new_host_entry->host_name = host_string_copy;
new_host_entry->a_records = aws_cache_new_lru(
new_host_entry->allocator,
aws_hash_string,
aws_hash_callback_string_eq,
NULL,
on_good_address_entry_removed,
config->max_ttl);
if (AWS_UNLIKELY(!new_host_entry->a_records)) {
goto setup_host_entry_error;
}
new_host_entry->aaaa_records = aws_cache_new_lru(
new_host_entry->allocator,
aws_hash_string,
aws_hash_callback_string_eq,
NULL,
on_good_address_entry_removed,
config->max_ttl);
if (AWS_UNLIKELY(!new_host_entry->aaaa_records)) {
goto setup_host_entry_error;
}
new_host_entry->failed_connection_a_records = aws_cache_new_lru(
new_host_entry->allocator,
aws_hash_string,
aws_hash_callback_string_eq,
NULL,
on_failed_address_entry_removed,
config->max_ttl);
if (AWS_UNLIKELY(!new_host_entry->failed_connection_a_records)) {
goto setup_host_entry_error;
}
new_host_entry->failed_connection_aaaa_records = aws_cache_new_lru(
new_host_entry->allocator,
aws_hash_string,
aws_hash_callback_string_eq,
NULL,
on_failed_address_entry_removed,
config->max_ttl);
if (AWS_UNLIKELY(!new_host_entry->failed_connection_aaaa_records)) {
goto setup_host_entry_error;
}
if (aws_array_list_init_dynamic(
&new_host_entry->new_addresses, new_host_entry->allocator, 4, sizeof(struct aws_host_address))) {
goto setup_host_entry_error;
}
if (aws_array_list_init_dynamic(
&new_host_entry->expired_addresses, new_host_entry->allocator, 4, sizeof(struct aws_host_address))) {
goto setup_host_entry_error;
}
aws_linked_list_init(&new_host_entry->pending_resolution_callbacks);
pending_callback = aws_mem_acquire(resolver->allocator, sizeof(struct pending_callback));
if (AWS_UNLIKELY(!pending_callback)) {
goto setup_host_entry_error;
}
/*add the current callback here */
pending_callback->user_data = user_data;
pending_callback->callback = res;
aws_linked_list_push_back(&new_host_entry->pending_resolution_callbacks, &pending_callback->node);
aws_mutex_init(&new_host_entry->entry_lock);
new_host_entry->resolution_config = *config;
aws_condition_variable_init(&new_host_entry->entry_signal);
aws_thread_init(&new_host_entry->resolver_thread, resolver->allocator);
thread_init = true;
struct default_host_resolver *default_host_resolver = resolver->impl;
if (AWS_UNLIKELY(
aws_hash_table_put(&default_host_resolver->host_entry_table, host_string_copy, new_host_entry, NULL))) {
goto setup_host_entry_error;
}
struct aws_thread_options thread_options = *aws_default_thread_options();
thread_options.join_strategy = AWS_TJS_MANAGED;
thread_options.name = aws_byte_cursor_from_c_str("AwsHostResolver"); /* 15 characters is max for Linux */
if (aws_thread_launch(
&new_host_entry->resolver_thread, aws_host_resolver_thread, new_host_entry, &thread_options)) {
goto setup_host_entry_error;
}
++default_host_resolver->pending_host_entry_shutdown_completion_callbacks;
return AWS_OP_SUCCESS;
setup_host_entry_error:
if (thread_init) {
aws_thread_clean_up(&new_host_entry->resolver_thread);
}
// If we registered a callback, clear it. So that we don’t trigger callback and return an error.
if (!aws_linked_list_empty(&new_host_entry->pending_resolution_callbacks)) {
aws_linked_list_remove(&pending_callback->node);
}
s_clean_up_host_entry(new_host_entry);
return AWS_OP_ERR;
}
static int default_resolve_host(
struct aws_host_resolver *resolver,
const struct aws_string *host_name,
aws_on_host_resolved_result_fn *res,
const struct aws_host_resolution_config *config,
void *user_data) {
int result = AWS_OP_SUCCESS;
AWS_LOGF_DEBUG(AWS_LS_IO_DNS, "id=%p: Host resolution requested for %s", (void *)resolver, host_name->bytes);
uint64_t timestamp = s_get_system_time_for_default_resolver(resolver);
struct default_host_resolver *default_host_resolver = resolver->impl;
aws_mutex_lock(&default_host_resolver->resolver_lock);
struct aws_hash_element *element = NULL;
/* we don't care about the error code here, only that the host_entry was found or not. */
aws_hash_table_find(&default_host_resolver->host_entry_table, host_name, &element);
struct host_entry *host_entry = NULL;
if (element != NULL) {
host_entry = element->value;
AWS_FATAL_ASSERT(host_entry != NULL);
}
if (!host_entry) {
AWS_LOGF_DEBUG(
AWS_LS_IO_DNS,
"id=%p: No cached entries found for %s starting new resolver thread.",
(void *)resolver,
host_name->bytes);
result = create_and_init_host_entry(resolver, host_name, res, config, timestamp, user_data);
aws_mutex_unlock(&default_host_resolver->resolver_lock);
return result;
}
aws_mutex_lock(&host_entry->entry_lock);
/*
* We don't need to make any resolver side-affects in the remaining logic and it's impossible for the entry
* to disappear underneath us while holding its lock, so its safe to release the resolver lock and let other
* things query other entries.
*/
aws_mutex_unlock(&default_host_resolver->resolver_lock);
host_entry->last_resolve_request_timestamp_ns = timestamp;
host_entry->resolves_since_last_request = 0;
struct aws_host_address_cache_entry *aaaa_entry = aws_lru_cache_use_lru_element(host_entry->aaaa_records);
struct aws_host_address *aaaa_record = (aaaa_entry != NULL) ? &aaaa_entry->address : NULL;
struct aws_host_address_cache_entry *a_entry = aws_lru_cache_use_lru_element(host_entry->a_records);
struct aws_host_address *a_record = (a_entry != NULL) ? &a_entry->address : NULL;
struct aws_host_address address_array[2];
AWS_ZERO_ARRAY(address_array);
struct aws_array_list callback_address_list;
aws_array_list_init_static(&callback_address_list, address_array, 2, sizeof(struct aws_host_address));
if ((aaaa_record || a_record)) {
AWS_LOGF_DEBUG(
AWS_LS_IO_DNS,
"id=%p: cached entries found for %s returning to caller.",
(void *)resolver,
host_name->bytes);
/* these will all need to be copied so that we don't hold the lock during the callback. */
if (aaaa_record) {
struct aws_host_address aaaa_record_cpy;
aws_host_address_copy(aaaa_record, &aaaa_record_cpy);
aws_array_list_push_back(&callback_address_list, &aaaa_record_cpy);
AWS_LOGF_TRACE(
AWS_LS_IO_DNS,
"id=%p: vending address %s for host %s to caller",
(void *)resolver,
aaaa_record->address->bytes,
host_entry->host_name->bytes);
}
if (a_record) {
struct aws_host_address a_record_cpy;
aws_host_address_copy(a_record, &a_record_cpy);
aws_array_list_push_back(&callback_address_list, &a_record_cpy);
AWS_LOGF_TRACE(
AWS_LS_IO_DNS,
"id=%p: vending address %s for host %s to caller",
(void *)resolver,
a_record->address->bytes,
host_entry->host_name->bytes);
}
aws_mutex_unlock(&host_entry->entry_lock);
/* we don't want to do the callback WHILE we hold the lock someone may reentrantly call us. */
// TODO: Fire the callback asynchronously
res(resolver, host_name, AWS_OP_SUCCESS, &callback_address_list, user_data);
for (size_t i = 0; i < aws_array_list_length(&callback_address_list); ++i) {
struct aws_host_address *address_ptr = NULL;
aws_array_list_get_at_ptr(&callback_address_list, (void **)&address_ptr, i);
aws_host_address_clean_up(address_ptr);
}
aws_array_list_clean_up(&callback_address_list);
return result;
}
struct pending_callback *pending_callback =
aws_mem_acquire(default_host_resolver->allocator, sizeof(struct pending_callback));
if (pending_callback != NULL) {
pending_callback->user_data = user_data;
pending_callback->callback = res;
aws_linked_list_push_back(&host_entry->pending_resolution_callbacks, &pending_callback->node);
/*
* intentionally signal under the lock; similar to the shutdown case, we can't guarantee the resolver
* is still around once the lock is released.
*/
aws_condition_variable_notify_all(&host_entry->entry_signal);
} else {
result = AWS_OP_ERR;
}
aws_mutex_unlock(&host_entry->entry_lock);
return result;
}
static size_t default_get_host_address_count(
struct aws_host_resolver *host_resolver,
const struct aws_string *host_name,
uint32_t flags) {
struct default_host_resolver *default_host_resolver = host_resolver->impl;
size_t address_count = 0;
aws_mutex_lock(&default_host_resolver->resolver_lock);
struct aws_hash_element *element = NULL;
aws_hash_table_find(&default_host_resolver->host_entry_table, host_name, &element);
if (element != NULL) {
struct host_entry *host_entry = element->value;
if (host_entry != NULL) {
aws_mutex_lock(&host_entry->entry_lock);
if ((flags & AWS_GET_HOST_ADDRESS_COUNT_RECORD_TYPE_A) != 0) {
address_count += aws_cache_get_element_count(host_entry->a_records);
}
if ((flags & AWS_GET_HOST_ADDRESS_COUNT_RECORD_TYPE_AAAA) != 0) {
address_count += aws_cache_get_element_count(host_entry->aaaa_records);
}
aws_mutex_unlock(&host_entry->entry_lock);
}
}
aws_mutex_unlock(&default_host_resolver->resolver_lock);
return address_count;
}
static struct aws_host_resolver_vtable s_vtable = {
.purge_cache = s_resolver_purge_cache,
.purge_cache_with_callback = s_resolver_purge_cache_with_callback,
.resolve_host = default_resolve_host,
.record_connection_failure = resolver_record_connection_failure,
.get_host_address_count = default_get_host_address_count,
.destroy = resolver_destroy,
.purge_host_cache = s_resolver_purge_host_cache,
};
static void s_aws_host_resolver_destroy(struct aws_host_resolver *resolver) {
AWS_ASSERT(resolver->vtable && resolver->vtable->destroy);
resolver->vtable->destroy(resolver);
}
struct aws_host_resolver *aws_host_resolver_new_default(
struct aws_allocator *allocator,
const struct aws_host_resolver_default_options *options) {
AWS_FATAL_ASSERT(options != NULL);
AWS_ASSERT(options->el_group);
struct aws_host_resolver *resolver = NULL;
struct default_host_resolver *default_host_resolver = NULL;
if (!aws_mem_acquire_many(
allocator,
2,
&resolver,
sizeof(struct aws_host_resolver),
&default_host_resolver,
sizeof(struct default_host_resolver))) {
return NULL;
}
AWS_ZERO_STRUCT(*resolver);
AWS_ZERO_STRUCT(*default_host_resolver);
AWS_LOGF_INFO(
AWS_LS_IO_DNS,
"id=%p: Initializing default host resolver with %llu max host entries.",
(void *)resolver,
(unsigned long long)options->max_entries);
resolver->vtable = &s_vtable;
resolver->allocator = allocator;
resolver->impl = default_host_resolver;
default_host_resolver->event_loop_group = aws_event_loop_group_acquire(options->el_group);
default_host_resolver->allocator = allocator;
default_host_resolver->pending_host_entry_shutdown_completion_callbacks = 0;
default_host_resolver->state = DRS_ACTIVE;
aws_mutex_init(&default_host_resolver->resolver_lock);
if (aws_hash_table_init(
&default_host_resolver->host_entry_table,
allocator,
options->max_entries,
aws_hash_string,
aws_hash_callback_string_eq,
NULL,
NULL)) {
goto on_error;
}
aws_ref_count_init(&resolver->ref_count, resolver, (aws_simple_completion_callback *)s_aws_host_resolver_destroy);
if (options->shutdown_options != NULL) {
resolver->shutdown_options = *options->shutdown_options;
}
if (options->system_clock_override_fn != NULL) {
default_host_resolver->system_clock_fn = options->system_clock_override_fn;
} else {
default_host_resolver->system_clock_fn = aws_high_res_clock_get_ticks;
}
return resolver;
on_error:
s_cleanup_default_resolver(resolver);
return NULL;
}
struct aws_host_resolver *aws_host_resolver_acquire(struct aws_host_resolver *resolver) {
if (resolver != NULL) {
aws_ref_count_acquire(&resolver->ref_count);
}
return resolver;
}
void aws_host_resolver_release(struct aws_host_resolver *resolver) {
if (resolver != NULL) {
aws_ref_count_release(&resolver->ref_count);
}
}
size_t aws_host_resolver_get_host_address_count(
struct aws_host_resolver *resolver,
const struct aws_string *host_name,
uint32_t flags) {
return resolver->vtable->get_host_address_count(resolver, host_name, flags);
}
struct aws_host_resolution_config aws_host_resolver_init_default_resolution_config(void) {
struct aws_host_resolution_config config = {
.impl = aws_default_dns_resolve,
.max_ttl = AWS_DEFAULT_DNS_TTL,
.impl_data = NULL,
.resolve_frequency_ns = NS_PER_SEC,
};
return config;
}
|