1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
|
/**
* Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
* SPDX-License-Identifier: Apache-2.0.
*/
#include <aws/io/event_loop.h>
#include <aws/io/logging.h>
#include <aws/common/atomics.h>
#include <aws/common/clock.h>
#include <aws/common/mutex.h>
#include <aws/common/task_scheduler.h>
#include <aws/common/thread.h>
#if defined(__FreeBSD__) || defined(__NetBSD__)
# define __BSD_VISIBLE 1
# include <sys/types.h>
#endif
#include <sys/event.h>
#include <aws/io/io.h>
#include <limits.h>
#include <unistd.h>
static void s_destroy(struct aws_event_loop *event_loop);
static int s_run(struct aws_event_loop *event_loop);
static int s_stop(struct aws_event_loop *event_loop);
static int s_wait_for_stop_completion(struct aws_event_loop *event_loop);
static void s_schedule_task_now(struct aws_event_loop *event_loop, struct aws_task *task);
static void s_schedule_task_future(struct aws_event_loop *event_loop, struct aws_task *task, uint64_t run_at_nanos);
static void s_cancel_task(struct aws_event_loop *event_loop, struct aws_task *task);
static int s_subscribe_to_io_events(
struct aws_event_loop *event_loop,
struct aws_io_handle *handle,
int events,
aws_event_loop_on_event_fn *on_event,
void *user_data);
static int s_unsubscribe_from_io_events(struct aws_event_loop *event_loop, struct aws_io_handle *handle);
static void s_free_io_event_resources(void *user_data);
static bool s_is_event_thread(struct aws_event_loop *event_loop);
static void aws_event_loop_thread(void *user_data);
int aws_open_nonblocking_posix_pipe(int pipe_fds[2]);
enum event_thread_state {
EVENT_THREAD_STATE_READY_TO_RUN,
EVENT_THREAD_STATE_RUNNING,
EVENT_THREAD_STATE_STOPPING,
};
enum pipe_fd_index {
READ_FD,
WRITE_FD,
};
struct kqueue_loop {
/* thread_created_on is the handle to the event loop thread. */
struct aws_thread thread_created_on;
/* thread_joined_to is used by the thread destroying the event loop. */
aws_thread_id_t thread_joined_to;
/* running_thread_id is NULL if the event loop thread is stopped or points-to the thread_id of the thread running
* the event loop (either thread_created_on or thread_joined_to). Atomic because of concurrent writes (e.g.,
* run/stop) and reads (e.g., is_event_loop_thread).
* An aws_thread_id_t variable itself cannot be atomic because it is an opaque type that is platform-dependent. */
struct aws_atomic_var running_thread_id;
int kq_fd; /* kqueue file descriptor */
/* Pipe for signaling to event-thread that cross_thread_data has changed. */
int cross_thread_signal_pipe[2];
/* cross_thread_data holds things that must be communicated across threads.
* When the event-thread is running, the mutex must be locked while anyone touches anything in cross_thread_data.
* If this data is modified outside the thread, the thread is signaled via activity on a pipe. */
struct {
struct aws_mutex mutex;
bool thread_signaled; /* whether thread has been signaled about changes to cross_thread_data */
struct aws_linked_list tasks_to_schedule;
enum event_thread_state state;
} cross_thread_data;
/* thread_data holds things which, when the event-thread is running, may only be touched by the thread */
struct {
struct aws_task_scheduler scheduler;
int connected_handle_count;
/* These variables duplicate ones in cross_thread_data. We move values out while holding the mutex and operate
* on them later */
enum event_thread_state state;
} thread_data;
struct aws_thread_options thread_options;
};
/* Data attached to aws_io_handle while the handle is subscribed to io events */
struct handle_data {
struct aws_io_handle *owner;
struct aws_event_loop *event_loop;
aws_event_loop_on_event_fn *on_event;
void *on_event_user_data;
int events_subscribed; /* aws_io_event_types this handle should be subscribed to */
int events_this_loop; /* aws_io_event_types received during current loop of the event-thread */
enum { HANDLE_STATE_SUBSCRIBING, HANDLE_STATE_SUBSCRIBED, HANDLE_STATE_UNSUBSCRIBED } state;
struct aws_task subscribe_task;
struct aws_task cleanup_task;
};
enum {
DEFAULT_TIMEOUT_SEC = 100, /* Max kevent() timeout per loop of the event-thread */
MAX_EVENTS = 100, /* Max kevents to process per loop of the event-thread */
};
struct aws_event_loop_vtable s_kqueue_vtable = {
.destroy = s_destroy,
.run = s_run,
.stop = s_stop,
.wait_for_stop_completion = s_wait_for_stop_completion,
.schedule_task_now = s_schedule_task_now,
.schedule_task_future = s_schedule_task_future,
.subscribe_to_io_events = s_subscribe_to_io_events,
.cancel_task = s_cancel_task,
.unsubscribe_from_io_events = s_unsubscribe_from_io_events,
.free_io_event_resources = s_free_io_event_resources,
.is_on_callers_thread = s_is_event_thread,
};
struct aws_event_loop *aws_event_loop_new_default_with_options(
struct aws_allocator *alloc,
const struct aws_event_loop_options *options) {
AWS_ASSERT(alloc);
AWS_ASSERT(clock);
AWS_ASSERT(options);
AWS_ASSERT(options->clock);
bool clean_up_event_loop_mem = false;
bool clean_up_event_loop_base = false;
bool clean_up_impl_mem = false;
bool clean_up_thread = false;
bool clean_up_kqueue = false;
bool clean_up_signal_pipe = false;
bool clean_up_signal_kevent = false;
bool clean_up_mutex = false;
struct aws_event_loop *event_loop = aws_mem_acquire(alloc, sizeof(struct aws_event_loop));
if (!event_loop) {
return NULL;
}
AWS_LOGF_INFO(AWS_LS_IO_EVENT_LOOP, "id=%p: Initializing edge-triggered kqueue", (void *)event_loop);
clean_up_event_loop_mem = true;
int err = aws_event_loop_init_base(event_loop, alloc, options->clock);
if (err) {
goto clean_up;
}
clean_up_event_loop_base = true;
struct kqueue_loop *impl = aws_mem_calloc(alloc, 1, sizeof(struct kqueue_loop));
if (!impl) {
goto clean_up;
}
if (options->thread_options) {
impl->thread_options = *options->thread_options;
} else {
impl->thread_options = *aws_default_thread_options();
}
/* intialize thread id to NULL. It will be set when the event loop thread starts. */
aws_atomic_init_ptr(&impl->running_thread_id, NULL);
clean_up_impl_mem = true;
err = aws_thread_init(&impl->thread_created_on, alloc);
if (err) {
goto clean_up;
}
clean_up_thread = true;
impl->kq_fd = kqueue();
if (impl->kq_fd == -1) {
AWS_LOGF_FATAL(AWS_LS_IO_EVENT_LOOP, "id=%p: Failed to open kqueue handle.", (void *)event_loop);
aws_raise_error(AWS_ERROR_SYS_CALL_FAILURE);
goto clean_up;
}
clean_up_kqueue = true;
err = aws_open_nonblocking_posix_pipe(impl->cross_thread_signal_pipe);
if (err) {
AWS_LOGF_FATAL(AWS_LS_IO_EVENT_LOOP, "id=%p: failed to open pipe handle.", (void *)event_loop);
goto clean_up;
}
AWS_LOGF_TRACE(
AWS_LS_IO_EVENT_LOOP,
"id=%p: pipe descriptors read %d, write %d.",
(void *)event_loop,
impl->cross_thread_signal_pipe[READ_FD],
impl->cross_thread_signal_pipe[WRITE_FD]);
clean_up_signal_pipe = true;
/* Set up kevent to handle activity on the cross_thread_signal_pipe */
struct kevent thread_signal_kevent;
EV_SET(
&thread_signal_kevent,
impl->cross_thread_signal_pipe[READ_FD],
EVFILT_READ /*filter*/,
EV_ADD | EV_CLEAR /*flags*/,
0 /*fflags*/,
0 /*data*/,
NULL /*udata*/);
int res = kevent(
impl->kq_fd,
&thread_signal_kevent /*changelist*/,
1 /*nchanges*/,
NULL /*eventlist*/,
0 /*nevents*/,
NULL /*timeout*/);
if (res == -1) {
AWS_LOGF_FATAL(AWS_LS_IO_EVENT_LOOP, "id=%p: failed to create cross-thread signal kevent.", (void *)event_loop);
aws_raise_error(AWS_ERROR_SYS_CALL_FAILURE);
goto clean_up;
}
clean_up_signal_kevent = true;
err = aws_mutex_init(&impl->cross_thread_data.mutex);
if (err) {
goto clean_up;
}
clean_up_mutex = true;
impl->cross_thread_data.thread_signaled = false;
aws_linked_list_init(&impl->cross_thread_data.tasks_to_schedule);
impl->cross_thread_data.state = EVENT_THREAD_STATE_READY_TO_RUN;
err = aws_task_scheduler_init(&impl->thread_data.scheduler, alloc);
if (err) {
goto clean_up;
}
impl->thread_data.state = EVENT_THREAD_STATE_READY_TO_RUN;
event_loop->impl_data = impl;
event_loop->vtable = &s_kqueue_vtable;
/* success */
return event_loop;
clean_up:
if (clean_up_mutex) {
aws_mutex_clean_up(&impl->cross_thread_data.mutex);
}
if (clean_up_signal_kevent) {
thread_signal_kevent.flags = EV_DELETE;
kevent(
impl->kq_fd,
&thread_signal_kevent /*changelist*/,
1 /*nchanges*/,
NULL /*eventlist*/,
0 /*nevents*/,
NULL /*timeout*/);
}
if (clean_up_signal_pipe) {
close(impl->cross_thread_signal_pipe[READ_FD]);
close(impl->cross_thread_signal_pipe[WRITE_FD]);
}
if (clean_up_kqueue) {
close(impl->kq_fd);
}
if (clean_up_thread) {
aws_thread_clean_up(&impl->thread_created_on);
}
if (clean_up_impl_mem) {
aws_mem_release(alloc, impl);
}
if (clean_up_event_loop_base) {
aws_event_loop_clean_up_base(event_loop);
}
if (clean_up_event_loop_mem) {
aws_mem_release(alloc, event_loop);
}
return NULL;
}
static void s_destroy(struct aws_event_loop *event_loop) {
AWS_LOGF_INFO(AWS_LS_IO_EVENT_LOOP, "id=%p: destroying event_loop", (void *)event_loop);
struct kqueue_loop *impl = event_loop->impl_data;
/* Stop the event-thread. This might have already happened. It's safe to call multiple times. */
s_stop(event_loop);
int err = s_wait_for_stop_completion(event_loop);
if (err) {
AWS_LOGF_WARN(
AWS_LS_IO_EVENT_LOOP,
"id=%p: failed to destroy event-thread, resources have been leaked",
(void *)event_loop);
AWS_ASSERT("Failed to destroy event-thread, resources have been leaked." == NULL);
return;
}
/* setting this so that canceled tasks don't blow up when asking if they're on the event-loop thread. */
impl->thread_joined_to = aws_thread_current_thread_id();
aws_atomic_store_ptr(&impl->running_thread_id, &impl->thread_joined_to);
/* Clean up task-related stuff first. It's possible the a cancelled task adds further tasks to this event_loop.
* Tasks added in this way will be in cross_thread_data.tasks_to_schedule, so we clean that up last */
aws_task_scheduler_clean_up(&impl->thread_data.scheduler); /* Tasks in scheduler get cancelled*/
while (!aws_linked_list_empty(&impl->cross_thread_data.tasks_to_schedule)) {
struct aws_linked_list_node *node = aws_linked_list_pop_front(&impl->cross_thread_data.tasks_to_schedule);
struct aws_task *task = AWS_CONTAINER_OF(node, struct aws_task, node);
task->fn(task, task->arg, AWS_TASK_STATUS_CANCELED);
}
/* Warn user if aws_io_handle was subscribed, but never unsubscribed. This would cause memory leaks. */
AWS_ASSERT(impl->thread_data.connected_handle_count == 0);
/* Clean up everything else */
aws_mutex_clean_up(&impl->cross_thread_data.mutex);
struct kevent thread_signal_kevent;
EV_SET(
&thread_signal_kevent,
impl->cross_thread_signal_pipe[READ_FD],
EVFILT_READ /*filter*/,
EV_DELETE /*flags*/,
0 /*fflags*/,
0 /*data*/,
NULL /*udata*/);
kevent(
impl->kq_fd,
&thread_signal_kevent /*changelist*/,
1 /*nchanges*/,
NULL /*eventlist*/,
0 /*nevents*/,
NULL /*timeout*/);
close(impl->cross_thread_signal_pipe[READ_FD]);
close(impl->cross_thread_signal_pipe[WRITE_FD]);
close(impl->kq_fd);
aws_thread_clean_up(&impl->thread_created_on);
aws_mem_release(event_loop->alloc, impl);
aws_event_loop_clean_up_base(event_loop);
aws_mem_release(event_loop->alloc, event_loop);
}
static int s_run(struct aws_event_loop *event_loop) {
struct kqueue_loop *impl = event_loop->impl_data;
AWS_LOGF_INFO(AWS_LS_IO_EVENT_LOOP, "id=%p: starting event-loop thread.", (void *)event_loop);
/* to re-run, call stop() and wait_for_stop_completion() */
AWS_ASSERT(impl->cross_thread_data.state == EVENT_THREAD_STATE_READY_TO_RUN);
AWS_ASSERT(impl->thread_data.state == EVENT_THREAD_STATE_READY_TO_RUN);
/* Since thread isn't running it's ok to touch thread_data,
* and it's ok to touch cross_thread_data without locking the mutex */
impl->cross_thread_data.state = EVENT_THREAD_STATE_RUNNING;
aws_thread_increment_unjoined_count();
int err =
aws_thread_launch(&impl->thread_created_on, aws_event_loop_thread, (void *)event_loop, &impl->thread_options);
if (err) {
aws_thread_decrement_unjoined_count();
AWS_LOGF_FATAL(AWS_LS_IO_EVENT_LOOP, "id=%p: thread creation failed.", (void *)event_loop);
goto clean_up;
}
return AWS_OP_SUCCESS;
clean_up:
impl->cross_thread_data.state = EVENT_THREAD_STATE_READY_TO_RUN;
return AWS_OP_ERR;
}
/* This function can't fail, we're relying on the thread responding to critical messages (ex: stop thread) */
void signal_cross_thread_data_changed(struct aws_event_loop *event_loop) {
struct kqueue_loop *impl = event_loop->impl_data;
AWS_LOGF_TRACE(
AWS_LS_IO_EVENT_LOOP,
"id=%p: signaling event-loop that cross-thread tasks need to be scheduled.",
(void *)event_loop);
/* Doesn't actually matter what we write, any activity on pipe signals that cross_thread_data has changed,
* If the pipe is full and the write fails, that's fine, the event-thread will get the signal from some previous
* write */
uint32_t write_whatever = 0xC0FFEE;
write(impl->cross_thread_signal_pipe[WRITE_FD], &write_whatever, sizeof(write_whatever));
}
static int s_stop(struct aws_event_loop *event_loop) {
struct kqueue_loop *impl = event_loop->impl_data;
bool signal_thread = false;
{ /* Begin critical section */
aws_mutex_lock(&impl->cross_thread_data.mutex);
if (impl->cross_thread_data.state == EVENT_THREAD_STATE_RUNNING) {
impl->cross_thread_data.state = EVENT_THREAD_STATE_STOPPING;
signal_thread = !impl->cross_thread_data.thread_signaled;
impl->cross_thread_data.thread_signaled = true;
}
aws_mutex_unlock(&impl->cross_thread_data.mutex);
} /* End critical section */
if (signal_thread) {
signal_cross_thread_data_changed(event_loop);
}
return AWS_OP_SUCCESS;
}
static int s_wait_for_stop_completion(struct aws_event_loop *event_loop) {
struct kqueue_loop *impl = event_loop->impl_data;
#ifdef DEBUG_BUILD
aws_mutex_lock(&impl->cross_thread_data.mutex);
/* call stop() before wait_for_stop_completion() or you'll wait forever */
AWS_ASSERT(impl->cross_thread_data.state != EVENT_THREAD_STATE_RUNNING);
aws_mutex_unlock(&impl->cross_thread_data.mutex);
#endif
int err = aws_thread_join(&impl->thread_created_on);
aws_thread_decrement_unjoined_count();
if (err) {
return AWS_OP_ERR;
}
/* Since thread is no longer running it's ok to touch thread_data,
* and it's ok to touch cross_thread_data without locking the mutex */
impl->cross_thread_data.state = EVENT_THREAD_STATE_READY_TO_RUN;
impl->thread_data.state = EVENT_THREAD_STATE_READY_TO_RUN;
return AWS_OP_SUCCESS;
}
/* Common functionality for "now" and "future" task scheduling.
* If `run_at_nanos` is zero then the task is scheduled as a "now" task. */
static void s_schedule_task_common(struct aws_event_loop *event_loop, struct aws_task *task, uint64_t run_at_nanos) {
AWS_ASSERT(task);
struct kqueue_loop *impl = event_loop->impl_data;
/* If we're on the event-thread, just schedule it directly */
if (s_is_event_thread(event_loop)) {
AWS_LOGF_TRACE(
AWS_LS_IO_EVENT_LOOP,
"id=%p: scheduling task %p in-thread for timestamp %llu",
(void *)event_loop,
(void *)task,
(unsigned long long)run_at_nanos);
if (run_at_nanos == 0) {
aws_task_scheduler_schedule_now(&impl->thread_data.scheduler, task);
} else {
aws_task_scheduler_schedule_future(&impl->thread_data.scheduler, task, run_at_nanos);
}
return;
}
/* Otherwise, add it to cross_thread_data.tasks_to_schedule and signal the event-thread to process it */
AWS_LOGF_TRACE(
AWS_LS_IO_EVENT_LOOP,
"id=%p: scheduling task %p cross-thread for timestamp %llu",
(void *)event_loop,
(void *)task,
(unsigned long long)run_at_nanos);
task->timestamp = run_at_nanos;
bool should_signal_thread = false;
/* Begin critical section */
aws_mutex_lock(&impl->cross_thread_data.mutex);
aws_linked_list_push_back(&impl->cross_thread_data.tasks_to_schedule, &task->node);
/* Signal thread that cross_thread_data has changed (unless it's been signaled already) */
if (!impl->cross_thread_data.thread_signaled) {
should_signal_thread = true;
impl->cross_thread_data.thread_signaled = true;
}
aws_mutex_unlock(&impl->cross_thread_data.mutex);
/* End critical section */
if (should_signal_thread) {
signal_cross_thread_data_changed(event_loop);
}
}
static void s_schedule_task_now(struct aws_event_loop *event_loop, struct aws_task *task) {
s_schedule_task_common(event_loop, task, 0); /* Zero is used to denote "now" tasks */
}
static void s_schedule_task_future(struct aws_event_loop *event_loop, struct aws_task *task, uint64_t run_at_nanos) {
s_schedule_task_common(event_loop, task, run_at_nanos);
}
static void s_cancel_task(struct aws_event_loop *event_loop, struct aws_task *task) {
struct kqueue_loop *kqueue_loop = event_loop->impl_data;
AWS_LOGF_TRACE(AWS_LS_IO_EVENT_LOOP, "id=%p: cancelling task %p", (void *)event_loop, (void *)task);
aws_task_scheduler_cancel_task(&kqueue_loop->thread_data.scheduler, task);
}
/* Scheduled task that connects aws_io_handle with the kqueue */
static void s_subscribe_task(struct aws_task *task, void *user_data, enum aws_task_status status) {
(void)task;
struct handle_data *handle_data = user_data;
struct aws_event_loop *event_loop = handle_data->event_loop;
struct kqueue_loop *impl = handle_data->event_loop->impl_data;
impl->thread_data.connected_handle_count++;
/* if task was cancelled, nothing to do */
if (status == AWS_TASK_STATUS_CANCELED) {
return;
}
/* If handle was unsubscribed before this task could execute, nothing to do */
if (handle_data->state == HANDLE_STATE_UNSUBSCRIBED) {
return;
}
AWS_ASSERT(handle_data->state == HANDLE_STATE_SUBSCRIBING);
AWS_LOGF_TRACE(
AWS_LS_IO_EVENT_LOOP, "id=%p: subscribing to events on fd %d", (void *)event_loop, handle_data->owner->data.fd);
/* In order to monitor both reads and writes, kqueue requires you to add two separate kevents.
* If we're adding two separate kevents, but one of those fails, we need to remove the other kevent.
* Therefore we use the EV_RECEIPT flag. This causes kevent() to tell whether each EV_ADD succeeded,
* rather than the usual behavior of telling us about recent events. */
struct kevent changelist[2];
AWS_ZERO_ARRAY(changelist);
int changelist_size = 0;
if (handle_data->events_subscribed & AWS_IO_EVENT_TYPE_READABLE) {
EV_SET(
&changelist[changelist_size++],
handle_data->owner->data.fd,
EVFILT_READ /*filter*/,
EV_ADD | EV_RECEIPT | EV_CLEAR /*flags*/,
0 /*fflags*/,
0 /*data*/,
handle_data /*udata*/);
}
if (handle_data->events_subscribed & AWS_IO_EVENT_TYPE_WRITABLE) {
EV_SET(
&changelist[changelist_size++],
handle_data->owner->data.fd,
EVFILT_WRITE /*filter*/,
EV_ADD | EV_RECEIPT | EV_CLEAR /*flags*/,
0 /*fflags*/,
0 /*data*/,
handle_data /*udata*/);
}
int num_events = kevent(
impl->kq_fd,
changelist /*changelist*/,
changelist_size /*nchanges*/,
changelist /*eventlist. It's OK to re-use the same memory for changelist input and eventlist output*/,
changelist_size /*nevents*/,
NULL /*timeout*/);
if (num_events == -1) {
goto subscribe_failed;
}
/* Look through results to see if any failed */
for (int i = 0; i < num_events; ++i) {
/* Every result should be flagged as error, that's just how EV_RECEIPT works */
AWS_ASSERT(changelist[i].flags & EV_ERROR);
/* If a real error occurred, .data contains the error code */
if (changelist[i].data != 0) {
goto subscribe_failed;
}
}
/* Success */
handle_data->state = HANDLE_STATE_SUBSCRIBED;
return;
subscribe_failed:
AWS_LOGF_ERROR(
AWS_LS_IO_EVENT_LOOP,
"id=%p: failed to subscribe to events on fd %d",
(void *)event_loop,
handle_data->owner->data.fd);
/* Remove any related kevents that succeeded */
for (int i = 0; i < num_events; ++i) {
if (changelist[i].data == 0) {
changelist[i].flags = EV_DELETE;
kevent(
impl->kq_fd,
&changelist[i] /*changelist*/,
1 /*nchanges*/,
NULL /*eventlist*/,
0 /*nevents*/,
NULL /*timeout*/);
}
}
/* We can't return an error code because this was a scheduled task.
* Notify the user of the failed subscription by passing AWS_IO_EVENT_TYPE_ERROR to the callback. */
handle_data->on_event(event_loop, handle_data->owner, AWS_IO_EVENT_TYPE_ERROR, handle_data->on_event_user_data);
}
static int s_subscribe_to_io_events(
struct aws_event_loop *event_loop,
struct aws_io_handle *handle,
int events,
aws_event_loop_on_event_fn *on_event,
void *user_data) {
AWS_ASSERT(event_loop);
AWS_ASSERT(handle->data.fd != -1);
AWS_ASSERT(handle->additional_data == NULL);
AWS_ASSERT(on_event);
/* Must subscribe for read, write, or both */
AWS_ASSERT(events & (AWS_IO_EVENT_TYPE_READABLE | AWS_IO_EVENT_TYPE_WRITABLE));
struct handle_data *handle_data = aws_mem_calloc(event_loop->alloc, 1, sizeof(struct handle_data));
if (!handle_data) {
return AWS_OP_ERR;
}
handle_data->owner = handle;
handle_data->event_loop = event_loop;
handle_data->on_event = on_event;
handle_data->on_event_user_data = user_data;
handle_data->events_subscribed = events;
handle_data->state = HANDLE_STATE_SUBSCRIBING;
handle->additional_data = handle_data;
/* We schedule a task to perform the actual changes to the kqueue, read on for an explanation why...
*
* kqueue requires separate registrations for read and write events.
* If the user wants to know about both read and write, we need register once for read and once for write.
* If the first registration succeeds, but the second registration fails, we need to delete the first registration.
* If this all happened outside the event-thread, the successful registration's events could begin processing
* in the brief window of time before the registration is deleted. */
aws_task_init(&handle_data->subscribe_task, s_subscribe_task, handle_data, "kqueue_event_loop_subscribe");
s_schedule_task_now(event_loop, &handle_data->subscribe_task);
return AWS_OP_SUCCESS;
}
static void s_free_io_event_resources(void *user_data) {
struct handle_data *handle_data = user_data;
struct kqueue_loop *impl = handle_data->event_loop->impl_data;
impl->thread_data.connected_handle_count--;
aws_mem_release(handle_data->event_loop->alloc, handle_data);
}
static void s_clean_up_handle_data_task(struct aws_task *task, void *user_data, enum aws_task_status status) {
(void)task;
(void)status;
struct handle_data *handle_data = user_data;
s_free_io_event_resources(handle_data);
}
static int s_unsubscribe_from_io_events(struct aws_event_loop *event_loop, struct aws_io_handle *handle) {
AWS_LOGF_TRACE(
AWS_LS_IO_EVENT_LOOP, "id=%p: un-subscribing from events on fd %d", (void *)event_loop, handle->data.fd);
AWS_ASSERT(handle->additional_data);
struct handle_data *handle_data = handle->additional_data;
struct kqueue_loop *impl = event_loop->impl_data;
AWS_ASSERT(event_loop == handle_data->event_loop);
/* If the handle was successfully subscribed to kqueue, then remove it. */
if (handle_data->state == HANDLE_STATE_SUBSCRIBED) {
struct kevent changelist[2];
int changelist_size = 0;
if (handle_data->events_subscribed & AWS_IO_EVENT_TYPE_READABLE) {
EV_SET(
&changelist[changelist_size++],
handle_data->owner->data.fd,
EVFILT_READ /*filter*/,
EV_DELETE /*flags*/,
0 /*fflags*/,
0 /*data*/,
handle_data /*udata*/);
}
if (handle_data->events_subscribed & AWS_IO_EVENT_TYPE_WRITABLE) {
EV_SET(
&changelist[changelist_size++],
handle_data->owner->data.fd,
EVFILT_WRITE /*filter*/,
EV_DELETE /*flags*/,
0 /*fflags*/,
0 /*data*/,
handle_data /*udata*/);
}
kevent(impl->kq_fd, changelist, changelist_size, NULL /*eventlist*/, 0 /*nevents*/, NULL /*timeout*/);
}
/* Schedule a task to clean up the memory. This is done in a task to prevent the following scenario:
* - While processing a batch of events, some callback unsubscribes another aws_io_handle.
* - One of the other events in this batch belongs to that other aws_io_handle.
* - If the handle_data were already deleted, there would be an access invalid memory. */
aws_task_init(
&handle_data->cleanup_task, s_clean_up_handle_data_task, handle_data, "kqueue_event_loop_clean_up_handle_data");
aws_event_loop_schedule_task_now(event_loop, &handle_data->cleanup_task);
handle_data->state = HANDLE_STATE_UNSUBSCRIBED;
handle->additional_data = NULL;
return AWS_OP_SUCCESS;
}
static bool s_is_event_thread(struct aws_event_loop *event_loop) {
struct kqueue_loop *impl = event_loop->impl_data;
aws_thread_id_t *thread_id = aws_atomic_load_ptr(&impl->running_thread_id);
return thread_id && aws_thread_thread_id_equal(*thread_id, aws_thread_current_thread_id());
}
/* Called from thread.
* Takes tasks from tasks_to_schedule and adds them to the scheduler. */
static void s_process_tasks_to_schedule(struct aws_event_loop *event_loop, struct aws_linked_list *tasks_to_schedule) {
struct kqueue_loop *impl = event_loop->impl_data;
AWS_LOGF_TRACE(AWS_LS_IO_EVENT_LOOP, "id=%p: processing cross-thread tasks", (void *)event_loop);
while (!aws_linked_list_empty(tasks_to_schedule)) {
struct aws_linked_list_node *node = aws_linked_list_pop_front(tasks_to_schedule);
struct aws_task *task = AWS_CONTAINER_OF(node, struct aws_task, node);
AWS_LOGF_TRACE(
AWS_LS_IO_EVENT_LOOP,
"id=%p: task %p pulled to event-loop, scheduling now.",
(void *)event_loop,
(void *)task);
/* Timestamp 0 is used to denote "now" tasks */
if (task->timestamp == 0) {
aws_task_scheduler_schedule_now(&impl->thread_data.scheduler, task);
} else {
aws_task_scheduler_schedule_future(&impl->thread_data.scheduler, task, task->timestamp);
}
}
}
static void s_process_cross_thread_data(struct aws_event_loop *event_loop) {
struct kqueue_loop *impl = event_loop->impl_data;
AWS_LOGF_TRACE(AWS_LS_IO_EVENT_LOOP, "id=%p: notified of cross-thread data to process", (void *)event_loop);
/* If there are tasks to schedule, grab them all out of synced_data.tasks_to_schedule.
* We'll process them later, so that we minimize time spent holding the mutex. */
struct aws_linked_list tasks_to_schedule;
aws_linked_list_init(&tasks_to_schedule);
{ /* Begin critical section */
aws_mutex_lock(&impl->cross_thread_data.mutex);
impl->cross_thread_data.thread_signaled = false;
bool initiate_stop = (impl->cross_thread_data.state == EVENT_THREAD_STATE_STOPPING) &&
(impl->thread_data.state == EVENT_THREAD_STATE_RUNNING);
if (AWS_UNLIKELY(initiate_stop)) {
impl->thread_data.state = EVENT_THREAD_STATE_STOPPING;
}
aws_linked_list_swap_contents(&impl->cross_thread_data.tasks_to_schedule, &tasks_to_schedule);
aws_mutex_unlock(&impl->cross_thread_data.mutex);
} /* End critical section */
s_process_tasks_to_schedule(event_loop, &tasks_to_schedule);
}
static int s_aws_event_flags_from_kevent(struct kevent *kevent) {
int event_flags = 0;
if (kevent->flags & EV_ERROR) {
event_flags |= AWS_IO_EVENT_TYPE_ERROR;
} else if (kevent->filter == EVFILT_READ) {
if (kevent->data != 0) {
event_flags |= AWS_IO_EVENT_TYPE_READABLE;
}
if (kevent->flags & EV_EOF) {
event_flags |= AWS_IO_EVENT_TYPE_CLOSED;
}
} else if (kevent->filter == EVFILT_WRITE) {
if (kevent->data != 0) {
event_flags |= AWS_IO_EVENT_TYPE_WRITABLE;
}
if (kevent->flags & EV_EOF) {
event_flags |= AWS_IO_EVENT_TYPE_CLOSED;
}
}
return event_flags;
}
/**
* This just calls kevent()
*
* We broke this out into its own function so that the stacktrace clearly shows
* what this thread is doing. We've had a lot of cases where users think this
* thread is deadlocked because it's stuck here. We want it to be clear
* that it's doing nothing on purpose. It's waiting for events to happen...
*/
AWS_NO_INLINE
static int aws_event_loop_listen_for_io_events(int kq_fd, struct kevent kevents[MAX_EVENTS], struct timespec *timeout) {
return kevent(kq_fd, NULL /*changelist*/, 0 /*nchanges*/, kevents /*eventlist*/, MAX_EVENTS /*nevents*/, timeout);
}
static void aws_event_loop_thread(void *user_data) {
struct aws_event_loop *event_loop = user_data;
AWS_LOGF_INFO(AWS_LS_IO_EVENT_LOOP, "id=%p: main loop started", (void *)event_loop);
struct kqueue_loop *impl = event_loop->impl_data;
/* set thread id to the event-loop's thread. */
aws_atomic_store_ptr(&impl->running_thread_id, &impl->thread_created_on.thread_id);
AWS_ASSERT(impl->thread_data.state == EVENT_THREAD_STATE_READY_TO_RUN);
impl->thread_data.state = EVENT_THREAD_STATE_RUNNING;
struct kevent kevents[MAX_EVENTS];
/* A single aws_io_handle could have two separate kevents if subscribed for both read and write.
* If both the read and write kevents fire in the same loop of the event-thread,
* combine the event-flags and deliver them in a single callback.
* This makes the kqueue_event_loop behave more like the other platform implementations. */
struct handle_data *io_handle_events[MAX_EVENTS];
struct timespec timeout = {
.tv_sec = DEFAULT_TIMEOUT_SEC,
.tv_nsec = 0,
};
AWS_LOGF_INFO(
AWS_LS_IO_EVENT_LOOP,
"id=%p: default timeout %ds, and max events to process per tick %d",
(void *)event_loop,
DEFAULT_TIMEOUT_SEC,
MAX_EVENTS);
while (impl->thread_data.state == EVENT_THREAD_STATE_RUNNING) {
int num_io_handle_events = 0;
bool should_process_cross_thread_data = false;
AWS_LOGF_TRACE(
AWS_LS_IO_EVENT_LOOP,
"id=%p: waiting for a maximum of %ds %lluns",
(void *)event_loop,
(int)timeout.tv_sec,
(unsigned long long)timeout.tv_nsec);
/* Process kqueue events */
int num_kevents = aws_event_loop_listen_for_io_events(impl->kq_fd, kevents, &timeout);
aws_event_loop_register_tick_start(event_loop);
AWS_LOGF_TRACE(
AWS_LS_IO_EVENT_LOOP, "id=%p: wake up with %d events to process.", (void *)event_loop, num_kevents);
if (num_kevents == -1) {
/* Raise an error, in case this is interesting to anyone monitoring,
* and continue on with this loop. We can't process events,
* but we can still process scheduled tasks */
aws_raise_error(AWS_ERROR_SYS_CALL_FAILURE);
/* Force the cross_thread_data to be processed.
* There might be valuable info in there, like the message to stop the thread.
* It's fine to do this even if nothing has changed, it just costs a mutex lock/unlock. */
should_process_cross_thread_data = true;
}
for (int i = 0; i < num_kevents; ++i) {
struct kevent *kevent = &kevents[i];
/* Was this event to signal that cross_thread_data has changed? */
if ((int)kevent->ident == impl->cross_thread_signal_pipe[READ_FD]) {
should_process_cross_thread_data = true;
/* Drain whatever data was written to the signaling pipe */
uint32_t read_whatever;
while (read((int)kevent->ident, &read_whatever, sizeof(read_whatever)) > 0) {
}
continue;
}
/* Otherwise this was a normal event on a subscribed handle. Figure out which flags to report. */
int event_flags = s_aws_event_flags_from_kevent(kevent);
if (event_flags == 0) {
continue;
}
/* Combine flags, in case multiple kevents correspond to one handle. (see notes at top of function) */
struct handle_data *handle_data = kevent->udata;
if (handle_data->events_this_loop == 0) {
io_handle_events[num_io_handle_events++] = handle_data;
}
handle_data->events_this_loop |= event_flags;
}
/* Invoke each handle's event callback (unless the handle has been unsubscribed) */
for (int i = 0; i < num_io_handle_events; ++i) {
struct handle_data *handle_data = io_handle_events[i];
if (handle_data->state == HANDLE_STATE_SUBSCRIBED) {
AWS_LOGF_TRACE(
AWS_LS_IO_EVENT_LOOP,
"id=%p: activity on fd %d, invoking handler.",
(void *)event_loop,
handle_data->owner->data.fd);
handle_data->on_event(
event_loop, handle_data->owner, handle_data->events_this_loop, handle_data->on_event_user_data);
}
handle_data->events_this_loop = 0;
}
/* Process cross_thread_data */
if (should_process_cross_thread_data) {
s_process_cross_thread_data(event_loop);
}
/* Run scheduled tasks */
uint64_t now_ns = 0;
event_loop->clock(&now_ns); /* If clock fails, now_ns will be 0 and tasks scheduled for a specific time
will not be run. That's ok, we'll handle them next time around. */
AWS_LOGF_TRACE(AWS_LS_IO_EVENT_LOOP, "id=%p: running scheduled tasks.", (void *)event_loop);
aws_task_scheduler_run_all(&impl->thread_data.scheduler, now_ns);
/* Set timeout for next kevent() call.
* If clock fails, or scheduler has no tasks, use default timeout */
bool use_default_timeout = false;
int err = event_loop->clock(&now_ns);
if (err) {
use_default_timeout = true;
}
uint64_t next_run_time_ns;
if (!aws_task_scheduler_has_tasks(&impl->thread_data.scheduler, &next_run_time_ns)) {
use_default_timeout = true;
}
if (use_default_timeout) {
AWS_LOGF_TRACE(
AWS_LS_IO_EVENT_LOOP, "id=%p: no more scheduled tasks using default timeout.", (void *)event_loop);
timeout.tv_sec = DEFAULT_TIMEOUT_SEC;
timeout.tv_nsec = 0;
} else {
/* Convert from timestamp in nanoseconds, to timeout in seconds with nanosecond remainder */
uint64_t timeout_ns = next_run_time_ns > now_ns ? next_run_time_ns - now_ns : 0;
uint64_t timeout_remainder_ns = 0;
uint64_t timeout_sec =
aws_timestamp_convert(timeout_ns, AWS_TIMESTAMP_NANOS, AWS_TIMESTAMP_SECS, &timeout_remainder_ns);
if (timeout_sec > LONG_MAX) { /* Check for overflow. On Darwin, these values are stored as longs */
timeout_sec = LONG_MAX;
timeout_remainder_ns = 0;
}
AWS_LOGF_TRACE(
AWS_LS_IO_EVENT_LOOP,
"id=%p: detected more scheduled tasks with the next occurring at "
"%llu using timeout of %ds %lluns.",
(void *)event_loop,
(unsigned long long)timeout_ns,
(int)timeout_sec,
(unsigned long long)timeout_remainder_ns);
timeout.tv_sec = (time_t)(timeout_sec);
timeout.tv_nsec = (long)(timeout_remainder_ns);
}
aws_event_loop_register_tick_end(event_loop);
}
AWS_LOGF_INFO(AWS_LS_IO_EVENT_LOOP, "id=%p: exiting main loop", (void *)event_loop);
/* reset to NULL. This should be updated again during destroy before tasks are canceled. */
aws_atomic_store_ptr(&impl->running_thread_id, NULL);
}
|