1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
|
/**
* Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
* SPDX-License-Identifier: Apache-2.0.
*/
#include <aws/common/linked_hash_table.h>
static void s_element_destroy(void *value) {
struct aws_linked_hash_table_node *node = value;
if (node->table->user_on_value_destroy) {
node->table->user_on_value_destroy(node->value);
}
aws_linked_list_remove(&node->node);
aws_mem_release(node->table->allocator, node);
}
int aws_linked_hash_table_init(
struct aws_linked_hash_table *table,
struct aws_allocator *allocator,
aws_hash_fn *hash_fn,
aws_hash_callback_eq_fn *equals_fn,
aws_hash_callback_destroy_fn *destroy_key_fn,
aws_hash_callback_destroy_fn *destroy_value_fn,
size_t initial_item_count) {
AWS_ASSERT(table);
AWS_ASSERT(allocator);
AWS_ASSERT(hash_fn);
AWS_ASSERT(equals_fn);
table->allocator = allocator;
table->user_on_value_destroy = destroy_value_fn;
table->user_on_key_destroy = destroy_key_fn;
aws_linked_list_init(&table->list);
return aws_hash_table_init(
&table->table, allocator, initial_item_count, hash_fn, equals_fn, destroy_key_fn, s_element_destroy);
}
void aws_linked_hash_table_clean_up(struct aws_linked_hash_table *table) {
/* clearing the table will remove all elements. That will also deallocate
* any table entries we currently have. */
aws_hash_table_clean_up(&table->table);
AWS_ZERO_STRUCT(*table);
}
int aws_linked_hash_table_find(struct aws_linked_hash_table *table, const void *key, void **p_value) {
struct aws_hash_element *element = NULL;
int err_val = aws_hash_table_find(&table->table, key, &element);
if (err_val || !element) {
*p_value = NULL;
return err_val;
}
struct aws_linked_hash_table_node *linked_node = element->value;
*p_value = linked_node->value;
return AWS_OP_SUCCESS;
}
int aws_linked_hash_table_find_and_move_to_back(struct aws_linked_hash_table *table, const void *key, void **p_value) {
struct aws_hash_element *element = NULL;
int err_val = aws_hash_table_find(&table->table, key, &element);
if (err_val || !element) {
*p_value = NULL;
return err_val;
}
struct aws_linked_hash_table_node *linked_node = element->value;
*p_value = linked_node->value;
/* on access, remove from current place in list and move it to the back. */
aws_linked_hash_table_move_node_to_end_of_list(table, linked_node);
return AWS_OP_SUCCESS;
}
int aws_linked_hash_table_put(struct aws_linked_hash_table *table, const void *key, void *p_value) {
struct aws_linked_hash_table_node *node =
aws_mem_calloc(table->allocator, 1, sizeof(struct aws_linked_hash_table_node));
if (!node) {
return AWS_OP_ERR;
}
struct aws_hash_element *element = NULL;
int was_added = 0;
int err_val = aws_hash_table_create(&table->table, key, &element, &was_added);
if (err_val) {
aws_mem_release(table->allocator, node);
return err_val;
}
if (element->value) {
AWS_ASSERT(!was_added);
/*
* There's an existing element with a key that is "equal" to the submitted key. We need to destroy that
* existing element's value if applicable.
*/
s_element_destroy(element->value);
/*
* We're reusing an old element. The keys might be different references but "equal" via comparison. In that
* case we need to destroy the key (if appropriate) and point the element to the new key. This underhanded
* mutation of the element is safe with respect to the hash table because the keys are "equal."
*/
if (table->user_on_key_destroy && element->key != key) {
table->user_on_key_destroy((void *)element->key);
}
/*
* Potentially a NOOP, but under certain circumstances (when the key and value are a part of the same structure
* and we're overwriting the existing entry, for example), this is necessary. Equality via function does not
* imply equal pointers.
*/
element->key = key;
}
node->value = p_value;
node->key = key;
node->table = table;
element->value = node;
aws_linked_list_push_back(&table->list, &node->node);
return AWS_OP_SUCCESS;
}
int aws_linked_hash_table_remove(struct aws_linked_hash_table *table, const void *key) {
/* allocated table memory and the linked list entry will be removed in the
* callback. */
return aws_hash_table_remove(&table->table, key, NULL, NULL);
}
void aws_linked_hash_table_clear(struct aws_linked_hash_table *table) {
/* clearing the table will remove all elements. That will also deallocate
* any entries we currently have. */
aws_hash_table_clear(&table->table);
}
size_t aws_linked_hash_table_get_element_count(const struct aws_linked_hash_table *table) {
return aws_hash_table_get_entry_count(&table->table);
}
void aws_linked_hash_table_move_node_to_end_of_list(
struct aws_linked_hash_table *table,
struct aws_linked_hash_table_node *node) {
aws_linked_list_remove(&node->node);
aws_linked_list_push_back(&table->list, &node->node);
}
const struct aws_linked_list *aws_linked_hash_table_get_iteration_list(const struct aws_linked_hash_table *table) {
return &table->list;
}
|