aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/restricted/aws/aws-c-common/source/encoding.c
blob: 9ca5ca4fbaa8a09c4f656558b39184431527349a (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
/**
 * Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
 * SPDX-License-Identifier: Apache-2.0.
 */

#include <aws/common/encoding.h>

#include <ctype.h>
#include <stdlib.h>

#ifdef USE_SIMD_ENCODING
size_t aws_common_private_base64_decode_sse41(const unsigned char *in, unsigned char *out, size_t len);
void aws_common_private_base64_encode_sse41(const unsigned char *in, unsigned char *out, size_t len);
bool aws_common_private_has_avx2(void);
#else
/*
 * When AVX2 compilation is unavailable, we use these stubs to fall back to the pure-C decoder.
 * Since we force aws_common_private_has_avx2 to return false, the encode and decode functions should
 * not be called - but we must provide them anyway to avoid link errors.
 */
static inline size_t aws_common_private_base64_decode_sse41(const unsigned char *in, unsigned char *out, size_t len) {
    (void)in;
    (void)out;
    (void)len;
    AWS_ASSERT(false);
    return (size_t)-1; /* unreachable */
}
static inline void aws_common_private_base64_encode_sse41(const unsigned char *in, unsigned char *out, size_t len) {
    (void)in;
    (void)out;
    (void)len;
    AWS_ASSERT(false);
}
static inline bool aws_common_private_has_avx2(void) {
    return false;
}
#endif

static const uint8_t *HEX_CHARS = (const uint8_t *)"0123456789abcdef";

static const uint8_t BASE64_SENTINEL_VALUE = 0xff;
static const uint8_t BASE64_ENCODING_TABLE[] = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";

/* in this table, 0xDD is an invalid decoded value, if you have to do byte counting for any reason, there's 16 bytes
 * per row.  Reformatting is turned off to make sure this stays as 16 bytes per line. */
/* clang-format off */
static const uint8_t BASE64_DECODING_TABLE[256] = {
    64,   0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD,
    0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD,
    0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 62,   0xDD, 0xDD, 0xDD, 63,
    52,   53,   54,   55,   56,   57,   58,   59,   60,   61,   0xDD, 0xDD, 0xDD, 255,  0xDD, 0xDD,
    0xDD, 0,    1,    2,    3,    4,    5,    6,    7,    8,    9,    10,   11,   12,   13,   14,
    15,   16,   17,   18,   19,   20,   21,   22,   23,   24,   25,   0xDD, 0xDD, 0xDD, 0xDD, 0xDD,
    0xDD, 26,   27,   28,   29,   30,   31,   32,   33,   34,   35,   36,   37,   38,   39,   40,
    41,   42,   43,   44,   45,   46,   47,   48,   49,   50,   51,   0xDD, 0xDD, 0xDD, 0xDD, 0xDD,
    0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD,
    0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD,
    0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD,
    0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD,
    0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD,
    0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD,
    0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD,
    0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD, 0xDD};
/* clang-format on */

int aws_hex_compute_encoded_len(size_t to_encode_len, size_t *encoded_length) {
    AWS_ASSERT(encoded_length);

    size_t temp = (to_encode_len << 1) + 1;

    if (AWS_UNLIKELY(temp < to_encode_len)) {
        return aws_raise_error(AWS_ERROR_OVERFLOW_DETECTED);
    }

    *encoded_length = temp;

    return AWS_OP_SUCCESS;
}

int aws_hex_encode(const struct aws_byte_cursor *AWS_RESTRICT to_encode, struct aws_byte_buf *AWS_RESTRICT output) {
    AWS_PRECONDITION(aws_byte_cursor_is_valid(to_encode));
    AWS_PRECONDITION(aws_byte_buf_is_valid(output));

    size_t encoded_len = 0;

    if (AWS_UNLIKELY(aws_hex_compute_encoded_len(to_encode->len, &encoded_len))) {
        return AWS_OP_ERR;
    }

    if (AWS_UNLIKELY(output->capacity < encoded_len)) {
        return aws_raise_error(AWS_ERROR_SHORT_BUFFER);
    }

    size_t written = 0;
    for (size_t i = 0; i < to_encode->len; ++i) {

        output->buffer[written++] = HEX_CHARS[to_encode->ptr[i] >> 4 & 0x0f];
        output->buffer[written++] = HEX_CHARS[to_encode->ptr[i] & 0x0f];
    }

    output->buffer[written] = '\0';
    output->len = encoded_len;

    return AWS_OP_SUCCESS;
}

int aws_hex_encode_append_dynamic(
    const struct aws_byte_cursor *AWS_RESTRICT to_encode,
    struct aws_byte_buf *AWS_RESTRICT output) {
    AWS_ASSERT(to_encode->ptr);
    AWS_ASSERT(aws_byte_buf_is_valid(output));

    size_t encoded_len = 0;
    if (AWS_UNLIKELY(aws_add_size_checked(to_encode->len, to_encode->len, &encoded_len))) {
        return AWS_OP_ERR;
    }

    if (AWS_UNLIKELY(aws_byte_buf_reserve_relative(output, encoded_len))) {
        return AWS_OP_ERR;
    }

    size_t written = output->len;
    for (size_t i = 0; i < to_encode->len; ++i) {

        output->buffer[written++] = HEX_CHARS[to_encode->ptr[i] >> 4 & 0x0f];
        output->buffer[written++] = HEX_CHARS[to_encode->ptr[i] & 0x0f];
    }

    output->len += encoded_len;

    return AWS_OP_SUCCESS;
}

static int s_hex_decode_char_to_int(char character, uint8_t *int_val) {
    if (character >= 'a' && character <= 'f') {
        *int_val = (uint8_t)(10 + (character - 'a'));
        return 0;
    }

    if (character >= 'A' && character <= 'F') {
        *int_val = (uint8_t)(10 + (character - 'A'));
        return 0;
    }

    if (character >= '0' && character <= '9') {
        *int_val = (uint8_t)(character - '0');
        return 0;
    }

    return AWS_OP_ERR;
}

int aws_hex_compute_decoded_len(size_t to_decode_len, size_t *decoded_len) {
    AWS_ASSERT(decoded_len);

    size_t temp = (to_decode_len + 1);

    if (AWS_UNLIKELY(temp < to_decode_len)) {
        return aws_raise_error(AWS_ERROR_OVERFLOW_DETECTED);
    }

    *decoded_len = temp >> 1;
    return AWS_OP_SUCCESS;
}

int aws_hex_decode(const struct aws_byte_cursor *AWS_RESTRICT to_decode, struct aws_byte_buf *AWS_RESTRICT output) {
    AWS_PRECONDITION(aws_byte_cursor_is_valid(to_decode));
    AWS_PRECONDITION(aws_byte_buf_is_valid(output));

    size_t decoded_length = 0;

    if (AWS_UNLIKELY(aws_hex_compute_decoded_len(to_decode->len, &decoded_length))) {
        return aws_raise_error(AWS_ERROR_OVERFLOW_DETECTED);
    }

    if (AWS_UNLIKELY(output->capacity < decoded_length)) {
        return aws_raise_error(AWS_ERROR_SHORT_BUFFER);
    }

    size_t written = 0;
    size_t i = 0;
    uint8_t high_value = 0;
    uint8_t low_value = 0;

    /* if the buffer isn't even, prepend a 0 to the buffer. */
    if (AWS_UNLIKELY(to_decode->len & 0x01)) {
        i = 1;
        if (s_hex_decode_char_to_int(to_decode->ptr[0], &low_value)) {
            return aws_raise_error(AWS_ERROR_INVALID_HEX_STR);
        }

        output->buffer[written++] = low_value;
    }

    for (; i < to_decode->len; i += 2) {
        if (AWS_UNLIKELY(
                s_hex_decode_char_to_int(to_decode->ptr[i], &high_value) ||
                s_hex_decode_char_to_int(to_decode->ptr[i + 1], &low_value))) {
            return aws_raise_error(AWS_ERROR_INVALID_HEX_STR);
        }

        uint8_t value = (uint8_t)(high_value << 4);
        value |= low_value;
        output->buffer[written++] = value;
    }

    output->len = decoded_length;

    return AWS_OP_SUCCESS;
}

int aws_base64_compute_encoded_len(size_t to_encode_len, size_t *encoded_len) {
    AWS_ASSERT(encoded_len);

    size_t tmp = to_encode_len + 2;

    if (AWS_UNLIKELY(tmp < to_encode_len)) {
        return aws_raise_error(AWS_ERROR_OVERFLOW_DETECTED);
    }

    tmp /= 3;
    size_t overflow_check = tmp;
    tmp = 4 * tmp + 1; /* plus one for the NULL terminator */

    if (AWS_UNLIKELY(tmp < overflow_check)) {
        return aws_raise_error(AWS_ERROR_OVERFLOW_DETECTED);
    }

    *encoded_len = tmp;

    return AWS_OP_SUCCESS;
}

int aws_base64_compute_decoded_len(const struct aws_byte_cursor *AWS_RESTRICT to_decode, size_t *decoded_len) {
    AWS_ASSERT(to_decode);
    AWS_ASSERT(decoded_len);

    const size_t len = to_decode->len;
    const uint8_t *input = to_decode->ptr;

    if (len == 0) {
        *decoded_len = 0;
        return AWS_OP_SUCCESS;
    }

    if (AWS_UNLIKELY(len & 0x03)) {
        return aws_raise_error(AWS_ERROR_INVALID_BASE64_STR);
    }

    size_t tmp = len * 3;

    if (AWS_UNLIKELY(tmp < len)) {
        return aws_raise_error(AWS_ERROR_OVERFLOW_DETECTED);
    }

    size_t padding = 0;

    if (len >= 2 && input[len - 1] == '=' && input[len - 2] == '=') { /*last two chars are = */
        padding = 2;
    } else if (input[len - 1] == '=') { /*last char is = */
        padding = 1;
    }

    *decoded_len = (tmp / 4 - padding);
    return AWS_OP_SUCCESS;
}

int aws_base64_encode(const struct aws_byte_cursor *AWS_RESTRICT to_encode, struct aws_byte_buf *AWS_RESTRICT output) {
    AWS_ASSERT(to_encode->ptr);
    AWS_ASSERT(output->buffer);

    size_t terminated_length = 0;
    size_t encoded_length = 0;
    if (AWS_UNLIKELY(aws_base64_compute_encoded_len(to_encode->len, &terminated_length))) {
        return AWS_OP_ERR;
    }

    size_t needed_capacity = 0;
    if (AWS_UNLIKELY(aws_add_size_checked(output->len, terminated_length, &needed_capacity))) {
        return AWS_OP_ERR;
    }

    if (AWS_UNLIKELY(output->capacity < needed_capacity)) {
        return aws_raise_error(AWS_ERROR_SHORT_BUFFER);
    }

    /*
     * For convenience to standard C functions expecting a null-terminated
     * string, the output is terminated. As the encoding itself can be used in
     * various ways, however, its length should never account for that byte.
     */
    encoded_length = (terminated_length - 1);

    if (aws_common_private_has_avx2()) {
        aws_common_private_base64_encode_sse41(to_encode->ptr, output->buffer + output->len, to_encode->len);
        output->buffer[output->len + encoded_length] = 0;
        output->len += encoded_length;
        return AWS_OP_SUCCESS;
    }

    size_t buffer_length = to_encode->len;
    size_t block_count = (buffer_length + 2) / 3;
    size_t remainder_count = (buffer_length % 3);
    size_t str_index = output->len;

    for (size_t i = 0; i < to_encode->len; i += 3) {
        uint32_t block = to_encode->ptr[i];

        block <<= 8;
        if (AWS_LIKELY(i + 1 < buffer_length)) {
            block = block | to_encode->ptr[i + 1];
        }

        block <<= 8;
        if (AWS_LIKELY(i + 2 < to_encode->len)) {
            block = block | to_encode->ptr[i + 2];
        }

        output->buffer[str_index++] = BASE64_ENCODING_TABLE[(block >> 18) & 0x3F];
        output->buffer[str_index++] = BASE64_ENCODING_TABLE[(block >> 12) & 0x3F];
        output->buffer[str_index++] = BASE64_ENCODING_TABLE[(block >> 6) & 0x3F];
        output->buffer[str_index++] = BASE64_ENCODING_TABLE[block & 0x3F];
    }

    if (remainder_count > 0) {
        output->buffer[output->len + block_count * 4 - 1] = '=';
        if (remainder_count == 1) {
            output->buffer[output->len + block_count * 4 - 2] = '=';
        }
    }

    /* it's a string add the null terminator. */
    output->buffer[output->len + encoded_length] = 0;

    output->len += encoded_length;

    return AWS_OP_SUCCESS;
}

static inline int s_base64_get_decoded_value(unsigned char to_decode, uint8_t *value, int8_t allow_sentinel) {

    uint8_t decode_value = BASE64_DECODING_TABLE[(size_t)to_decode];
    if (decode_value != 0xDD && (decode_value != BASE64_SENTINEL_VALUE || allow_sentinel)) {
        *value = decode_value;
        return AWS_OP_SUCCESS;
    }

    return AWS_OP_ERR;
}

int aws_base64_decode(const struct aws_byte_cursor *AWS_RESTRICT to_decode, struct aws_byte_buf *AWS_RESTRICT output) {
    size_t decoded_length = 0;

    if (AWS_UNLIKELY(aws_base64_compute_decoded_len(to_decode, &decoded_length))) {
        return AWS_OP_ERR;
    }

    if (output->capacity < decoded_length) {
        return aws_raise_error(AWS_ERROR_SHORT_BUFFER);
    }

    if (aws_common_private_has_avx2()) {
        size_t result = aws_common_private_base64_decode_sse41(to_decode->ptr, output->buffer, to_decode->len);
        if (result == -1) {
            return aws_raise_error(AWS_ERROR_INVALID_BASE64_STR);
        }

        output->len = result;
        return AWS_OP_SUCCESS;
    }

    int64_t block_count = (int64_t)to_decode->len / 4;
    size_t string_index = 0;
    uint8_t value1 = 0, value2 = 0, value3 = 0, value4 = 0;
    int64_t buffer_index = 0;

    for (int64_t i = 0; i < block_count - 1; ++i) {
        if (AWS_UNLIKELY(
                s_base64_get_decoded_value(to_decode->ptr[string_index++], &value1, 0) ||
                s_base64_get_decoded_value(to_decode->ptr[string_index++], &value2, 0) ||
                s_base64_get_decoded_value(to_decode->ptr[string_index++], &value3, 0) ||
                s_base64_get_decoded_value(to_decode->ptr[string_index++], &value4, 0))) {
            return aws_raise_error(AWS_ERROR_INVALID_BASE64_STR);
        }

        buffer_index = i * 3;
        output->buffer[buffer_index++] = (uint8_t)((value1 << 2) | ((value2 >> 4) & 0x03));
        output->buffer[buffer_index++] = (uint8_t)(((value2 << 4) & 0xF0) | ((value3 >> 2) & 0x0F));
        output->buffer[buffer_index] = (uint8_t)((value3 & 0x03) << 6 | value4);
    }

    buffer_index = (block_count - 1) * 3;

    if (buffer_index >= 0) {
        if (s_base64_get_decoded_value(to_decode->ptr[string_index++], &value1, 0) ||
            s_base64_get_decoded_value(to_decode->ptr[string_index++], &value2, 0) ||
            s_base64_get_decoded_value(to_decode->ptr[string_index++], &value3, 1) ||
            s_base64_get_decoded_value(to_decode->ptr[string_index], &value4, 1)) {
            return aws_raise_error(AWS_ERROR_INVALID_BASE64_STR);
        }

        output->buffer[buffer_index++] = (uint8_t)((value1 << 2) | ((value2 >> 4) & 0x03));

        if (value3 != BASE64_SENTINEL_VALUE) {
            output->buffer[buffer_index++] = (uint8_t)(((value2 << 4) & 0xF0) | ((value3 >> 2) & 0x0F));
            if (value4 != BASE64_SENTINEL_VALUE) {
                output->buffer[buffer_index] = (uint8_t)((value3 & 0x03) << 6 | value4);
            }
        }
    }
    output->len = decoded_length;
    return AWS_OP_SUCCESS;
}

struct aws_utf8_decoder {
    struct aws_allocator *alloc;
    /* Value of current codepoint, updated as we read each byte */
    uint32_t codepoint;
    /* Minimum value that current codepoint is allowed to end up with
     * (i.e. text cannot use 2 bytes to encode what would have fit in 1 byte) */
    uint32_t min;
    /* Number of bytes remaining the current codepoint */
    uint8_t remaining;
    /* Custom callback */
    int (*on_codepoint)(uint32_t codepoint, void *user_data);
    /* user_data for on_codepoint */
    void *user_data;
};

struct aws_utf8_decoder *aws_utf8_decoder_new(
    struct aws_allocator *allocator,
    const struct aws_utf8_decoder_options *options) {

    struct aws_utf8_decoder *decoder = aws_mem_calloc(allocator, 1, sizeof(struct aws_utf8_decoder));
    decoder->alloc = allocator;
    if (options) {
        decoder->on_codepoint = options->on_codepoint;
        decoder->user_data = options->user_data;
    }
    return decoder;
}

void aws_utf8_decoder_destroy(struct aws_utf8_decoder *decoder) {
    if (decoder) {
        aws_mem_release(decoder->alloc, decoder);
    }
}

void aws_utf8_decoder_reset(struct aws_utf8_decoder *decoder) {
    decoder->codepoint = 0;
    decoder->min = 0;
    decoder->remaining = 0;
}

/* Why yes, this could be optimized. */
int aws_utf8_decoder_update(struct aws_utf8_decoder *decoder, struct aws_byte_cursor bytes) {

    /* We're respecting RFC-3629, which uses 1 to 4 byte sequences (never 5 or 6) */
    for (size_t i = 0; i < bytes.len; ++i) {
        uint8_t byte = bytes.ptr[i];

        if (decoder->remaining == 0) {
            /* Check first byte of the codepoint to determine how many more bytes remain */
            if ((byte & 0x80) == 0x00) {
                /* 1 byte codepoints start with 0xxxxxxx */
                decoder->remaining = 0;
                decoder->codepoint = byte;
                decoder->min = 0;
            } else if ((byte & 0xE0) == 0xC0) {
                /* 2 byte codepoints start with 110xxxxx */
                decoder->remaining = 1;
                decoder->codepoint = byte & 0x1F;
                decoder->min = 0x80;
            } else if ((byte & 0xF0) == 0xE0) {
                /* 3 byte codepoints start with 1110xxxx */
                decoder->remaining = 2;
                decoder->codepoint = byte & 0x0F;
                decoder->min = 0x800;
            } else if ((byte & 0xF8) == 0xF0) {
                /* 4 byte codepoints start with 11110xxx */
                decoder->remaining = 3;
                decoder->codepoint = byte & 0x07;
                decoder->min = 0x10000;
            } else {
                return aws_raise_error(AWS_ERROR_INVALID_UTF8);
            }
        } else {
            /* This is not the first byte of a codepoint.
             * Ensure it starts with 10xxxxxx*/
            if ((byte & 0xC0) != 0x80) {
                return aws_raise_error(AWS_ERROR_INVALID_UTF8);
            }

            /* Insert the 6 newly decoded bits:
             * shifting left anything we've already decoded, and insert the new bits to the right */
            decoder->codepoint = (decoder->codepoint << 6) | (byte & 0x3F);

            /* If we've decoded the whole codepoint, check it for validity
             * (don't need to do these particular checks on 1 byte codepoints) */
            if (--decoder->remaining == 0) {
                /* Check that it's not "overlong" (encoded using more bytes than necessary) */
                if (decoder->codepoint < decoder->min) {
                    return aws_raise_error(AWS_ERROR_INVALID_UTF8);
                }

                /* UTF-8 prohibits encoding character numbers between U+D800 and U+DFFF,
                 * which are reserved for use with the UTF-16 encoding form (as
                 * surrogate pairs) and do not directly represent characters */
                if (decoder->codepoint >= 0xD800 && decoder->codepoint <= 0xDFFF) {
                    return aws_raise_error(AWS_ERROR_INVALID_UTF8);
                }
            }
        }

        /* Invoke user's on_codepoint callback */
        if (decoder->on_codepoint && decoder->remaining == 0) {
            if (decoder->on_codepoint(decoder->codepoint, decoder->user_data)) {
                return AWS_OP_ERR;
            }
        }
    }

    return AWS_OP_SUCCESS;
}

int aws_utf8_decoder_finalize(struct aws_utf8_decoder *decoder) {
    bool valid = decoder->remaining == 0;
    aws_utf8_decoder_reset(decoder);
    if (AWS_LIKELY(valid)) {
        return AWS_OP_SUCCESS;
    }
    return aws_raise_error(AWS_ERROR_INVALID_UTF8);
}

int aws_decode_utf8(struct aws_byte_cursor bytes, const struct aws_utf8_decoder_options *options) {
    struct aws_utf8_decoder decoder = {
        .on_codepoint = options ? options->on_codepoint : NULL,
        .user_data = options ? options->user_data : NULL,
    };

    if (aws_utf8_decoder_update(&decoder, bytes)) {
        return AWS_OP_ERR;
    }

    if (aws_utf8_decoder_finalize(&decoder)) {
        return AWS_OP_ERR;
    }

    return AWS_OP_SUCCESS;
}