aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/restricted/aws/aws-c-common/source/byte_buf.c
blob: ca18f4121b86e8e4094d7c2187e89725f2a2d717 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
/**
 * Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
 * SPDX-License-Identifier: Apache-2.0.
 */

#include <aws/common/byte_buf.h>
#include <aws/common/private/byte_buf.h>

#include <stdarg.h>

#ifdef _MSC_VER
/* disables warning non const declared initializers for Microsoft compilers */
#    pragma warning(disable : 4204)
#    pragma warning(disable : 4706)
#endif

int aws_byte_buf_init(struct aws_byte_buf *buf, struct aws_allocator *allocator, size_t capacity) {
    AWS_PRECONDITION(buf);
    AWS_PRECONDITION(allocator);

    buf->buffer = (capacity == 0) ? NULL : aws_mem_acquire(allocator, capacity);
    if (capacity != 0 && buf->buffer == NULL) {
        AWS_ZERO_STRUCT(*buf);
        return AWS_OP_ERR;
    }

    buf->len = 0;
    buf->capacity = capacity;
    buf->allocator = allocator;
    AWS_POSTCONDITION(aws_byte_buf_is_valid(buf));
    return AWS_OP_SUCCESS;
}

int aws_byte_buf_init_copy(struct aws_byte_buf *dest, struct aws_allocator *allocator, const struct aws_byte_buf *src) {
    AWS_PRECONDITION(allocator);
    AWS_PRECONDITION(dest);
    AWS_ERROR_PRECONDITION(aws_byte_buf_is_valid(src));

    if (!src->buffer) {
        AWS_ZERO_STRUCT(*dest);
        dest->allocator = allocator;
        AWS_POSTCONDITION(aws_byte_buf_is_valid(dest));
        return AWS_OP_SUCCESS;
    }

    *dest = *src;
    dest->allocator = allocator;
    dest->buffer = (uint8_t *)aws_mem_acquire(allocator, src->capacity);
    if (dest->buffer == NULL) {
        AWS_ZERO_STRUCT(*dest);
        return AWS_OP_ERR;
    }
    memcpy(dest->buffer, src->buffer, src->len);
    AWS_POSTCONDITION(aws_byte_buf_is_valid(dest));
    return AWS_OP_SUCCESS;
}

bool aws_byte_buf_is_valid(const struct aws_byte_buf *const buf) {
    return buf != NULL &&
           ((buf->capacity == 0 && buf->len == 0 && buf->buffer == NULL) ||
            (buf->capacity > 0 && buf->len <= buf->capacity && AWS_MEM_IS_WRITABLE(buf->buffer, buf->capacity)));
}

bool aws_byte_cursor_is_valid(const struct aws_byte_cursor *cursor) {
    return cursor != NULL &&
           ((cursor->len == 0) || (cursor->len > 0 && cursor->ptr && AWS_MEM_IS_READABLE(cursor->ptr, cursor->len)));
}

void aws_byte_buf_reset(struct aws_byte_buf *buf, bool zero_contents) {
    if (zero_contents) {
        aws_byte_buf_secure_zero(buf);
    }
    buf->len = 0;
}

void aws_byte_buf_clean_up(struct aws_byte_buf *buf) {
    AWS_PRECONDITION(aws_byte_buf_is_valid(buf));
    if (buf->allocator && buf->buffer) {
        aws_mem_release(buf->allocator, (void *)buf->buffer);
    }
    buf->allocator = NULL;
    buf->buffer = NULL;
    buf->len = 0;
    buf->capacity = 0;
}

void aws_byte_buf_secure_zero(struct aws_byte_buf *buf) {
    AWS_PRECONDITION(aws_byte_buf_is_valid(buf));
    if (buf->buffer) {
        aws_secure_zero(buf->buffer, buf->capacity);
    }
    buf->len = 0;
    AWS_POSTCONDITION(aws_byte_buf_is_valid(buf));
}

void aws_byte_buf_clean_up_secure(struct aws_byte_buf *buf) {
    AWS_PRECONDITION(aws_byte_buf_is_valid(buf));
    aws_byte_buf_secure_zero(buf);
    aws_byte_buf_clean_up(buf);
    AWS_POSTCONDITION(aws_byte_buf_is_valid(buf));
}

bool aws_byte_buf_eq(const struct aws_byte_buf *const a, const struct aws_byte_buf *const b) {
    AWS_PRECONDITION(aws_byte_buf_is_valid(a));
    AWS_PRECONDITION(aws_byte_buf_is_valid(b));
    bool rval = aws_array_eq(a->buffer, a->len, b->buffer, b->len);
    AWS_POSTCONDITION(aws_byte_buf_is_valid(a));
    AWS_POSTCONDITION(aws_byte_buf_is_valid(b));
    return rval;
}

bool aws_byte_buf_eq_ignore_case(const struct aws_byte_buf *const a, const struct aws_byte_buf *const b) {
    AWS_PRECONDITION(aws_byte_buf_is_valid(a));
    AWS_PRECONDITION(aws_byte_buf_is_valid(b));
    bool rval = aws_array_eq_ignore_case(a->buffer, a->len, b->buffer, b->len);
    AWS_POSTCONDITION(aws_byte_buf_is_valid(a));
    AWS_POSTCONDITION(aws_byte_buf_is_valid(b));
    return rval;
}

bool aws_byte_buf_eq_c_str(const struct aws_byte_buf *const buf, const char *const c_str) {
    AWS_PRECONDITION(aws_byte_buf_is_valid(buf));
    AWS_PRECONDITION(c_str != NULL);
    bool rval = aws_array_eq_c_str(buf->buffer, buf->len, c_str);
    AWS_POSTCONDITION(aws_byte_buf_is_valid(buf));
    return rval;
}

bool aws_byte_buf_eq_c_str_ignore_case(const struct aws_byte_buf *const buf, const char *const c_str) {
    AWS_PRECONDITION(aws_byte_buf_is_valid(buf));
    AWS_PRECONDITION(c_str != NULL);
    bool rval = aws_array_eq_c_str_ignore_case(buf->buffer, buf->len, c_str);
    AWS_POSTCONDITION(aws_byte_buf_is_valid(buf));
    return rval;
}

int aws_byte_buf_init_copy_from_cursor(
    struct aws_byte_buf *dest,
    struct aws_allocator *allocator,
    struct aws_byte_cursor src) {
    AWS_PRECONDITION(allocator);
    AWS_PRECONDITION(dest);
    AWS_ERROR_PRECONDITION(aws_byte_cursor_is_valid(&src));

    AWS_ZERO_STRUCT(*dest);

    dest->buffer = (src.len > 0) ? (uint8_t *)aws_mem_acquire(allocator, src.len) : NULL;
    if (src.len != 0 && dest->buffer == NULL) {
        return AWS_OP_ERR;
    }

    dest->len = src.len;
    dest->capacity = src.len;
    dest->allocator = allocator;
    if (src.len > 0) {
        memcpy(dest->buffer, src.ptr, src.len);
    }
    AWS_POSTCONDITION(aws_byte_buf_is_valid(dest));
    return AWS_OP_SUCCESS;
}

int aws_byte_buf_init_cache_and_update_cursors(struct aws_byte_buf *dest, struct aws_allocator *allocator, ...) {
    AWS_PRECONDITION(allocator);
    AWS_PRECONDITION(dest);

    AWS_ZERO_STRUCT(*dest);

    size_t total_len = 0;
    va_list args;
    va_start(args, allocator);

    /* Loop until final NULL arg is encountered */
    struct aws_byte_cursor *cursor_i;
    while ((cursor_i = va_arg(args, struct aws_byte_cursor *)) != NULL) {
        AWS_ASSERT(aws_byte_cursor_is_valid(cursor_i));
        if (aws_add_size_checked(total_len, cursor_i->len, &total_len)) {
            return AWS_OP_ERR;
        }
    }
    va_end(args);

    if (aws_byte_buf_init(dest, allocator, total_len)) {
        return AWS_OP_ERR;
    }

    va_start(args, allocator);
    while ((cursor_i = va_arg(args, struct aws_byte_cursor *)) != NULL) {
        /* Impossible for this call to fail, we pre-allocated sufficient space */
        aws_byte_buf_append_and_update(dest, cursor_i);
    }
    va_end(args);

    return AWS_OP_SUCCESS;
}

bool aws_byte_cursor_next_split(
    const struct aws_byte_cursor *AWS_RESTRICT input_str,
    char split_on,
    struct aws_byte_cursor *AWS_RESTRICT substr) {

    AWS_PRECONDITION(aws_byte_cursor_is_valid(input_str));

    /* If substr is zeroed-out, then this is the first run. */
    const bool first_run = substr->ptr == NULL;

    /* It's legal for input_str to be zeroed out: {.ptr=NULL, .len=0}
     * Deal with this case separately */
    if (AWS_UNLIKELY(input_str->ptr == NULL)) {
        if (first_run) {
            /* Set substr->ptr to something non-NULL so that next split() call doesn't look like the first run */
            substr->ptr = (void *)"";
            substr->len = 0;
            return true;
        }

        /* done */
        AWS_ZERO_STRUCT(*substr);
        return false;
    }

    /* Rest of function deals with non-NULL input_str->ptr */

    if (first_run) {
        *substr = *input_str;
    } else {
        /* This is not the first run.
         * Advance substr past the previous split. */
        const uint8_t *input_end = input_str->ptr + input_str->len;
        substr->ptr += substr->len + 1;

        /* Note that it's ok if substr->ptr == input_end, this happens in the
         * final valid split of an input_str that ends with the split_on character:
         * Ex: "AB&" split on '&' produces "AB" and "" */
        if (substr->ptr > input_end || substr->ptr < input_str->ptr) { /* 2nd check is overflow check */
            /* done */
            AWS_ZERO_STRUCT(*substr);
            return false;
        }

        /* update len to be remainder of the string */
        substr->len = input_str->len - (substr->ptr - input_str->ptr);
    }

    /* substr is now remainder of string, search for next split */
    uint8_t *new_location = memchr(substr->ptr, split_on, substr->len);
    if (new_location) {

        /* Character found, update string length. */
        substr->len = new_location - substr->ptr;
    }

    AWS_POSTCONDITION(aws_byte_cursor_is_valid(substr));
    return true;
}

int aws_byte_cursor_split_on_char_n(
    const struct aws_byte_cursor *AWS_RESTRICT input_str,
    char split_on,
    size_t n,
    struct aws_array_list *AWS_RESTRICT output) {
    AWS_ASSERT(aws_byte_cursor_is_valid(input_str));
    AWS_ASSERT(output);
    AWS_ASSERT(output->item_size >= sizeof(struct aws_byte_cursor));

    size_t max_splits = n > 0 ? n : SIZE_MAX;
    size_t split_count = 0;

    struct aws_byte_cursor substr;
    AWS_ZERO_STRUCT(substr);

    /* Until we run out of substrs or hit the max split count, keep iterating and pushing into the array list. */
    while (split_count <= max_splits && aws_byte_cursor_next_split(input_str, split_on, &substr)) {

        if (split_count == max_splits) {
            /* If this is the last split, take the rest of the string. */
            substr.len = input_str->len - (substr.ptr - input_str->ptr);
        }

        if (AWS_UNLIKELY(aws_array_list_push_back(output, (const void *)&substr))) {
            return AWS_OP_ERR;
        }
        ++split_count;
    }

    return AWS_OP_SUCCESS;
}

int aws_byte_cursor_split_on_char(
    const struct aws_byte_cursor *AWS_RESTRICT input_str,
    char split_on,
    struct aws_array_list *AWS_RESTRICT output) {

    return aws_byte_cursor_split_on_char_n(input_str, split_on, 0, output);
}

int aws_byte_cursor_find_exact(
    const struct aws_byte_cursor *AWS_RESTRICT input_str,
    const struct aws_byte_cursor *AWS_RESTRICT to_find,
    struct aws_byte_cursor *first_find) {
    if (to_find->len > input_str->len) {
        return aws_raise_error(AWS_ERROR_STRING_MATCH_NOT_FOUND);
    }

    if (to_find->len < 1) {
        return aws_raise_error(AWS_ERROR_SHORT_BUFFER);
    }

    struct aws_byte_cursor working_cur = *input_str;

    while (working_cur.len) {
        uint8_t *first_char_location = memchr(working_cur.ptr, (char)*to_find->ptr, working_cur.len);

        if (!first_char_location) {
            return aws_raise_error(AWS_ERROR_STRING_MATCH_NOT_FOUND);
        }

        aws_byte_cursor_advance(&working_cur, first_char_location - working_cur.ptr);

        if (working_cur.len < to_find->len) {
            return aws_raise_error(AWS_ERROR_STRING_MATCH_NOT_FOUND);
        }

        if (!memcmp(working_cur.ptr, to_find->ptr, to_find->len)) {
            *first_find = working_cur;
            return AWS_OP_SUCCESS;
        }

        aws_byte_cursor_advance(&working_cur, 1);
    }

    return aws_raise_error(AWS_ERROR_STRING_MATCH_NOT_FOUND);
}

int aws_byte_buf_cat(struct aws_byte_buf *dest, size_t number_of_args, ...) {
    AWS_PRECONDITION(aws_byte_buf_is_valid(dest));

    va_list ap;
    va_start(ap, number_of_args);

    for (size_t i = 0; i < number_of_args; ++i) {
        struct aws_byte_buf *buffer = va_arg(ap, struct aws_byte_buf *);
        struct aws_byte_cursor cursor = aws_byte_cursor_from_buf(buffer);

        if (aws_byte_buf_append(dest, &cursor)) {
            va_end(ap);
            AWS_POSTCONDITION(aws_byte_buf_is_valid(dest));
            return AWS_OP_ERR;
        }
    }

    va_end(ap);
    AWS_POSTCONDITION(aws_byte_buf_is_valid(dest));
    return AWS_OP_SUCCESS;
}

bool aws_byte_cursor_eq(const struct aws_byte_cursor *a, const struct aws_byte_cursor *b) {
    AWS_PRECONDITION(aws_byte_cursor_is_valid(a));
    AWS_PRECONDITION(aws_byte_cursor_is_valid(b));
    bool rv = aws_array_eq(a->ptr, a->len, b->ptr, b->len);
    AWS_POSTCONDITION(aws_byte_cursor_is_valid(a));
    AWS_POSTCONDITION(aws_byte_cursor_is_valid(b));
    return rv;
}

bool aws_byte_cursor_eq_ignore_case(const struct aws_byte_cursor *a, const struct aws_byte_cursor *b) {
    AWS_PRECONDITION(aws_byte_cursor_is_valid(a));
    AWS_PRECONDITION(aws_byte_cursor_is_valid(b));
    bool rv = aws_array_eq_ignore_case(a->ptr, a->len, b->ptr, b->len);
    AWS_POSTCONDITION(aws_byte_cursor_is_valid(a));
    AWS_POSTCONDITION(aws_byte_cursor_is_valid(b));
    return rv;
}

/* Every possible uint8_t value, lowercased */
static const uint8_t s_tolower_table[] = {
    0,   1,   2,   3,   4,   5,   6,   7,   8,   9,   10,  11,  12,  13,  14,  15,  16,  17,  18,  19,  20,  21,
    22,  23,  24,  25,  26,  27,  28,  29,  30,  31,  32,  33,  34,  35,  36,  37,  38,  39,  40,  41,  42,  43,
    44,  45,  46,  47,  48,  49,  50,  51,  52,  53,  54,  55,  56,  57,  58,  59,  60,  61,  62,  63,  64,  'a',
    'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w',
    'x', 'y', 'z', 91,  92,  93,  94,  95,  96,  'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm',
    'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z', 123, 124, 125, 126, 127, 128, 129, 130, 131,
    132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153,
    154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175,
    176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197,
    198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219,
    220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241,
    242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255};
AWS_STATIC_ASSERT(AWS_ARRAY_SIZE(s_tolower_table) == 256);

const uint8_t *aws_lookup_table_to_lower_get(void) {
    return s_tolower_table;
}

bool aws_array_eq_ignore_case(
    const void *const array_a,
    const size_t len_a,
    const void *const array_b,
    const size_t len_b) {
    AWS_PRECONDITION(
        (len_a == 0) || AWS_MEM_IS_READABLE(array_a, len_a), "Input array [array_a] must be readable up to [len_a].");
    AWS_PRECONDITION(
        (len_b == 0) || AWS_MEM_IS_READABLE(array_b, len_b), "Input array [array_b] must be readable up to [len_b].");

    if (len_a != len_b) {
        return false;
    }

    const uint8_t *bytes_a = array_a;
    const uint8_t *bytes_b = array_b;
    for (size_t i = 0; i < len_a; ++i) {
        if (s_tolower_table[bytes_a[i]] != s_tolower_table[bytes_b[i]]) {
            return false;
        }
    }

    return true;
}

bool aws_array_eq(const void *const array_a, const size_t len_a, const void *const array_b, const size_t len_b) {
    AWS_PRECONDITION(
        (len_a == 0) || AWS_MEM_IS_READABLE(array_a, len_a), "Input array [array_a] must be readable up to [len_a].");
    AWS_PRECONDITION(
        (len_b == 0) || AWS_MEM_IS_READABLE(array_b, len_b), "Input array [array_b] must be readable up to [len_b].");

    if (len_a != len_b) {
        return false;
    }

    if (len_a == 0) {
        return true;
    }

    return !memcmp(array_a, array_b, len_a);
}

bool aws_array_eq_c_str_ignore_case(const void *const array, const size_t array_len, const char *const c_str) {
    AWS_PRECONDITION(
        array || (array_len == 0),
        "Either input pointer [array_a] mustn't be NULL or input [array_len] mustn't be zero.");
    AWS_PRECONDITION(c_str != NULL);

    /* Simpler implementation could have been:
     *   return aws_array_eq_ignore_case(array, array_len, c_str, strlen(c_str));
     * but that would have traversed c_str twice.
     * This implementation traverses c_str just once. */

    const uint8_t *array_bytes = array;
    const uint8_t *str_bytes = (const uint8_t *)c_str;

    for (size_t i = 0; i < array_len; ++i) {
        uint8_t s = str_bytes[i];
        if (s == '\0') {
            return false;
        }

        if (s_tolower_table[array_bytes[i]] != s_tolower_table[s]) {
            return false;
        }
    }

    return str_bytes[array_len] == '\0';
}

bool aws_array_eq_c_str(const void *const array, const size_t array_len, const char *const c_str) {
    AWS_PRECONDITION(
        array || (array_len == 0),
        "Either input pointer [array_a] mustn't be NULL or input [array_len] mustn't be zero.");
    AWS_PRECONDITION(c_str != NULL);

    /* Simpler implementation could have been:
     *   return aws_array_eq(array, array_len, c_str, strlen(c_str));
     * but that would have traversed c_str twice.
     * This implementation traverses c_str just once. */

    const uint8_t *array_bytes = array;
    const uint8_t *str_bytes = (const uint8_t *)c_str;

    for (size_t i = 0; i < array_len; ++i) {
        uint8_t s = str_bytes[i];
        if (s == '\0') {
            return false;
        }

        if (array_bytes[i] != s) {
            return false;
        }
    }

    return str_bytes[array_len] == '\0';
}

uint64_t aws_hash_array_ignore_case(const void *array, const size_t len) {
    AWS_PRECONDITION(AWS_MEM_IS_READABLE(array, len));
    /* FNV-1a: https://en.wikipedia.org/wiki/Fowler%E2%80%93Noll%E2%80%93Vo_hash_function */
    const uint64_t fnv_offset_basis = 0xcbf29ce484222325ULL;
    const uint64_t fnv_prime = 0x100000001b3ULL;

    const uint8_t *i = array;
    const uint8_t *end = i + len;

    uint64_t hash = fnv_offset_basis;
    while (i != end) {
        const uint8_t lower = s_tolower_table[*i++];
        hash ^= lower;
#ifdef CBMC
#    pragma CPROVER check push
#    pragma CPROVER check disable "unsigned-overflow"
#endif
        hash *= fnv_prime;
#ifdef CBMC
#    pragma CPROVER check pop
#endif
    }
    return hash;
}

uint64_t aws_hash_byte_cursor_ptr_ignore_case(const void *item) {
    AWS_PRECONDITION(aws_byte_cursor_is_valid(item));
    const struct aws_byte_cursor *const cursor = item;
    uint64_t rval = aws_hash_array_ignore_case(cursor->ptr, cursor->len);
    AWS_POSTCONDITION(aws_byte_cursor_is_valid(item));
    return rval;
}

bool aws_byte_cursor_eq_byte_buf(const struct aws_byte_cursor *const a, const struct aws_byte_buf *const b) {
    AWS_PRECONDITION(aws_byte_cursor_is_valid(a));
    AWS_PRECONDITION(aws_byte_buf_is_valid(b));
    bool rv = aws_array_eq(a->ptr, a->len, b->buffer, b->len);
    AWS_POSTCONDITION(aws_byte_cursor_is_valid(a));
    AWS_POSTCONDITION(aws_byte_buf_is_valid(b));
    return rv;
}

bool aws_byte_cursor_eq_byte_buf_ignore_case(
    const struct aws_byte_cursor *const a,
    const struct aws_byte_buf *const b) {
    AWS_PRECONDITION(aws_byte_cursor_is_valid(a));
    AWS_PRECONDITION(aws_byte_buf_is_valid(b));
    bool rv = aws_array_eq_ignore_case(a->ptr, a->len, b->buffer, b->len);
    AWS_POSTCONDITION(aws_byte_cursor_is_valid(a));
    AWS_POSTCONDITION(aws_byte_buf_is_valid(b));
    return rv;
}

bool aws_byte_cursor_eq_c_str(const struct aws_byte_cursor *const cursor, const char *const c_str) {
    AWS_PRECONDITION(aws_byte_cursor_is_valid(cursor));
    AWS_PRECONDITION(c_str != NULL);
    bool rv = aws_array_eq_c_str(cursor->ptr, cursor->len, c_str);
    AWS_POSTCONDITION(aws_byte_cursor_is_valid(cursor));
    return rv;
}

bool aws_byte_cursor_eq_c_str_ignore_case(const struct aws_byte_cursor *const cursor, const char *const c_str) {
    AWS_PRECONDITION(aws_byte_cursor_is_valid(cursor));
    AWS_PRECONDITION(c_str != NULL);
    bool rv = aws_array_eq_c_str_ignore_case(cursor->ptr, cursor->len, c_str);
    AWS_POSTCONDITION(aws_byte_cursor_is_valid(cursor));
    return rv;
}

int aws_byte_buf_append(struct aws_byte_buf *to, const struct aws_byte_cursor *from) {
    AWS_PRECONDITION(aws_byte_buf_is_valid(to));
    AWS_PRECONDITION(aws_byte_cursor_is_valid(from));

    if (to->capacity - to->len < from->len) {
        AWS_POSTCONDITION(aws_byte_buf_is_valid(to));
        AWS_POSTCONDITION(aws_byte_cursor_is_valid(from));
        return aws_raise_error(AWS_ERROR_DEST_COPY_TOO_SMALL);
    }

    if (from->len > 0) {
        /* This assert teaches clang-tidy that from->ptr and to->buffer cannot be null in a non-empty buffers */
        AWS_ASSERT(from->ptr);
        AWS_ASSERT(to->buffer);
        memcpy(to->buffer + to->len, from->ptr, from->len);
        to->len += from->len;
    }

    AWS_POSTCONDITION(aws_byte_buf_is_valid(to));
    AWS_POSTCONDITION(aws_byte_cursor_is_valid(from));
    return AWS_OP_SUCCESS;
}

int aws_byte_buf_append_with_lookup(
    struct aws_byte_buf *AWS_RESTRICT to,
    const struct aws_byte_cursor *AWS_RESTRICT from,
    const uint8_t *lookup_table) {
    AWS_PRECONDITION(aws_byte_buf_is_valid(to));
    AWS_PRECONDITION(aws_byte_cursor_is_valid(from));
    AWS_PRECONDITION(
        AWS_MEM_IS_READABLE(lookup_table, 256), "Input array [lookup_table] must be at least 256 bytes long.");

    if (to->capacity - to->len < from->len) {
        AWS_POSTCONDITION(aws_byte_buf_is_valid(to));
        AWS_POSTCONDITION(aws_byte_cursor_is_valid(from));
        return aws_raise_error(AWS_ERROR_DEST_COPY_TOO_SMALL);
    }

    for (size_t i = 0; i < from->len; ++i) {
        to->buffer[to->len + i] = lookup_table[from->ptr[i]];
    }

    if (aws_add_size_checked(to->len, from->len, &to->len)) {
        return AWS_OP_ERR;
    }

    AWS_POSTCONDITION(aws_byte_buf_is_valid(to));
    AWS_POSTCONDITION(aws_byte_cursor_is_valid(from));
    return AWS_OP_SUCCESS;
}

static int s_aws_byte_buf_append_dynamic(
    struct aws_byte_buf *to,
    const struct aws_byte_cursor *from,
    bool clear_released_memory) {
    AWS_PRECONDITION(aws_byte_buf_is_valid(to));
    AWS_PRECONDITION(aws_byte_cursor_is_valid(from));
    AWS_ERROR_PRECONDITION(to->allocator);

    if (to->capacity - to->len < from->len) {
        /*
         * NewCapacity = Max(OldCapacity * 2, OldCapacity + MissingCapacity)
         */
        size_t missing_capacity = from->len - (to->capacity - to->len);

        size_t required_capacity = 0;
        if (aws_add_size_checked(to->capacity, missing_capacity, &required_capacity)) {
            AWS_POSTCONDITION(aws_byte_buf_is_valid(to));
            AWS_POSTCONDITION(aws_byte_cursor_is_valid(from));
            return AWS_OP_ERR;
        }

        /*
         * It's ok if this overflows, just clamp to max possible.
         * In theory this lets us still grow a buffer that's larger than 1/2 size_t space
         * at least enough to accommodate the append.
         */
        size_t growth_capacity = aws_add_size_saturating(to->capacity, to->capacity);

        size_t new_capacity = required_capacity;
        if (new_capacity < growth_capacity) {
            new_capacity = growth_capacity;
        }

        /*
         * Attempt to resize - we intentionally do not use reserve() in order to preserve
         * the (unlikely) use case of from and to being the same buffer range.
         */

        /*
         * Try the max, but if that fails and the required is smaller, try it in fallback
         */
        uint8_t *new_buffer = aws_mem_acquire(to->allocator, new_capacity);
        if (new_buffer == NULL) {
            if (new_capacity > required_capacity) {
                new_capacity = required_capacity;
                new_buffer = aws_mem_acquire(to->allocator, new_capacity);
                if (new_buffer == NULL) {
                    AWS_POSTCONDITION(aws_byte_buf_is_valid(to));
                    AWS_POSTCONDITION(aws_byte_cursor_is_valid(from));
                    return AWS_OP_ERR;
                }
            } else {
                AWS_POSTCONDITION(aws_byte_buf_is_valid(to));
                AWS_POSTCONDITION(aws_byte_cursor_is_valid(from));
                return AWS_OP_ERR;
            }
        }

        /*
         * Copy old buffer -> new buffer
         */
        if (to->len > 0) {
            memcpy(new_buffer, to->buffer, to->len);
        }
        /*
         * Copy what we actually wanted to append in the first place
         */
        if (from->len > 0) {
            memcpy(new_buffer + to->len, from->ptr, from->len);
        }

        if (clear_released_memory) {
            aws_secure_zero(to->buffer, to->capacity);
        }

        /*
         * Get rid of the old buffer
         */
        aws_mem_release(to->allocator, to->buffer);

        /*
         * Switch to the new buffer
         */
        to->buffer = new_buffer;
        to->capacity = new_capacity;
    } else {
        if (from->len > 0) {
            /* This assert teaches clang-tidy that from->ptr and to->buffer cannot be null in a non-empty buffers */
            AWS_ASSERT(from->ptr);
            AWS_ASSERT(to->buffer);
            memcpy(to->buffer + to->len, from->ptr, from->len);
        }
    }

    to->len += from->len;

    AWS_POSTCONDITION(aws_byte_buf_is_valid(to));
    AWS_POSTCONDITION(aws_byte_cursor_is_valid(from));
    return AWS_OP_SUCCESS;
}

int aws_byte_buf_append_dynamic(struct aws_byte_buf *to, const struct aws_byte_cursor *from) {
    return s_aws_byte_buf_append_dynamic(to, from, false);
}

int aws_byte_buf_append_dynamic_secure(struct aws_byte_buf *to, const struct aws_byte_cursor *from) {
    return s_aws_byte_buf_append_dynamic(to, from, true);
}

static int s_aws_byte_buf_append_byte_dynamic(struct aws_byte_buf *buffer, uint8_t value, bool clear_released_memory) {
#if defined(_MSC_VER)
#    pragma warning(push)
#    pragma warning(disable : 4221)
#endif /* _MSC_VER */

    /* msvc isn't a fan of this pointer-to-local assignment */
    struct aws_byte_cursor eq_cursor = {.len = 1, .ptr = &value};

#if defined(_MSC_VER)
#    pragma warning(pop)
#endif /* _MSC_VER */

    return s_aws_byte_buf_append_dynamic(buffer, &eq_cursor, clear_released_memory);
}

int aws_byte_buf_append_byte_dynamic(struct aws_byte_buf *buffer, uint8_t value) {
    return s_aws_byte_buf_append_byte_dynamic(buffer, value, false);
}

int aws_byte_buf_append_byte_dynamic_secure(struct aws_byte_buf *buffer, uint8_t value) {
    return s_aws_byte_buf_append_byte_dynamic(buffer, value, true);
}

int aws_byte_buf_reserve(struct aws_byte_buf *buffer, size_t requested_capacity) {
    AWS_ERROR_PRECONDITION(buffer->allocator);
    AWS_ERROR_PRECONDITION(aws_byte_buf_is_valid(buffer));

    if (requested_capacity <= buffer->capacity) {
        AWS_POSTCONDITION(aws_byte_buf_is_valid(buffer));
        return AWS_OP_SUCCESS;
    }

    if (aws_mem_realloc(buffer->allocator, (void **)&buffer->buffer, buffer->capacity, requested_capacity)) {
        return AWS_OP_ERR;
    }

    buffer->capacity = requested_capacity;

    AWS_POSTCONDITION(aws_byte_buf_is_valid(buffer));
    return AWS_OP_SUCCESS;
}

int aws_byte_buf_reserve_relative(struct aws_byte_buf *buffer, size_t additional_length) {
    AWS_ERROR_PRECONDITION(buffer->allocator);
    AWS_ERROR_PRECONDITION(aws_byte_buf_is_valid(buffer));

    size_t requested_capacity = 0;
    if (AWS_UNLIKELY(aws_add_size_checked(buffer->len, additional_length, &requested_capacity))) {
        AWS_POSTCONDITION(aws_byte_buf_is_valid(buffer));
        return AWS_OP_ERR;
    }

    return aws_byte_buf_reserve(buffer, requested_capacity);
}

struct aws_byte_cursor aws_byte_cursor_right_trim_pred(
    const struct aws_byte_cursor *source,
    aws_byte_predicate_fn *predicate) {
    AWS_PRECONDITION(aws_byte_cursor_is_valid(source));
    AWS_PRECONDITION(predicate != NULL);
    struct aws_byte_cursor trimmed = *source;

    while (trimmed.len > 0 && predicate(*(trimmed.ptr + trimmed.len - 1))) {
        --trimmed.len;
    }
    AWS_POSTCONDITION(aws_byte_cursor_is_valid(source));
    AWS_POSTCONDITION(aws_byte_cursor_is_valid(&trimmed));
    return trimmed;
}

struct aws_byte_cursor aws_byte_cursor_left_trim_pred(
    const struct aws_byte_cursor *source,
    aws_byte_predicate_fn *predicate) {
    AWS_PRECONDITION(aws_byte_cursor_is_valid(source));
    AWS_PRECONDITION(predicate != NULL);
    struct aws_byte_cursor trimmed = *source;

    while (trimmed.len > 0 && predicate(*(trimmed.ptr))) {
        --trimmed.len;
        ++trimmed.ptr;
    }
    AWS_POSTCONDITION(aws_byte_cursor_is_valid(source));
    AWS_POSTCONDITION(aws_byte_cursor_is_valid(&trimmed));
    return trimmed;
}

struct aws_byte_cursor aws_byte_cursor_trim_pred(
    const struct aws_byte_cursor *source,
    aws_byte_predicate_fn *predicate) {
    AWS_PRECONDITION(aws_byte_cursor_is_valid(source));
    AWS_PRECONDITION(predicate != NULL);
    struct aws_byte_cursor left_trimmed = aws_byte_cursor_left_trim_pred(source, predicate);
    struct aws_byte_cursor dest = aws_byte_cursor_right_trim_pred(&left_trimmed, predicate);
    AWS_POSTCONDITION(aws_byte_cursor_is_valid(source));
    AWS_POSTCONDITION(aws_byte_cursor_is_valid(&dest));
    return dest;
}

bool aws_byte_cursor_satisfies_pred(const struct aws_byte_cursor *source, aws_byte_predicate_fn *predicate) {
    struct aws_byte_cursor trimmed = aws_byte_cursor_left_trim_pred(source, predicate);
    bool rval = (trimmed.len == 0);
    AWS_POSTCONDITION(aws_byte_cursor_is_valid(source));
    return rval;
}

int aws_byte_cursor_compare_lexical(const struct aws_byte_cursor *lhs, const struct aws_byte_cursor *rhs) {
    AWS_PRECONDITION(aws_byte_cursor_is_valid(lhs));
    AWS_PRECONDITION(aws_byte_cursor_is_valid(rhs));
    /* make sure we don't pass NULL pointers to memcmp */
    AWS_PRECONDITION(lhs->ptr != NULL);
    AWS_PRECONDITION(rhs->ptr != NULL);
    size_t comparison_length = lhs->len;
    if (comparison_length > rhs->len) {
        comparison_length = rhs->len;
    }

    int result = memcmp(lhs->ptr, rhs->ptr, comparison_length);

    AWS_POSTCONDITION(aws_byte_cursor_is_valid(lhs));
    AWS_POSTCONDITION(aws_byte_cursor_is_valid(rhs));
    if (result != 0) {
        return result;
    }

    if (lhs->len != rhs->len) {
        return comparison_length == lhs->len ? -1 : 1;
    }

    return 0;
}

int aws_byte_cursor_compare_lookup(
    const struct aws_byte_cursor *lhs,
    const struct aws_byte_cursor *rhs,
    const uint8_t *lookup_table) {
    AWS_PRECONDITION(aws_byte_cursor_is_valid(lhs));
    AWS_PRECONDITION(aws_byte_cursor_is_valid(rhs));
    AWS_PRECONDITION(AWS_MEM_IS_READABLE(lookup_table, 256));
    const uint8_t *lhs_curr = lhs->ptr;
    const uint8_t *lhs_end = lhs_curr + lhs->len;

    const uint8_t *rhs_curr = rhs->ptr;
    const uint8_t *rhs_end = rhs_curr + rhs->len;

    while (lhs_curr < lhs_end && rhs_curr < rhs_end) {
        uint8_t lhc = lookup_table[*lhs_curr];
        uint8_t rhc = lookup_table[*rhs_curr];

        AWS_POSTCONDITION(aws_byte_cursor_is_valid(lhs));
        AWS_POSTCONDITION(aws_byte_cursor_is_valid(rhs));
        if (lhc < rhc) {
            return -1;
        }

        if (lhc > rhc) {
            return 1;
        }

        lhs_curr++;
        rhs_curr++;
    }

    AWS_POSTCONDITION(aws_byte_cursor_is_valid(lhs));
    AWS_POSTCONDITION(aws_byte_cursor_is_valid(rhs));
    if (lhs_curr < lhs_end) {
        return 1;
    }

    if (rhs_curr < rhs_end) {
        return -1;
    }

    return 0;
}

/**
 * For creating a byte buffer from a null-terminated string literal.
 */
struct aws_byte_buf aws_byte_buf_from_c_str(const char *c_str) {
    struct aws_byte_buf buf;
    buf.len = (!c_str) ? 0 : strlen(c_str);
    buf.capacity = buf.len;
    buf.buffer = (buf.capacity == 0) ? NULL : (uint8_t *)c_str;
    buf.allocator = NULL;
    AWS_POSTCONDITION(aws_byte_buf_is_valid(&buf));
    return buf;
}

struct aws_byte_buf aws_byte_buf_from_array(const void *bytes, size_t len) {
    AWS_PRECONDITION(AWS_MEM_IS_WRITABLE(bytes, len), "Input array [bytes] must be writable up to [len] bytes.");
    struct aws_byte_buf buf;
    buf.buffer = (len > 0) ? (uint8_t *)bytes : NULL;
    buf.len = len;
    buf.capacity = len;
    buf.allocator = NULL;
    AWS_POSTCONDITION(aws_byte_buf_is_valid(&buf));
    return buf;
}

struct aws_byte_buf aws_byte_buf_from_empty_array(const void *bytes, size_t capacity) {
    AWS_PRECONDITION(
        AWS_MEM_IS_WRITABLE(bytes, capacity), "Input array [bytes] must be writable up to [capacity] bytes.");
    struct aws_byte_buf buf;
    buf.buffer = (capacity > 0) ? (uint8_t *)bytes : NULL;
    buf.len = 0;
    buf.capacity = capacity;
    buf.allocator = NULL;
    AWS_POSTCONDITION(aws_byte_buf_is_valid(&buf));
    return buf;
}

struct aws_byte_cursor aws_byte_cursor_from_buf(const struct aws_byte_buf *const buf) {
    AWS_PRECONDITION(aws_byte_buf_is_valid(buf));
    struct aws_byte_cursor cur;
    cur.ptr = buf->buffer;
    cur.len = buf->len;
    AWS_POSTCONDITION(aws_byte_cursor_is_valid(&cur));
    return cur;
}

struct aws_byte_cursor aws_byte_cursor_from_c_str(const char *c_str) {
    struct aws_byte_cursor cur;
    cur.ptr = (uint8_t *)c_str;
    cur.len = (cur.ptr) ? strlen(c_str) : 0;
    AWS_POSTCONDITION(aws_byte_cursor_is_valid(&cur));
    return cur;
}

struct aws_byte_cursor aws_byte_cursor_from_array(const void *const bytes, const size_t len) {
    AWS_PRECONDITION(len == 0 || AWS_MEM_IS_READABLE(bytes, len), "Input array [bytes] must be readable up to [len].");
    struct aws_byte_cursor cur;
    cur.ptr = (uint8_t *)bytes;
    cur.len = len;
    AWS_POSTCONDITION(aws_byte_cursor_is_valid(&cur));
    return cur;
}

#ifdef CBMC
#    pragma CPROVER check push
#    pragma CPROVER check disable "unsigned-overflow"
#endif
/**
 * If index >= bound, bound > (SIZE_MAX / 2), or index > (SIZE_MAX / 2), returns
 * 0. Otherwise, returns UINTPTR_MAX.  This function is designed to return the correct
 * value even under CPU speculation conditions, and is intended to be used for
 * SPECTRE mitigation purposes.
 */
size_t aws_nospec_mask(size_t index, size_t bound) {
    /*
     * SPECTRE mitigation - we compute a mask that will be zero if len < 0
     * or len >= buf->len, and all-ones otherwise, and AND it into the index.
     * It is critical that we avoid any branches in this logic.
     */

    /*
     * Hide the index value from the optimizer. This helps ensure that all this
     * logic doesn't get eliminated.
     */
#if defined(__GNUC__) || defined(__clang__)
    __asm__ __volatile__("" : "+r"(index));
#endif
#if defined(_MSVC_LANG)
    /*
     * MSVC doesn't have a good way for us to blind the optimizer, and doesn't
     * even have inline asm on x64. Some experimentation indicates that this
     * hack seems to confuse it sufficiently for our needs.
     */
    *((volatile uint8_t *)&index) += 0;
#endif

    /*
     * If len > (SIZE_MAX / 2), then we can end up with len - buf->len being
     * positive simply because the sign bit got inverted away. So we also check
     * that the sign bit isn't set from the start.
     *
     * We also check that bound <= (SIZE_MAX / 2) to catch cases where the
     * buffer is _already_ out of bounds.
     */
    size_t negative_mask = index | bound;
    size_t toobig_mask = bound - index - (uintptr_t)1;
    size_t combined_mask = negative_mask | toobig_mask;

    /*
     * combined_mask needs to have its sign bit OFF for us to be in range.
     * We'd like to expand this to a mask we can AND into our index, so flip
     * that bit (and everything else), shift it over so it's the only bit in the
     * ones position, and multiply across the entire register.
     *
     * First, extract the (inverse) top bit and move it to the lowest bit.
     * Because there's no standard SIZE_BIT in C99, we'll divide by a mask with
     * just the top bit set instead.
     */

    combined_mask = (~combined_mask) / (SIZE_MAX - (SIZE_MAX >> 1));

    /*
     * Now multiply it to replicate it across all bits.
     *
     * Note that GCC is smart enough to optimize the divide-and-multiply into
     * an arithmetic right shift operation on x86.
     */
    combined_mask = combined_mask * UINTPTR_MAX;

    return combined_mask;
}
#ifdef CBMC
#    pragma CPROVER check pop
#endif

/**
 * Tests if the given aws_byte_cursor has at least len bytes remaining. If so,
 * *buf is advanced by len bytes (incrementing ->ptr and decrementing ->len),
 * and an aws_byte_cursor referring to the first len bytes of the original *buf
 * is returned. Otherwise, an aws_byte_cursor with ->ptr = NULL, ->len = 0 is
 * returned.
 *
 * Note that if len is above (SIZE_MAX / 2), this function will also treat it as
 * a buffer overflow, and return NULL without changing *buf.
 */
struct aws_byte_cursor aws_byte_cursor_advance(struct aws_byte_cursor *const cursor, const size_t len) {
    AWS_PRECONDITION(aws_byte_cursor_is_valid(cursor));
    struct aws_byte_cursor rv;
    if (cursor->len > (SIZE_MAX >> 1) || len > (SIZE_MAX >> 1) || len > cursor->len) {
        rv.ptr = NULL;
        rv.len = 0;
    } else {
        rv.ptr = cursor->ptr;
        rv.len = len;

        cursor->ptr += len;
        cursor->len -= len;
    }
    AWS_POSTCONDITION(aws_byte_cursor_is_valid(cursor));
    AWS_POSTCONDITION(aws_byte_cursor_is_valid(&rv));
    return rv;
}

/**
 * Behaves identically to aws_byte_cursor_advance, but avoids speculative
 * execution potentially reading out-of-bounds pointers (by returning an
 * empty ptr in such speculated paths).
 *
 * This should generally be done when using an untrusted or
 * data-dependent value for 'len', to avoid speculating into a path where
 * cursor->ptr points outside the true ptr length.
 */

struct aws_byte_cursor aws_byte_cursor_advance_nospec(struct aws_byte_cursor *const cursor, size_t len) {
    AWS_PRECONDITION(aws_byte_cursor_is_valid(cursor));

    struct aws_byte_cursor rv;

    if (len <= cursor->len && len <= (SIZE_MAX >> 1) && cursor->len <= (SIZE_MAX >> 1)) {
        /*
         * If we're speculating past a failed bounds check, null out the pointer. This ensures
         * that we don't try to read past the end of the buffer and leak information about other
         * memory through timing side-channels.
         */
        uintptr_t mask = aws_nospec_mask(len, cursor->len + 1);

        /* Make sure we don't speculate-underflow len either */
        len = len & mask;
        cursor->ptr = (uint8_t *)((uintptr_t)cursor->ptr & mask);
        /* Make sure subsequent nospec accesses don't advance ptr past NULL */
        cursor->len = cursor->len & mask;

        rv.ptr = cursor->ptr;
        /* Make sure anything acting upon the returned cursor _also_ doesn't advance past NULL */
        rv.len = len & mask;

        cursor->ptr += len;
        cursor->len -= len;
    } else {
        rv.ptr = NULL;
        rv.len = 0;
    }

    AWS_POSTCONDITION(aws_byte_cursor_is_valid(cursor));
    AWS_POSTCONDITION(aws_byte_cursor_is_valid(&rv));
    return rv;
}

/**
 * Reads specified length of data from byte cursor and copies it to the
 * destination array.
 *
 * On success, returns true and updates the cursor pointer/length accordingly.
 * If there is insufficient space in the cursor, returns false, leaving the
 * cursor unchanged.
 */
bool aws_byte_cursor_read(struct aws_byte_cursor *AWS_RESTRICT cur, void *AWS_RESTRICT dest, const size_t len) {
    AWS_PRECONDITION(aws_byte_cursor_is_valid(cur));
    AWS_PRECONDITION(AWS_MEM_IS_WRITABLE(dest, len));
    if (len == 0) {
        return true;
    }

    struct aws_byte_cursor slice = aws_byte_cursor_advance_nospec(cur, len);

    if (slice.ptr) {
        memcpy(dest, slice.ptr, len);
        AWS_POSTCONDITION(aws_byte_cursor_is_valid(cur));
        AWS_POSTCONDITION(AWS_MEM_IS_READABLE(dest, len));
        return true;
    }
    AWS_POSTCONDITION(aws_byte_cursor_is_valid(cur));
    return false;
}

/**
 * Reads as many bytes from cursor as size of buffer, and copies them to buffer.
 *
 * On success, returns true and updates the cursor pointer/length accordingly.
 * If there is insufficient space in the cursor, returns false, leaving the
 * cursor unchanged.
 */
bool aws_byte_cursor_read_and_fill_buffer(
    struct aws_byte_cursor *AWS_RESTRICT cur,
    struct aws_byte_buf *AWS_RESTRICT dest) {
    AWS_PRECONDITION(aws_byte_cursor_is_valid(cur));
    AWS_PRECONDITION(aws_byte_buf_is_valid(dest));
    if (aws_byte_cursor_read(cur, dest->buffer, dest->capacity)) {
        dest->len = dest->capacity;
        AWS_POSTCONDITION(aws_byte_cursor_is_valid(cur));
        AWS_POSTCONDITION(aws_byte_buf_is_valid(dest));
        return true;
    }
    AWS_POSTCONDITION(aws_byte_cursor_is_valid(cur));
    AWS_POSTCONDITION(aws_byte_buf_is_valid(dest));
    return false;
}

/**
 * Reads a single byte from cursor, placing it in *var.
 *
 * On success, returns true and updates the cursor pointer/length accordingly.
 * If there is insufficient space in the cursor, returns false, leaving the
 * cursor unchanged.
 */
bool aws_byte_cursor_read_u8(struct aws_byte_cursor *AWS_RESTRICT cur, uint8_t *AWS_RESTRICT var) {
    AWS_PRECONDITION(aws_byte_cursor_is_valid(cur));
    AWS_PRECONDITION(AWS_MEM_IS_WRITABLE(var, 1));
    bool rv = aws_byte_cursor_read(cur, var, 1);
    AWS_POSTCONDITION(aws_byte_cursor_is_valid(cur));
    return rv;
}

/**
 * Reads a 16-bit value in network byte order from cur, and places it in host
 * byte order into var.
 *
 * On success, returns true and updates the cursor pointer/length accordingly.
 * If there is insufficient space in the cursor, returns false, leaving the
 * cursor unchanged.
 */
bool aws_byte_cursor_read_be16(struct aws_byte_cursor *cur, uint16_t *var) {
    AWS_PRECONDITION(aws_byte_cursor_is_valid(cur));
    AWS_PRECONDITION(AWS_OBJECT_PTR_IS_WRITABLE(var));
    bool rv = aws_byte_cursor_read(cur, var, 2);

    if (AWS_LIKELY(rv)) {
        *var = aws_ntoh16(*var);
    }

    AWS_POSTCONDITION(aws_byte_cursor_is_valid(cur));
    return rv;
}

/**
 * Reads an unsigned 24-bit value (3 bytes) in network byte order from cur,
 * and places it in host byte order into 32-bit var.
 * Ex: if cur's next 3 bytes are {0xAA, 0xBB, 0xCC}, then var becomes 0x00AABBCC.
 *
 * On success, returns true and updates the cursor pointer/length accordingly.
 * If there is insufficient space in the cursor, returns false, leaving the
 * cursor unchanged.
 */
bool aws_byte_cursor_read_be24(struct aws_byte_cursor *cur, uint32_t *var) {
    AWS_PRECONDITION(aws_byte_cursor_is_valid(cur));
    AWS_PRECONDITION(AWS_OBJECT_PTR_IS_WRITABLE(var));

    uint8_t *var_bytes = (void *)var;

    /* read into "lower" 3 bytes */
    bool rv = aws_byte_cursor_read(cur, &var_bytes[1], 3);

    if (AWS_LIKELY(rv)) {
        /* zero out "highest" 4th byte*/
        var_bytes[0] = 0;

        *var = aws_ntoh32(*var);
    }

    AWS_POSTCONDITION(aws_byte_cursor_is_valid(cur));
    return rv;
}

/**
 * Reads a 32-bit value in network byte order from cur, and places it in host
 * byte order into var.
 *
 * On success, returns true and updates the cursor pointer/length accordingly.
 * If there is insufficient space in the cursor, returns false, leaving the
 * cursor unchanged.
 */
bool aws_byte_cursor_read_be32(struct aws_byte_cursor *cur, uint32_t *var) {
    AWS_PRECONDITION(aws_byte_cursor_is_valid(cur));
    AWS_PRECONDITION(AWS_OBJECT_PTR_IS_WRITABLE(var));
    bool rv = aws_byte_cursor_read(cur, var, 4);

    if (AWS_LIKELY(rv)) {
        *var = aws_ntoh32(*var);
    }

    AWS_POSTCONDITION(aws_byte_cursor_is_valid(cur));
    return rv;
}

/**
 * Reads a 32-bit value in network byte order from cur, and places it in host
 * byte order into var.
 *
 * On success, returns true and updates the cursor pointer/length accordingly.
 * If there is insufficient space in the cursor, returns false, leaving the
 * cursor unchanged.
 */
bool aws_byte_cursor_read_float_be32(struct aws_byte_cursor *cur, float *var) {
    AWS_PRECONDITION(aws_byte_cursor_is_valid(cur));
    AWS_PRECONDITION(AWS_OBJECT_PTR_IS_WRITABLE(var));
    bool rv = aws_byte_cursor_read(cur, var, sizeof(float));

    if (AWS_LIKELY(rv)) {
        *var = aws_ntohf32(*var);
    }

    AWS_POSTCONDITION(aws_byte_cursor_is_valid(cur));
    return rv;
}

/**
 * Reads a 64-bit value in network byte order from cur, and places it in host
 * byte order into var.
 *
 * On success, returns true and updates the cursor pointer/length accordingly.
 * If there is insufficient space in the cursor, returns false, leaving the
 * cursor unchanged.
 */
bool aws_byte_cursor_read_float_be64(struct aws_byte_cursor *cur, double *var) {
    AWS_PRECONDITION(aws_byte_cursor_is_valid(cur));
    AWS_PRECONDITION(AWS_OBJECT_PTR_IS_WRITABLE(var));
    bool rv = aws_byte_cursor_read(cur, var, sizeof(double));

    if (AWS_LIKELY(rv)) {
        *var = aws_ntohf64(*var);
    }

    AWS_POSTCONDITION(aws_byte_cursor_is_valid(cur));
    return rv;
}

/**
 * Reads a 64-bit value in network byte order from cur, and places it in host
 * byte order into var.
 *
 * On success, returns true and updates the cursor pointer/length accordingly.
 * If there is insufficient space in the cursor, returns false, leaving the
 * cursor unchanged.
 */
bool aws_byte_cursor_read_be64(struct aws_byte_cursor *cur, uint64_t *var) {
    AWS_PRECONDITION(aws_byte_cursor_is_valid(cur));
    AWS_PRECONDITION(AWS_OBJECT_PTR_IS_WRITABLE(var));
    bool rv = aws_byte_cursor_read(cur, var, sizeof(*var));

    if (AWS_LIKELY(rv)) {
        *var = aws_ntoh64(*var);
    }

    AWS_POSTCONDITION(aws_byte_cursor_is_valid(cur));
    return rv;
}

/* Lookup from '0' -> 0, 'f' -> 0xf, 'F' -> 0xF, etc
 * invalid characters have value 255 */
/* clang-format off */
static const uint8_t s_hex_to_num_table[] = {
    255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
    255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
    255, 255,
    /* 0 - 9 */
    0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
    255, 255, 255, 255, 255, 255, 255,
    /* A - F */
    0xA, 0xB, 0xC, 0xD, 0xE, 0xF,
    255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
    255, 255, 255,
    /* a - f */
    0xa, 0xb, 0xc, 0xd, 0xe, 0xf,
    255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
    255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
    255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
    255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
    255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
    255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
    255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
};
AWS_STATIC_ASSERT(AWS_ARRAY_SIZE(s_hex_to_num_table) == 256);
/* clang-format on */

const uint8_t *aws_lookup_table_hex_to_num_get(void) {
    return s_hex_to_num_table;
}

bool aws_byte_cursor_read_hex_u8(struct aws_byte_cursor *cur, uint8_t *var) {
    AWS_PRECONDITION(aws_byte_cursor_is_valid(cur));
    AWS_PRECONDITION(AWS_OBJECT_PTR_IS_WRITABLE(var));

    bool success = false;
    if (AWS_LIKELY(cur->len >= 2)) {
        const uint8_t hi = s_hex_to_num_table[cur->ptr[0]];
        const uint8_t lo = s_hex_to_num_table[cur->ptr[1]];

        /* table maps invalid characters to 255 */
        if (AWS_LIKELY(hi != 255 && lo != 255)) {
            *var = (hi << 4) | lo;
            cur->ptr += 2;
            cur->len -= 2;
            success = true;
        }
    }

    AWS_POSTCONDITION(aws_byte_cursor_is_valid(cur));
    return success;
}

/**
 * Appends a sub-buffer to the specified buffer.
 *
 * If the buffer has at least `len' bytes remaining (buffer->capacity - buffer->len >= len),
 * then buffer->len is incremented by len, and an aws_byte_buf is assigned to *output corresponding
 * to the last len bytes of the input buffer. The aws_byte_buf at *output will have a null
 * allocator, a zero initial length, and a capacity of 'len'. The function then returns true.
 *
 * If there is insufficient space, then this function nulls all fields in *output and returns
 * false.
 */
bool aws_byte_buf_advance(
    struct aws_byte_buf *const AWS_RESTRICT buffer,
    struct aws_byte_buf *const AWS_RESTRICT output,
    const size_t len) {
    AWS_PRECONDITION(aws_byte_buf_is_valid(buffer));
    AWS_PRECONDITION(aws_byte_buf_is_valid(output));
    if (buffer->capacity - buffer->len >= len) {
        *output = aws_byte_buf_from_array(buffer->buffer + buffer->len, len);
        buffer->len += len;
        output->len = 0;
        AWS_POSTCONDITION(aws_byte_buf_is_valid(buffer));
        AWS_POSTCONDITION(aws_byte_buf_is_valid(output));
        return true;
    } else {
        AWS_ZERO_STRUCT(*output);
        AWS_POSTCONDITION(aws_byte_buf_is_valid(buffer));
        AWS_POSTCONDITION(aws_byte_buf_is_valid(output));
        return false;
    }
}

/**
 * Write specified number of bytes from array to byte buffer.
 *
 * On success, returns true and updates the buffer length accordingly.
 * If there is insufficient space in the buffer, returns false, leaving the
 * buffer unchanged.
 */
bool aws_byte_buf_write(struct aws_byte_buf *AWS_RESTRICT buf, const uint8_t *AWS_RESTRICT src, size_t len) {
    AWS_PRECONDITION(aws_byte_buf_is_valid(buf));
    AWS_PRECONDITION(AWS_MEM_IS_READABLE(src, len), "Input array [src] must be readable up to [len] bytes.");

    if (len == 0) {
        AWS_POSTCONDITION(aws_byte_buf_is_valid(buf));
        return true;
    }

    if (buf->len > (SIZE_MAX >> 1) || len > (SIZE_MAX >> 1) || buf->len + len > buf->capacity) {
        AWS_POSTCONDITION(aws_byte_buf_is_valid(buf));
        return false;
    }

    memcpy(buf->buffer + buf->len, src, len);
    buf->len += len;

    AWS_POSTCONDITION(aws_byte_buf_is_valid(buf));
    return true;
}

/**
 * Copies all bytes from buffer to buffer.
 *
 * On success, returns true and updates the buffer /length accordingly.
 * If there is insufficient space in the buffer, returns false, leaving the
 * buffer unchanged.
 */
bool aws_byte_buf_write_from_whole_buffer(struct aws_byte_buf *AWS_RESTRICT buf, struct aws_byte_buf src) {
    AWS_PRECONDITION(aws_byte_buf_is_valid(buf));
    AWS_PRECONDITION(aws_byte_buf_is_valid(&src));
    return aws_byte_buf_write(buf, src.buffer, src.len);
}

/**
 * Copies all bytes from buffer to buffer.
 *
 * On success, returns true and updates the buffer /length accordingly.
 * If there is insufficient space in the buffer, returns false, leaving the
 * buffer unchanged.
 */
bool aws_byte_buf_write_from_whole_cursor(struct aws_byte_buf *AWS_RESTRICT buf, struct aws_byte_cursor src) {
    AWS_PRECONDITION(aws_byte_buf_is_valid(buf));
    AWS_PRECONDITION(aws_byte_cursor_is_valid(&src));
    return aws_byte_buf_write(buf, src.ptr, src.len);
}

struct aws_byte_cursor aws_byte_buf_write_to_capacity(
    struct aws_byte_buf *buf,
    struct aws_byte_cursor *advancing_cursor) {

    AWS_PRECONDITION(aws_byte_buf_is_valid(buf));
    AWS_PRECONDITION(aws_byte_cursor_is_valid(advancing_cursor));

    size_t available = buf->capacity - buf->len;
    size_t write_size = aws_min_size(available, advancing_cursor->len);
    struct aws_byte_cursor write_cursor = aws_byte_cursor_advance(advancing_cursor, write_size);
    aws_byte_buf_write_from_whole_cursor(buf, write_cursor);
    return write_cursor;
}

/**
 * Copies one byte to buffer.
 *
 * On success, returns true and updates the cursor /length
 accordingly.

 * If there is insufficient space in the cursor, returns false, leaving the
 cursor unchanged.
 */
bool aws_byte_buf_write_u8(struct aws_byte_buf *AWS_RESTRICT buf, uint8_t c) {
    AWS_PRECONDITION(aws_byte_buf_is_valid(buf));
    return aws_byte_buf_write(buf, &c, 1);
}

/**
 * Writes one byte repeatedly to buffer (like memset)
 *
 * If there is insufficient space in the buffer, returns false, leaving the
 * buffer unchanged.
 */
bool aws_byte_buf_write_u8_n(struct aws_byte_buf *buf, uint8_t c, size_t count) {
    AWS_PRECONDITION(aws_byte_buf_is_valid(buf));

    if (buf->len > (SIZE_MAX >> 1) || count > (SIZE_MAX >> 1) || buf->len + count > buf->capacity) {
        AWS_POSTCONDITION(aws_byte_buf_is_valid(buf));
        return false;
    }

    memset(buf->buffer + buf->len, c, count);
    buf->len += count;

    AWS_POSTCONDITION(aws_byte_buf_is_valid(buf));
    return true;
}

/**
 * Writes a 16-bit integer in network byte order (big endian) to buffer.
 *
 * On success, returns true and updates the cursor /length accordingly.
 * If there is insufficient space in the cursor, returns false, leaving the
 * cursor unchanged.
 */
bool aws_byte_buf_write_be16(struct aws_byte_buf *buf, uint16_t x) {
    AWS_PRECONDITION(aws_byte_buf_is_valid(buf));
    x = aws_hton16(x);
    return aws_byte_buf_write(buf, (uint8_t *)&x, 2);
}

/**
 * Writes low 24-bits (3 bytes) of an unsigned integer in network byte order (big endian) to buffer.
 * Ex: If x is 0x00AABBCC then {0xAA, 0xBB, 0xCC} is written to buffer.
 *
 * On success, returns true and updates the buffer /length accordingly.
 * If there is insufficient space in the buffer, or x's value cannot fit in 3 bytes,
 * returns false, leaving the buffer unchanged.
 */
bool aws_byte_buf_write_be24(struct aws_byte_buf *buf, uint32_t x) {
    AWS_PRECONDITION(aws_byte_buf_is_valid(buf));

    if (x > 0x00FFFFFF) {
        return false;
    }

    uint32_t be32 = aws_hton32(x);
    uint8_t *be32_bytes = (uint8_t *)&be32;

    /* write "lower" 3 bytes */
    return aws_byte_buf_write(buf, &be32_bytes[1], 3);
}

/**
 * Writes a 32-bit integer in network byte order (big endian) to buffer.
 *
 * On success, returns true and updates the cursor /length accordingly.
 * If there is insufficient space in the cursor, returns false, leaving the
 * cursor unchanged.
 */
bool aws_byte_buf_write_be32(struct aws_byte_buf *buf, uint32_t x) {
    AWS_PRECONDITION(aws_byte_buf_is_valid(buf));
    x = aws_hton32(x);
    return aws_byte_buf_write(buf, (uint8_t *)&x, 4);
}

/**
 * Writes a 32-bit float in network byte order (big endian) to buffer.
 *
 * On success, returns true and updates the cursor /length accordingly.
 * If there is insufficient space in the cursor, returns false, leaving the
 * cursor unchanged.
 */
bool aws_byte_buf_write_float_be32(struct aws_byte_buf *buf, float x) {
    AWS_PRECONDITION(aws_byte_buf_is_valid(buf));
    x = aws_htonf32(x);
    return aws_byte_buf_write(buf, (uint8_t *)&x, 4);
}

/**
 * Writes a 64-bit integer in network byte order (big endian) to buffer.
 *
 * On success, returns true and updates the cursor /length accordingly.
 * If there is insufficient space in the cursor, returns false, leaving the
 * cursor unchanged.
 */
bool aws_byte_buf_write_be64(struct aws_byte_buf *buf, uint64_t x) {
    AWS_PRECONDITION(aws_byte_buf_is_valid(buf));
    x = aws_hton64(x);
    return aws_byte_buf_write(buf, (uint8_t *)&x, 8);
}

/**
 * Writes a 64-bit float in network byte order (big endian) to buffer.
 *
 * On success, returns true and updates the cursor /length accordingly.
 * If there is insufficient space in the cursor, returns false, leaving the
 * cursor unchanged.
 */
bool aws_byte_buf_write_float_be64(struct aws_byte_buf *buf, double x) {
    AWS_PRECONDITION(aws_byte_buf_is_valid(buf));
    x = aws_htonf64(x);
    return aws_byte_buf_write(buf, (uint8_t *)&x, 8);
}

int aws_byte_buf_append_and_update(struct aws_byte_buf *to, struct aws_byte_cursor *from_and_update) {
    AWS_PRECONDITION(aws_byte_buf_is_valid(to));
    AWS_PRECONDITION(aws_byte_cursor_is_valid(from_and_update));

    if (aws_byte_buf_append(to, from_and_update)) {
        return AWS_OP_ERR;
    }

    from_and_update->ptr = to->buffer + (to->len - from_and_update->len);
    return AWS_OP_SUCCESS;
}

static struct aws_byte_cursor s_null_terminator_cursor = AWS_BYTE_CUR_INIT_FROM_STRING_LITERAL("\0");
int aws_byte_buf_append_null_terminator(struct aws_byte_buf *buf) {
    return aws_byte_buf_append_dynamic(buf, &s_null_terminator_cursor);
}

bool aws_isalnum(uint8_t ch) {
    return (ch >= 'a' && ch <= 'z') || (ch >= 'A' && ch <= 'Z') || (ch >= '0' && ch <= '9');
}

bool aws_isalpha(uint8_t ch) {
    return (ch >= 'a' && ch <= 'z') || (ch >= 'A' && ch <= 'Z');
}

bool aws_isdigit(uint8_t ch) {
    return (ch >= '0' && ch <= '9');
}

bool aws_isxdigit(uint8_t ch) {
    return (ch >= '0' && ch <= '9') || (ch >= 'a' && ch <= 'f') || (ch >= 'A' && ch <= 'F');
}

bool aws_isspace(uint8_t ch) {
    switch (ch) {
        case 0x20: /* ' ' - space */
            return true;
        case 0x09: /* '\t' - horizontal tab */
            return true;
        case 0x0A: /* '\n' - line feed */
            return true;
        case 0x0B: /* '\v' - vertical tab */
            return true;
        case 0x0C: /* '\f' - form feed */
            return true;
        case 0x0D: /* '\r' - carriage return */
            return true;
        default:
            return false;
    }
}