aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/restricted/aws/aws-c-common/source/allocator_sba.c
blob: 4ebd6551f184e4ebd36cbc1c372809c864c59c54 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
/**
 * Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
 * SPDX-License-Identifier: Apache-2.0.
 */

#include <aws/common/allocator.h>
#include <aws/common/array_list.h>
#include <aws/common/assert.h>
#include <aws/common/mutex.h>

/*
 * Small Block Allocator
 * This is a fairly standard approach, the idea is to always allocate aligned pages of memory so that for
 * any address you can round to the nearest page boundary to find the bookkeeping data. The idea is to reduce
 * overhead per alloc and greatly improve runtime speed by doing as little actual allocation work as possible,
 * preferring instead to re-use (hopefully still cached) chunks in FIFO order, or chunking up a page if there's
 * no free chunks. When all chunks in a page are freed, the page is returned to the OS.
 *
 * The allocator itself is simply an array of bins, each representing a power of 2 size from 32 - N (512 tends to be
 * a good upper bound). Thread safety is guaranteed by a mutex per bin, and locks are only necessary around the
 * lowest level alloc and free operations.
 *
 * Note: this allocator gets its internal memory for data structures from the parent allocator, but does not
 * use the parent to allocate pages. Pages are allocated directly from the OS-specific aligned malloc implementation,
 * which allows the OS to do address re-mapping for us instead of over-allocating to fulfill alignment.
 */

#ifdef _WIN32
#    include <malloc.h>
#elif __linux__ || __APPLE__
#    include <stdlib.h>
#endif

#if !defined(AWS_SBA_PAGE_SIZE)
#    if defined(PAGE_SIZE)
#        define AWS_SBA_PAGE_SIZE ((uintptr_t)(PAGE_SIZE))
#    else
#        define AWS_SBA_PAGE_SIZE ((uintptr_t)(4096))
#    endif
#endif

#define AWS_SBA_PAGE_MASK ((uintptr_t) ~(AWS_SBA_PAGE_SIZE - 1))
#define AWS_SBA_TAG_VALUE 0x736f6d6570736575ULL

/* list of sizes of bins, must be powers of 2, and less than AWS_SBA_PAGE_SIZE * 0.5 */
#define AWS_SBA_BIN_COUNT 5
static const size_t s_bin_sizes[AWS_SBA_BIN_COUNT] = {32, 64, 128, 256, 512};
static const size_t s_max_bin_size = 512;

struct sba_bin {
    size_t size;                        /* size of allocs in this bin */
    struct aws_mutex mutex;             /* lock protecting this bin */
    uint8_t *page_cursor;               /* pointer to working page, currently being chunked from */
    struct aws_array_list active_pages; /* all pages in use by this bin, could be optimized at scale by being a set */
    struct aws_array_list free_chunks;  /* free chunks available in this bin */
};

/* Header stored at the base of each page.
 * As long as this is under 32 bytes, all is well.
 * Above that, there's potentially more waste per page */
struct page_header {
    uint64_t tag;         /* marker to identify/validate pages */
    struct sba_bin *bin;  /* bin this page belongs to */
    uint32_t alloc_count; /* number of outstanding allocs from this page */
    uint64_t tag2;
};

/* This is the impl for the aws_allocator */
struct small_block_allocator {
    struct aws_allocator *allocator; /* parent allocator, for large allocs */
    struct sba_bin bins[AWS_SBA_BIN_COUNT];
    int (*lock)(struct aws_mutex *);
    int (*unlock)(struct aws_mutex *);
};

static int s_null_lock(struct aws_mutex *mutex) {
    (void)mutex;
    /* NO OP */
    return 0;
}

static int s_null_unlock(struct aws_mutex *mutex) {
    (void)mutex;
    /* NO OP */
    return 0;
}

static int s_mutex_lock(struct aws_mutex *mutex) {
    return aws_mutex_lock(mutex);
}

static int s_mutex_unlock(struct aws_mutex *mutex) {
    return aws_mutex_unlock(mutex);
}

static void *s_page_base(const void *addr) {
    /* mask off the address to round it to page alignment */
    uint8_t *page_base = (uint8_t *)(((uintptr_t)addr) & AWS_SBA_PAGE_MASK);
    return page_base;
}

static void *s_page_bind(void *addr, struct sba_bin *bin) {
    /* insert the header at the base of the page and advance past it */
    struct page_header *page = (struct page_header *)addr;
    page->tag = page->tag2 = AWS_SBA_TAG_VALUE;
    page->bin = bin;
    page->alloc_count = 0;
    return (uint8_t *)addr + sizeof(struct page_header);
}

/* Wraps OS-specific aligned malloc implementation */
static void *s_aligned_alloc(size_t size, size_t align) {
#ifdef _WIN32
    return _aligned_malloc(size, align);
#else
    void *mem = NULL;
    int return_code = posix_memalign(&mem, align, size);
    if (return_code) {
        aws_raise_error(AWS_ERROR_OOM);
        return NULL;
    }
    return mem;
#endif
}

/* wraps OS-specific aligned free implementation */
static void s_aligned_free(void *addr) {
#ifdef _WIN32
    _aligned_free(addr);
#else
    free(addr);
#endif
}

/* aws_allocator vtable template */
static void *s_sba_mem_acquire(struct aws_allocator *allocator, size_t size);
static void s_sba_mem_release(struct aws_allocator *allocator, void *ptr);
static void *s_sba_mem_realloc(struct aws_allocator *allocator, void *old_ptr, size_t old_size, size_t new_size);
static void *s_sba_mem_calloc(struct aws_allocator *allocator, size_t num, size_t size);

static struct aws_allocator s_sba_allocator = {
    .mem_acquire = s_sba_mem_acquire,
    .mem_release = s_sba_mem_release,
    .mem_realloc = s_sba_mem_realloc,
    .mem_calloc = s_sba_mem_calloc,
};

static int s_sba_init(struct small_block_allocator *sba, struct aws_allocator *allocator, bool multi_threaded) {
    sba->allocator = allocator;
    AWS_ZERO_ARRAY(sba->bins);
    sba->lock = multi_threaded ? s_mutex_lock : s_null_lock;
    sba->unlock = multi_threaded ? s_mutex_unlock : s_null_unlock;

    for (unsigned idx = 0; idx < AWS_SBA_BIN_COUNT; ++idx) {
        struct sba_bin *bin = &sba->bins[idx];
        bin->size = s_bin_sizes[idx];
        if (multi_threaded && aws_mutex_init(&bin->mutex)) {
            goto cleanup;
        }
        if (aws_array_list_init_dynamic(&bin->active_pages, sba->allocator, 16, sizeof(void *))) {
            goto cleanup;
        }
        /* start with enough chunks for 1 page */
        if (aws_array_list_init_dynamic(
                &bin->free_chunks, sba->allocator, aws_max_size(AWS_SBA_PAGE_SIZE / bin->size, 16), sizeof(void *))) {
            goto cleanup;
        }
    }

    return AWS_OP_SUCCESS;

cleanup:
    for (unsigned idx = 0; idx < AWS_SBA_BIN_COUNT; ++idx) {
        struct sba_bin *bin = &sba->bins[idx];
        aws_mutex_clean_up(&bin->mutex);
        aws_array_list_clean_up(&bin->active_pages);
        aws_array_list_clean_up(&bin->free_chunks);
    }
    return AWS_OP_ERR;
}

static void s_sba_clean_up(struct small_block_allocator *sba) {
    /* free all known pages, then free the working page */
    for (unsigned idx = 0; idx < AWS_SBA_BIN_COUNT; ++idx) {
        struct sba_bin *bin = &sba->bins[idx];
        for (size_t page_idx = 0; page_idx < bin->active_pages.length; ++page_idx) {
            void *page_addr = NULL;
            aws_array_list_get_at(&bin->active_pages, &page_addr, page_idx);
            struct page_header *page = page_addr;
            AWS_ASSERT(page->alloc_count == 0 && "Memory still allocated in aws_sba_allocator (bin)");
            s_aligned_free(page);
        }
        if (bin->page_cursor) {
            void *page_addr = s_page_base(bin->page_cursor);
            struct page_header *page = page_addr;
            AWS_ASSERT(page->alloc_count == 0 && "Memory still allocated in aws_sba_allocator (page)");
            s_aligned_free(page);
        }

        aws_array_list_clean_up(&bin->active_pages);
        aws_array_list_clean_up(&bin->free_chunks);
        aws_mutex_clean_up(&bin->mutex);
    }
}

struct aws_allocator *aws_small_block_allocator_new(struct aws_allocator *allocator, bool multi_threaded) {
    struct small_block_allocator *sba = NULL;
    struct aws_allocator *sba_allocator = NULL;
    aws_mem_acquire_many(
        allocator, 2, &sba, sizeof(struct small_block_allocator), &sba_allocator, sizeof(struct aws_allocator));

    if (!sba || !sba_allocator) {
        return NULL;
    }

    AWS_ZERO_STRUCT(*sba);
    AWS_ZERO_STRUCT(*sba_allocator);

    /* copy the template vtable */
    *sba_allocator = s_sba_allocator;
    sba_allocator->impl = sba;

    if (s_sba_init(sba, allocator, multi_threaded)) {
        s_sba_clean_up(sba);
        aws_mem_release(allocator, sba);
        return NULL;
    }
    return sba_allocator;
}

void aws_small_block_allocator_destroy(struct aws_allocator *sba_allocator) {
    if (!sba_allocator) {
        return;
    }
    struct small_block_allocator *sba = sba_allocator->impl;
    if (!sba) {
        return;
    }

    struct aws_allocator *allocator = sba->allocator;
    s_sba_clean_up(sba);
    aws_mem_release(allocator, sba);
}

size_t aws_small_block_allocator_bytes_active(struct aws_allocator *sba_allocator) {
    AWS_FATAL_ASSERT(sba_allocator && "aws_small_block_allocator_bytes_used requires a non-null allocator");
    struct small_block_allocator *sba = sba_allocator->impl;
    AWS_FATAL_ASSERT(sba && "aws_small_block_allocator_bytes_used: supplied allocator has invalid SBA impl");

    size_t used = 0;
    for (unsigned idx = 0; idx < AWS_SBA_BIN_COUNT; ++idx) {
        struct sba_bin *bin = &sba->bins[idx];
        sba->lock(&bin->mutex);
        for (size_t page_idx = 0; page_idx < bin->active_pages.length; ++page_idx) {
            void *page_addr = NULL;
            aws_array_list_get_at(&bin->active_pages, &page_addr, page_idx);
            struct page_header *page = page_addr;
            used += page->alloc_count * bin->size;
        }
        if (bin->page_cursor) {
            void *page_addr = s_page_base(bin->page_cursor);
            struct page_header *page = page_addr;
            used += page->alloc_count * bin->size;
        }
        sba->unlock(&bin->mutex);
    }

    return used;
}

size_t aws_small_block_allocator_bytes_reserved(struct aws_allocator *sba_allocator) {
    AWS_FATAL_ASSERT(sba_allocator && "aws_small_block_allocator_bytes_used requires a non-null allocator");
    struct small_block_allocator *sba = sba_allocator->impl;
    AWS_FATAL_ASSERT(sba && "aws_small_block_allocator_bytes_used: supplied allocator has invalid SBA impl");

    size_t used = 0;
    for (unsigned idx = 0; idx < AWS_SBA_BIN_COUNT; ++idx) {
        struct sba_bin *bin = &sba->bins[idx];
        sba->lock(&bin->mutex);
        used += (bin->active_pages.length + (bin->page_cursor != NULL)) * AWS_SBA_PAGE_SIZE;
        sba->unlock(&bin->mutex);
    }

    return used;
}

size_t aws_small_block_allocator_page_size(struct aws_allocator *sba_allocator) {
    (void)sba_allocator;
    return AWS_SBA_PAGE_SIZE;
}

size_t aws_small_block_allocator_page_size_available(struct aws_allocator *sba_allocator) {
    (void)sba_allocator;
    return AWS_SBA_PAGE_SIZE - sizeof(struct page_header);
}

/* NOTE: Expects the mutex to be held by the caller */
static void *s_sba_alloc_from_bin(struct sba_bin *bin) {
    /* check the free list, hand chunks out in FIFO order */
    if (bin->free_chunks.length > 0) {
        void *chunk = NULL;
        if (aws_array_list_back(&bin->free_chunks, &chunk)) {
            return NULL;
        }
        if (aws_array_list_pop_back(&bin->free_chunks)) {
            return NULL;
        }

        AWS_ASSERT(chunk);
        struct page_header *page = s_page_base(chunk);
        page->alloc_count++;
        return chunk;
    }

    /* If there is a working page to chunk from, use it */
    if (bin->page_cursor) {
        struct page_header *page = s_page_base(bin->page_cursor);
        AWS_ASSERT(page);
        size_t space_left = AWS_SBA_PAGE_SIZE - (bin->page_cursor - (uint8_t *)page);
        if (space_left >= bin->size) {
            void *chunk = bin->page_cursor;
            page->alloc_count++;
            bin->page_cursor += bin->size;
            space_left -= bin->size;
            if (space_left < bin->size) {
                aws_array_list_push_back(&bin->active_pages, &page);
                bin->page_cursor = NULL;
            }
            return chunk;
        }
    }

    /* Nothing free to use, allocate a page and restart */
    uint8_t *new_page = s_aligned_alloc(AWS_SBA_PAGE_SIZE, AWS_SBA_PAGE_SIZE);
    new_page = s_page_bind(new_page, bin);
    bin->page_cursor = new_page;
    return s_sba_alloc_from_bin(bin);
}

/* NOTE: Expects the mutex to be held by the caller */
static void s_sba_free_to_bin(struct sba_bin *bin, void *addr) {
    AWS_PRECONDITION(addr);
    struct page_header *page = s_page_base(addr);
    AWS_ASSERT(page->bin == bin);
    page->alloc_count--;
    if (page->alloc_count == 0 && page != s_page_base(bin->page_cursor)) { /* empty page, free it */
        uint8_t *page_start = (uint8_t *)page + sizeof(struct page_header);
        uint8_t *page_end = page_start + AWS_SBA_PAGE_SIZE;
        /* Remove all chunks in the page from the free list */
        intptr_t chunk_idx = bin->free_chunks.length;
        for (; chunk_idx >= 0; --chunk_idx) {
            uint8_t *chunk = NULL;
            aws_array_list_get_at(&bin->free_chunks, &chunk, chunk_idx);
            if (chunk >= page_start && chunk < page_end) {
                aws_array_list_swap(&bin->free_chunks, chunk_idx, bin->free_chunks.length - 1);
                aws_array_list_pop_back(&bin->free_chunks);
            }
        }

        /* Find page in pages list and remove it */
        for (size_t page_idx = 0; page_idx < bin->active_pages.length; ++page_idx) {
            void *page_addr = NULL;
            aws_array_list_get_at(&bin->active_pages, &page_addr, page_idx);
            if (page_addr == page) {
                aws_array_list_swap(&bin->active_pages, page_idx, bin->active_pages.length - 1);
                aws_array_list_pop_back(&bin->active_pages);
                break;
            }
        }
        /* ensure that the page tag is erased, in case nearby memory is re-used */
        page->tag = page->tag2 = 0;
        s_aligned_free(page);
        return;
    }

    aws_array_list_push_back(&bin->free_chunks, &addr);
}

/* No lock required for this function, it's all read-only access to constant data */
static struct sba_bin *s_sba_find_bin(struct small_block_allocator *sba, size_t size) {
    AWS_PRECONDITION(size <= s_max_bin_size);

    /* map bits 5(32) to 9(512) to indices 0-4 */
    size_t next_pow2 = 0;
    aws_round_up_to_power_of_two(size, &next_pow2);
    size_t lz = aws_clz_i32((int32_t)next_pow2);
    size_t idx = aws_sub_size_saturating(31 - lz, 5);
    AWS_ASSERT(idx <= 4);
    struct sba_bin *bin = &sba->bins[idx];
    AWS_ASSERT(bin->size >= size);
    return bin;
}

static void *s_sba_alloc(struct small_block_allocator *sba, size_t size) {
    if (size <= s_max_bin_size) {
        struct sba_bin *bin = s_sba_find_bin(sba, size);
        AWS_FATAL_ASSERT(bin);
        /* BEGIN CRITICAL SECTION */
        sba->lock(&bin->mutex);
        void *mem = s_sba_alloc_from_bin(bin);
        sba->unlock(&bin->mutex);
        /* END CRITICAL SECTION */
        return mem;
    }
    return aws_mem_acquire(sba->allocator, size);
}

static void s_sba_free(struct small_block_allocator *sba, void *addr) {
    if (!addr) {
        return;
    }

    struct page_header *page = (struct page_header *)s_page_base(addr);
    /* Check to see if this page is tagged by the sba */
    /* this check causes a read of (possibly) memory we didn't allocate, but it will always be
     * heap memory, so should not cause any issues. TSan will see this as a data race, but it
     * is not, that's a false positive
     */
    if (page->tag == AWS_SBA_TAG_VALUE && page->tag2 == AWS_SBA_TAG_VALUE) {
        struct sba_bin *bin = page->bin;
        /* BEGIN CRITICAL SECTION */
        sba->lock(&bin->mutex);
        s_sba_free_to_bin(bin, addr);
        sba->unlock(&bin->mutex);
        /* END CRITICAL SECTION */
        return;
    }
    /* large alloc, give back to underlying allocator */
    aws_mem_release(sba->allocator, addr);
}

static void *s_sba_mem_acquire(struct aws_allocator *allocator, size_t size) {
    struct small_block_allocator *sba = allocator->impl;
    return s_sba_alloc(sba, size);
}

static void s_sba_mem_release(struct aws_allocator *allocator, void *ptr) {
    struct small_block_allocator *sba = allocator->impl;
    s_sba_free(sba, ptr);
}

static void *s_sba_mem_realloc(struct aws_allocator *allocator, void *old_ptr, size_t old_size, size_t new_size) {
    struct small_block_allocator *sba = allocator->impl;
    /* If both allocations come from the parent, let the parent do it */
    if (old_size > s_max_bin_size && new_size > s_max_bin_size) {
        void *ptr = old_ptr;
        if (aws_mem_realloc(sba->allocator, &ptr, old_size, new_size)) {
            return NULL;
        }
        return ptr;
    }

    if (new_size == 0) {
        s_sba_free(sba, old_ptr);
        return NULL;
    }

    if (old_size > new_size) {
        return old_ptr;
    }

    void *new_mem = s_sba_alloc(sba, new_size);
    if (old_ptr && old_size) {
        memcpy(new_mem, old_ptr, old_size);
        s_sba_free(sba, old_ptr);
    }

    return new_mem;
}

static void *s_sba_mem_calloc(struct aws_allocator *allocator, size_t num, size_t size) {
    struct small_block_allocator *sba = allocator->impl;
    void *mem = s_sba_alloc(sba, size * num);
    memset(mem, 0, size * num);
    return mem;
}