aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/restricted/aws/aws-c-cal/source/windows/bcrypt_aes.c
blob: aeb646e66a3dc435b87a2710474648db1b97d20f (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
/**
 * Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
 * SPDX-License-Identifier: Apache-2.0.
 */
#include <aws/cal/private/symmetric_cipher_priv.h>

#include <windows.h>

/* keep the space to prevent formatters from reordering this with the Windows.h header. */
#include <bcrypt.h>

#define NT_SUCCESS(status) ((NTSTATUS)status >= 0)

/* handles for AES modes and algorithms we'll be using. These are initialized once and allowed to leak. */
static aws_thread_once s_aes_thread_once = AWS_THREAD_ONCE_STATIC_INIT;
static BCRYPT_ALG_HANDLE s_aes_cbc_algorithm_handle = NULL;
static BCRYPT_ALG_HANDLE s_aes_gcm_algorithm_handle = NULL;
static BCRYPT_ALG_HANDLE s_aes_ctr_algorithm_handle = NULL;
static BCRYPT_ALG_HANDLE s_aes_keywrap_algorithm_handle = NULL;

struct aes_bcrypt_cipher {
    struct aws_symmetric_cipher cipher;
    BCRYPT_ALG_HANDLE alg_handle;
    /* the loaded key handle. */
    BCRYPT_KEY_HANDLE key_handle;
    /* Used for GCM mode to store IV, tag, and aad */
    BCRYPT_AUTHENTICATED_CIPHER_MODE_INFO *auth_info_ptr;
    /* Updated on the fly for things like constant-time CBC padding and GCM hash chaining */
    DWORD cipher_flags;
    /* For things to work, they have to be in 16 byte chunks in several scenarios. Use this
       Buffer for storing excess bytes until we have 16 bytes to operate on. */
    struct aws_byte_buf overflow;
    /* This gets updated as the algorithms run so it isn't the original IV. That's why its separate */
    struct aws_byte_buf working_iv;
    /* A buffer to keep around for the GMAC for GCM. */
    struct aws_byte_buf working_mac_buffer;
};

static void s_load_alg_handles(void *user_data) {
    (void)user_data;

    /* this function is incredibly slow, LET IT LEAK*/
    NTSTATUS status = BCryptOpenAlgorithmProvider(&s_aes_cbc_algorithm_handle, BCRYPT_AES_ALGORITHM, NULL, 0);
    AWS_FATAL_ASSERT(s_aes_cbc_algorithm_handle && "BCryptOpenAlgorithmProvider() failed");

    status = BCryptSetProperty(
        s_aes_cbc_algorithm_handle,
        BCRYPT_CHAINING_MODE,
        (PUCHAR)BCRYPT_CHAIN_MODE_CBC,
        (ULONG)(wcslen(BCRYPT_CHAIN_MODE_CBC) + 1),
        0);

    AWS_FATAL_ASSERT(NT_SUCCESS(status) && "BCryptSetProperty for CBC chaining mode failed");

    /* Set up GCM algorithm */
    status = BCryptOpenAlgorithmProvider(&s_aes_gcm_algorithm_handle, BCRYPT_AES_ALGORITHM, NULL, 0);
    AWS_FATAL_ASSERT(s_aes_gcm_algorithm_handle && "BCryptOpenAlgorithmProvider() failed");

    status = BCryptSetProperty(
        s_aes_gcm_algorithm_handle,
        BCRYPT_CHAINING_MODE,
        (PUCHAR)BCRYPT_CHAIN_MODE_GCM,
        (ULONG)(wcslen(BCRYPT_CHAIN_MODE_GCM) + 1),
        0);

    AWS_FATAL_ASSERT(NT_SUCCESS(status) && "BCryptSetProperty for GCM chaining mode failed");

    /* Setup CTR algorithm */
    status = BCryptOpenAlgorithmProvider(&s_aes_ctr_algorithm_handle, BCRYPT_AES_ALGORITHM, NULL, 0);
    AWS_FATAL_ASSERT(s_aes_ctr_algorithm_handle && "BCryptOpenAlgorithmProvider() failed");

    /* This is ECB because windows doesn't do CTR mode for you.
       Instead we use ECB and XOR the encrypted IV and data to operate on for each block. */
    status = BCryptSetProperty(
        s_aes_ctr_algorithm_handle,
        BCRYPT_CHAINING_MODE,
        (PUCHAR)BCRYPT_CHAIN_MODE_ECB,
        (ULONG)(wcslen(BCRYPT_CHAIN_MODE_ECB) + 1),
        0);

    AWS_FATAL_ASSERT(NT_SUCCESS(status) && "BCryptSetProperty for ECB chaining mode failed");

    /* Setup KEYWRAP algorithm */
    status = BCryptOpenAlgorithmProvider(&s_aes_keywrap_algorithm_handle, BCRYPT_AES_ALGORITHM, NULL, 0);
    AWS_FATAL_ASSERT(s_aes_ctr_algorithm_handle && "BCryptOpenAlgorithmProvider() failed");

    AWS_FATAL_ASSERT(NT_SUCCESS(status) && "BCryptSetProperty for KeyWrap failed");
}

static BCRYPT_KEY_HANDLE s_import_key_blob(
    BCRYPT_ALG_HANDLE algHandle,
    struct aws_allocator *allocator,
    struct aws_byte_buf *key) {
    NTSTATUS status = 0;

    BCRYPT_KEY_DATA_BLOB_HEADER key_data;
    key_data.dwMagic = BCRYPT_KEY_DATA_BLOB_MAGIC;
    key_data.dwVersion = BCRYPT_KEY_DATA_BLOB_VERSION1;
    key_data.cbKeyData = (ULONG)key->len;

    struct aws_byte_buf key_data_buf;
    aws_byte_buf_init(&key_data_buf, allocator, sizeof(key_data) + key->len);
    aws_byte_buf_write(&key_data_buf, (const uint8_t *)&key_data, sizeof(key_data));
    aws_byte_buf_write(&key_data_buf, key->buffer, key->len);

    BCRYPT_KEY_HANDLE key_handle;
    status = BCryptImportKey(
        algHandle, NULL, BCRYPT_KEY_DATA_BLOB, &key_handle, NULL, 0, key_data_buf.buffer, (ULONG)key_data_buf.len, 0);

    aws_byte_buf_clean_up_secure(&key_data_buf);

    if (!NT_SUCCESS(status)) {
        aws_raise_error(AWS_ERROR_INVALID_ARGUMENT);
        return NULL;
    }

    return key_handle;
}

static void s_aes_default_destroy(struct aws_symmetric_cipher *cipher) {
    struct aes_bcrypt_cipher *cipher_impl = cipher->impl;

    aws_byte_buf_clean_up_secure(&cipher->key);
    aws_byte_buf_clean_up_secure(&cipher->iv);
    aws_byte_buf_clean_up_secure(&cipher->tag);
    aws_byte_buf_clean_up_secure(&cipher->aad);

    /* clean_up_secure exists in versions of aws-c-common that don't check that the
       buffer has a buffer and an allocator before freeing the memory. Instead,
       check here. If it's set the buffer was owned and needs to be cleaned up, otherwise
       it can just be dropped as it was an alias.*/
    if (cipher_impl->working_iv.allocator) {
        aws_byte_buf_clean_up_secure(&cipher_impl->working_iv);
    }

    aws_byte_buf_clean_up_secure(&cipher_impl->overflow);
    aws_byte_buf_clean_up_secure(&cipher_impl->working_mac_buffer);

    if (cipher_impl->key_handle) {
        BCryptDestroyKey(cipher_impl->key_handle);
        cipher_impl->key_handle = NULL;
    }

    if (cipher_impl->auth_info_ptr) {
        aws_mem_release(cipher->allocator, cipher_impl->auth_info_ptr);
        cipher_impl->auth_info_ptr = NULL;
    }

    aws_mem_release(cipher->allocator, cipher_impl);
}

/* just a utility function for setting up windows Ciphers and keys etc....
   Handles copying key/iv etc... data to the right buffers and then setting them
   on the windows handles used for the encryption operations. */
static int s_initialize_cipher_materials(
    struct aes_bcrypt_cipher *cipher,
    const struct aws_byte_cursor *key,
    const struct aws_byte_cursor *iv,
    const struct aws_byte_cursor *tag,
    const struct aws_byte_cursor *aad,
    size_t iv_size,
    bool is_ctr_mode,
    bool is_gcm) {

    if (!cipher->cipher.key.len) {
        if (key) {
            aws_byte_buf_init_copy_from_cursor(&cipher->cipher.key, cipher->cipher.allocator, *key);
        } else {
            aws_byte_buf_init(&cipher->cipher.key, cipher->cipher.allocator, AWS_AES_256_KEY_BYTE_LEN);
            aws_symmetric_cipher_generate_key(AWS_AES_256_KEY_BYTE_LEN, &cipher->cipher.key);
        }
    }

    if (!cipher->cipher.iv.len && iv_size) {
        if (iv) {
            aws_byte_buf_init_copy_from_cursor(&cipher->cipher.iv, cipher->cipher.allocator, *iv);
        } else {
            aws_byte_buf_init(&cipher->cipher.iv, cipher->cipher.allocator, iv_size);
            aws_symmetric_cipher_generate_initialization_vector(iv_size, is_ctr_mode, &cipher->cipher.iv);
        }
    }

    /* these fields are only used in GCM mode. */
    if (is_gcm) {
        if (!cipher->cipher.tag.len) {
            if (tag) {
                aws_byte_buf_init_copy_from_cursor(&cipher->cipher.tag, cipher->cipher.allocator, *tag);
            } else {
                aws_byte_buf_init(&cipher->cipher.tag, cipher->cipher.allocator, AWS_AES_256_CIPHER_BLOCK_SIZE);
                aws_byte_buf_secure_zero(&cipher->cipher.tag);
                /* windows handles this, just go ahead and tell the API it's got a length. */
                cipher->cipher.tag.len = AWS_AES_256_CIPHER_BLOCK_SIZE;
            }
        }

        if (!cipher->cipher.aad.len) {
            if (aad) {
                aws_byte_buf_init_copy_from_cursor(&cipher->cipher.aad, cipher->cipher.allocator, *aad);
            }
        }

        if (!cipher->working_mac_buffer.len) {
            aws_byte_buf_init(&cipher->working_mac_buffer, cipher->cipher.allocator, AWS_AES_256_CIPHER_BLOCK_SIZE);
            aws_byte_buf_secure_zero(&cipher->working_mac_buffer);
            /* windows handles this, just go ahead and tell the API it's got a length. */
            cipher->working_mac_buffer.len = AWS_AES_256_CIPHER_BLOCK_SIZE;
        }
    }

    cipher->key_handle = s_import_key_blob(cipher->alg_handle, cipher->cipher.allocator, &cipher->cipher.key);

    if (!cipher->key_handle) {
        cipher->cipher.good = false;
        return AWS_OP_ERR;
    }

    cipher->cipher_flags = 0;

    /* In GCM mode, the IV is set on the auth info pointer and a working copy
       is passed to each encryt call. CBC and CTR mode function differently here
       and the IV is set on the key itself. */
    if (!is_gcm && cipher->cipher.iv.len) {
        NTSTATUS status = BCryptSetProperty(
            cipher->key_handle,
            BCRYPT_INITIALIZATION_VECTOR,
            cipher->cipher.iv.buffer,
            (ULONG)cipher->cipher.iv.len,
            0);

        if (!NT_SUCCESS(status)) {
            cipher->cipher.good = false;
            return aws_raise_error(AWS_ERROR_INVALID_ARGUMENT);
        }
    } else if (is_gcm) {

        cipher->auth_info_ptr =
            aws_mem_acquire(cipher->cipher.allocator, sizeof(BCRYPT_AUTHENTICATED_CIPHER_MODE_INFO));

        /* Create a new authenticated cipher mode info object for GCM mode */
        BCRYPT_INIT_AUTH_MODE_INFO(*cipher->auth_info_ptr);
        cipher->auth_info_ptr->pbNonce = cipher->cipher.iv.buffer;
        cipher->auth_info_ptr->cbNonce = (ULONG)cipher->cipher.iv.len;
        cipher->auth_info_ptr->dwFlags = BCRYPT_AUTH_MODE_CHAIN_CALLS_FLAG;
        cipher->auth_info_ptr->pbTag = cipher->cipher.tag.buffer;
        cipher->auth_info_ptr->cbTag = (ULONG)cipher->cipher.tag.len;
        cipher->auth_info_ptr->pbMacContext = cipher->working_mac_buffer.buffer;
        cipher->auth_info_ptr->cbMacContext = (ULONG)cipher->working_mac_buffer.len;

        if (cipher->cipher.aad.len) {
            cipher->auth_info_ptr->pbAuthData = (PUCHAR)cipher->cipher.aad.buffer;
            cipher->auth_info_ptr->cbAuthData = (ULONG)cipher->cipher.aad.len;
        }
    }

    return AWS_OP_SUCCESS;
}

/* Free up as few resources as possible so we can quickly reuse the cipher. */
static void s_clear_reusable_components(struct aws_symmetric_cipher *cipher) {
    struct aes_bcrypt_cipher *cipher_impl = cipher->impl;
    bool working_iv_optimized = cipher->iv.buffer == cipher_impl->working_iv.buffer;

    if (!working_iv_optimized) {
        aws_byte_buf_secure_zero(&cipher_impl->working_iv);
    }

    /* These can't always be reused in the next operation, so go ahead and destroy it
       and create another. */
    if (cipher_impl->key_handle) {
        BCryptDestroyKey(cipher_impl->key_handle);
        cipher_impl->key_handle = NULL;
    }

    if (cipher_impl->auth_info_ptr) {
        aws_mem_release(cipher->allocator, cipher_impl->auth_info_ptr);
        cipher_impl->auth_info_ptr = NULL;
    }

    aws_byte_buf_secure_zero(&cipher_impl->overflow);
    aws_byte_buf_secure_zero(&cipher_impl->working_mac_buffer);
    /* windows handles this, just go ahead and tell the API it's got a length. */
    cipher_impl->working_mac_buffer.len = AWS_AES_256_CIPHER_BLOCK_SIZE;
}

static int s_reset_cbc_cipher(struct aws_symmetric_cipher *cipher) {
    struct aes_bcrypt_cipher *cipher_impl = cipher->impl;

    s_clear_reusable_components(cipher);
    return s_initialize_cipher_materials(
        cipher_impl, NULL, NULL, NULL, NULL, AWS_AES_256_CIPHER_BLOCK_SIZE, false, false);
}

static int s_reset_ctr_cipher(struct aws_symmetric_cipher *cipher) {
    struct aes_bcrypt_cipher *cipher_impl = cipher->impl;

    s_clear_reusable_components(cipher);
    struct aws_byte_cursor iv_cur = aws_byte_cursor_from_buf(&cipher->iv);
    /* reset the working iv back to the original IV. We do this because
       we're manually maintaining the counter. */
    aws_byte_buf_append_dynamic(&cipher_impl->working_iv, &iv_cur);
    return s_initialize_cipher_materials(
        cipher_impl, NULL, NULL, NULL, NULL, AWS_AES_256_CIPHER_BLOCK_SIZE, true, false);
}

static int s_reset_gcm_cipher(struct aws_symmetric_cipher *cipher) {
    struct aes_bcrypt_cipher *cipher_impl = cipher->impl;

    s_clear_reusable_components(cipher);
    return s_initialize_cipher_materials(
        cipher_impl, NULL, NULL, NULL, NULL, AWS_AES_256_CIPHER_BLOCK_SIZE - 4, false, true);
}

static int s_aes_default_encrypt(
    struct aws_symmetric_cipher *cipher,
    const struct aws_byte_cursor *to_encrypt,
    struct aws_byte_buf *out) {
    struct aes_bcrypt_cipher *cipher_impl = cipher->impl;

    if (to_encrypt->len == 0) {
        return AWS_OP_SUCCESS;
    }

    size_t predicted_write_length =
        cipher_impl->cipher_flags & BCRYPT_BLOCK_PADDING
            ? to_encrypt->len + (AWS_AES_256_CIPHER_BLOCK_SIZE - (to_encrypt->len % AWS_AES_256_CIPHER_BLOCK_SIZE))
            : to_encrypt->len;

    ULONG length_written = (ULONG)(predicted_write_length);

    if (aws_symmetric_cipher_try_ensure_sufficient_buffer_space(out, predicted_write_length)) {
        return aws_raise_error(AWS_ERROR_SHORT_BUFFER);
    }

    PUCHAR iv = NULL;
    ULONG iv_size = 0;

    if (cipher_impl->auth_info_ptr) {
        iv = cipher_impl->working_iv.buffer;
        /* this is looking for buffer size, and the working_iv has only been written to by windows the GCM case.
         * So use capacity rather than length */
        iv_size = (ULONG)cipher_impl->working_iv.capacity;
    }

    /* iv was set on the key itself, so we don't need to pass it here. */
    NTSTATUS status = BCryptEncrypt(
        cipher_impl->key_handle,
        to_encrypt->ptr,
        (ULONG)to_encrypt->len,
        cipher_impl->auth_info_ptr,
        iv,
        iv_size,
        out->buffer + out->len,
        (ULONG)(out->capacity - out->len),
        &length_written,
        cipher_impl->cipher_flags);

    if (!NT_SUCCESS(status)) {
        cipher->good = false;
        return aws_raise_error(AWS_ERROR_INVALID_ARGUMENT);
    }

    out->len += length_written;
    return AWS_OP_SUCCESS;
}

/* manages making sure encryption operations can operate on 16 byte blocks. Stores the excess in the overflow
   buffer and moves stuff around each time to make sure everything is in order. */
static struct aws_byte_buf s_fill_in_overflow(
    struct aws_symmetric_cipher *cipher,
    const struct aws_byte_cursor *to_operate) {
    struct aes_bcrypt_cipher *cipher_impl = cipher->impl;

    static const size_t RESERVE_SIZE = AWS_AES_256_CIPHER_BLOCK_SIZE * 2;
    cipher_impl->cipher_flags = 0;

    struct aws_byte_buf final_to_operate_on;
    AWS_ZERO_STRUCT(final_to_operate_on);

    if (cipher_impl->overflow.len > 0) {
        aws_byte_buf_init_copy(&final_to_operate_on, cipher->allocator, &cipher_impl->overflow);
        aws_byte_buf_append_dynamic(&final_to_operate_on, to_operate);
        aws_byte_buf_secure_zero(&cipher_impl->overflow);
    } else {
        aws_byte_buf_init_copy_from_cursor(&final_to_operate_on, cipher->allocator, *to_operate);
    }

    size_t overflow = final_to_operate_on.len % RESERVE_SIZE;

    if (final_to_operate_on.len > RESERVE_SIZE) {
        size_t offset = overflow == 0 ? RESERVE_SIZE : overflow;

        struct aws_byte_cursor slice_for_overflow = aws_byte_cursor_from_buf(&final_to_operate_on);
        aws_byte_cursor_advance(&slice_for_overflow, final_to_operate_on.len - offset);
        aws_byte_buf_append_dynamic(&cipher_impl->overflow, &slice_for_overflow);
        final_to_operate_on.len -= offset;
    } else {
        struct aws_byte_cursor final_cur = aws_byte_cursor_from_buf(&final_to_operate_on);
        aws_byte_buf_append_dynamic(&cipher_impl->overflow, &final_cur);
        aws_byte_buf_clean_up_secure(&final_to_operate_on);
    }

    return final_to_operate_on;
}

static int s_aes_cbc_encrypt(
    struct aws_symmetric_cipher *cipher,
    struct aws_byte_cursor to_encrypt,
    struct aws_byte_buf *out) {

    struct aws_byte_buf final_to_encrypt = s_fill_in_overflow(cipher, &to_encrypt);
    struct aws_byte_cursor final_cur = aws_byte_cursor_from_buf(&final_to_encrypt);
    int ret_val = s_aes_default_encrypt(cipher, &final_cur, out);
    aws_byte_buf_clean_up_secure(&final_to_encrypt);

    return ret_val;
}

static int s_aes_cbc_finalize_encryption(struct aws_symmetric_cipher *cipher, struct aws_byte_buf *out) {
    struct aes_bcrypt_cipher *cipher_impl = cipher->impl;

    if (cipher->good && cipher_impl->overflow.len > 0) {
        cipher_impl->cipher_flags = BCRYPT_BLOCK_PADDING;
        /* take the rest of the overflow and turn padding on so the remainder is properly padded
           without timing attack vulnerabilities. */
        struct aws_byte_cursor remaining_cur = aws_byte_cursor_from_buf(&cipher_impl->overflow);
        int ret_val = s_aes_default_encrypt(cipher, &remaining_cur, out);
        aws_byte_buf_secure_zero(&cipher_impl->overflow);
        return ret_val;
    }

    return AWS_OP_SUCCESS;
}

static int s_default_aes_decrypt(
    struct aws_symmetric_cipher *cipher,
    const struct aws_byte_cursor *to_decrypt,
    struct aws_byte_buf *out) {
    struct aes_bcrypt_cipher *cipher_impl = cipher->impl;

    if (to_decrypt->len == 0) {
        return AWS_OP_SUCCESS;
    }

    PUCHAR iv = NULL;
    ULONG iv_size = 0;

    if (cipher_impl->auth_info_ptr) {
        iv = cipher_impl->working_iv.buffer;
        /* this is looking for buffer size, and the working_iv has only been written to by windows the GCM case.
         * So use capacity rather than length */
        iv_size = (ULONG)cipher_impl->working_iv.capacity;
    }

    size_t predicted_write_length = to_decrypt->len;
    ULONG length_written = (ULONG)(predicted_write_length);

    if (aws_symmetric_cipher_try_ensure_sufficient_buffer_space(out, predicted_write_length)) {
        return aws_raise_error(AWS_ERROR_SHORT_BUFFER);
    }

    /* iv was set on the key itself, so we don't need to pass it here. */
    NTSTATUS status = BCryptDecrypt(
        cipher_impl->key_handle,
        to_decrypt->ptr,
        (ULONG)to_decrypt->len,
        cipher_impl->auth_info_ptr,
        iv,
        iv_size,
        out->buffer + out->len,
        (ULONG)(out->capacity - out->len),
        &length_written,
        cipher_impl->cipher_flags);

    if (!NT_SUCCESS(status)) {
        cipher->good = false;
        return aws_raise_error(AWS_ERROR_INVALID_ARGUMENT);
    }

    out->len += length_written;
    return AWS_OP_SUCCESS;
}

static int s_aes_cbc_decrypt(
    struct aws_symmetric_cipher *cipher,
    struct aws_byte_cursor to_decrypt,
    struct aws_byte_buf *out) {
    struct aws_byte_buf final_to_decrypt = s_fill_in_overflow(cipher, &to_decrypt);
    struct aws_byte_cursor final_cur = aws_byte_cursor_from_buf(&final_to_decrypt);
    int ret_val = s_default_aes_decrypt(cipher, &final_cur, out);
    aws_byte_buf_clean_up_secure(&final_to_decrypt);

    return ret_val;
}

static int s_aes_cbc_finalize_decryption(struct aws_symmetric_cipher *cipher, struct aws_byte_buf *out) {
    struct aes_bcrypt_cipher *cipher_impl = cipher->impl;

    if (cipher->good && cipher_impl->overflow.len > 0) {
        cipher_impl->cipher_flags = BCRYPT_BLOCK_PADDING;
        /* take the rest of the overflow and turn padding on so the remainder is properly padded
           without timing attack vulnerabilities. */
        struct aws_byte_cursor remaining_cur = aws_byte_cursor_from_buf(&cipher_impl->overflow);
        int ret_val = s_default_aes_decrypt(cipher, &remaining_cur, out);
        aws_byte_buf_secure_zero(&cipher_impl->overflow);
        return ret_val;
    }

    return AWS_OP_SUCCESS;
}

static struct aws_symmetric_cipher_vtable s_aes_cbc_vtable = {
    .alg_name = "AES-CBC 256",
    .provider = "Windows CNG",
    .decrypt = s_aes_cbc_decrypt,
    .encrypt = s_aes_cbc_encrypt,
    .finalize_encryption = s_aes_cbc_finalize_encryption,
    .finalize_decryption = s_aes_cbc_finalize_decryption,
    .destroy = s_aes_default_destroy,
    .reset = s_reset_cbc_cipher,
};

struct aws_symmetric_cipher *aws_aes_cbc_256_new_impl(
    struct aws_allocator *allocator,
    const struct aws_byte_cursor *key,
    const struct aws_byte_cursor *iv) {

    aws_thread_call_once(&s_aes_thread_once, s_load_alg_handles, NULL);

    struct aes_bcrypt_cipher *cipher = aws_mem_calloc(allocator, 1, sizeof(struct aes_bcrypt_cipher));

    cipher->cipher.allocator = allocator;
    cipher->cipher.block_size = AWS_AES_256_CIPHER_BLOCK_SIZE;
    cipher->cipher.key_length_bits = AWS_AES_256_KEY_BIT_LEN;
    cipher->alg_handle = s_aes_cbc_algorithm_handle;
    cipher->cipher.vtable = &s_aes_cbc_vtable;

    if (s_initialize_cipher_materials(cipher, key, iv, NULL, NULL, AWS_AES_256_CIPHER_BLOCK_SIZE, false, false) !=
        AWS_OP_SUCCESS) {
        goto error;
    }

    aws_byte_buf_init(&cipher->overflow, allocator, AWS_AES_256_CIPHER_BLOCK_SIZE * 2);
    cipher->working_iv = cipher->cipher.iv;
    /* make sure the cleanup doesn't do anything. */
    cipher->working_iv.allocator = NULL;
    cipher->cipher.impl = cipher;
    cipher->cipher.good = true;

    return &cipher->cipher;

error:
    return NULL;
}

/* the buffer management for this mode is a good deal easier because we don't care about padding.
   We do care about keeping the final buffer less than a block size til the finalize call so we can
   turn the auth chaining flag off and compute the GMAC correctly. */
static int s_aes_gcm_encrypt(
    struct aws_symmetric_cipher *cipher,
    struct aws_byte_cursor to_encrypt,
    struct aws_byte_buf *out) {
    struct aes_bcrypt_cipher *cipher_impl = cipher->impl;

    if (to_encrypt.len == 0) {
        return AWS_OP_SUCCESS;
    }

    struct aws_byte_buf working_buffer;
    AWS_ZERO_STRUCT(working_buffer);

    /* If there's overflow, prepend it to the working buffer, then append the data to encrypt */
    if (cipher_impl->overflow.len) {
        struct aws_byte_cursor overflow_cur = aws_byte_cursor_from_buf(&cipher_impl->overflow);

        aws_byte_buf_init_copy_from_cursor(&working_buffer, cipher->allocator, overflow_cur);
        aws_byte_buf_reset(&cipher_impl->overflow, true);
        aws_byte_buf_append_dynamic(&working_buffer, &to_encrypt);
    } else {
        aws_byte_buf_init_copy_from_cursor(&working_buffer, cipher->allocator, to_encrypt);
    }

    int ret_val = AWS_OP_ERR;

    /* whatever is remaining in an incomplete block, copy it to the overflow. If we don't have a full block
       wait til next time or for the finalize call. */
    if (working_buffer.len > AWS_AES_256_CIPHER_BLOCK_SIZE) {
        size_t offset = working_buffer.len % AWS_AES_256_CIPHER_BLOCK_SIZE;
        size_t seek_to = working_buffer.len - (AWS_AES_256_CIPHER_BLOCK_SIZE + offset);
        struct aws_byte_cursor working_buf_cur = aws_byte_cursor_from_buf(&working_buffer);
        struct aws_byte_cursor working_slice = aws_byte_cursor_advance(&working_buf_cur, seek_to);
        /* this is just here to make it obvious. The previous line advanced working_buf_cur to where the
           new overfloew should be. */
        struct aws_byte_cursor new_overflow_cur = working_buf_cur;
        aws_byte_buf_append_dynamic(&cipher_impl->overflow, &new_overflow_cur);

        ret_val = s_aes_default_encrypt(cipher, &working_slice, out);
    } else {
        struct aws_byte_cursor working_buffer_cur = aws_byte_cursor_from_buf(&working_buffer);
        aws_byte_buf_append_dynamic(&cipher_impl->overflow, &working_buffer_cur);
        ret_val = AWS_OP_SUCCESS;
    }
    aws_byte_buf_clean_up_secure(&working_buffer);
    return ret_val;
}

static int s_aes_gcm_decrypt(
    struct aws_symmetric_cipher *cipher,
    struct aws_byte_cursor to_decrypt,
    struct aws_byte_buf *out) {
    struct aes_bcrypt_cipher *cipher_impl = cipher->impl;

    if (to_decrypt.len == 0) {
        return AWS_OP_SUCCESS;
    }

    struct aws_byte_buf working_buffer;
    AWS_ZERO_STRUCT(working_buffer);

    /* If there's overflow, prepend it to the working buffer, then append the data to encrypt */
    if (cipher_impl->overflow.len) {
        struct aws_byte_cursor overflow_cur = aws_byte_cursor_from_buf(&cipher_impl->overflow);

        aws_byte_buf_init_copy_from_cursor(&working_buffer, cipher->allocator, overflow_cur);
        aws_byte_buf_reset(&cipher_impl->overflow, true);
        aws_byte_buf_append_dynamic(&working_buffer, &to_decrypt);
    } else {
        aws_byte_buf_init_copy_from_cursor(&working_buffer, cipher->allocator, to_decrypt);
    }

    int ret_val = AWS_OP_ERR;

    /* whatever is remaining in an incomplete block, copy it to the overflow. If we don't have a full block
       wait til next time or for the finalize call. */
    if (working_buffer.len > AWS_AES_256_CIPHER_BLOCK_SIZE) {
        size_t offset = working_buffer.len % AWS_AES_256_CIPHER_BLOCK_SIZE;
        size_t seek_to = working_buffer.len - (AWS_AES_256_CIPHER_BLOCK_SIZE + offset);
        struct aws_byte_cursor working_buf_cur = aws_byte_cursor_from_buf(&working_buffer);
        struct aws_byte_cursor working_slice = aws_byte_cursor_advance(&working_buf_cur, seek_to);
        /* this is just here to make it obvious. The previous line advanced working_buf_cur to where the
           new overfloew should be. */
        struct aws_byte_cursor new_overflow_cur = working_buf_cur;
        aws_byte_buf_append_dynamic(&cipher_impl->overflow, &new_overflow_cur);

        ret_val = s_default_aes_decrypt(cipher, &working_slice, out);
    } else {
        struct aws_byte_cursor working_buffer_cur = aws_byte_cursor_from_buf(&working_buffer);
        aws_byte_buf_append_dynamic(&cipher_impl->overflow, &working_buffer_cur);
        ret_val = AWS_OP_SUCCESS;
    }
    aws_byte_buf_clean_up_secure(&working_buffer);
    return ret_val;
}

static int s_aes_gcm_finalize_encryption(struct aws_symmetric_cipher *cipher, struct aws_byte_buf *out) {
    struct aes_bcrypt_cipher *cipher_impl = cipher->impl;

    cipher_impl->auth_info_ptr->dwFlags &= ~BCRYPT_AUTH_MODE_CHAIN_CALLS_FLAG;
    /* take whatever is remaining, make the final encrypt call with the auth chain flag turned off. */
    struct aws_byte_cursor remaining_cur = aws_byte_cursor_from_buf(&cipher_impl->overflow);
    int ret_val = s_aes_default_encrypt(cipher, &remaining_cur, out);
    aws_byte_buf_secure_zero(&cipher_impl->overflow);
    aws_byte_buf_secure_zero(&cipher_impl->working_iv);
    return ret_val;
}

static int s_aes_gcm_finalize_decryption(struct aws_symmetric_cipher *cipher, struct aws_byte_buf *out) {
    struct aes_bcrypt_cipher *cipher_impl = cipher->impl;
    cipher_impl->auth_info_ptr->dwFlags &= ~BCRYPT_AUTH_MODE_CHAIN_CALLS_FLAG;
    /* take whatever is remaining, make the final decrypt call with the auth chain flag turned off. */
    struct aws_byte_cursor remaining_cur = aws_byte_cursor_from_buf(&cipher_impl->overflow);
    int ret_val = s_default_aes_decrypt(cipher, &remaining_cur, out);
    aws_byte_buf_secure_zero(&cipher_impl->overflow);
    aws_byte_buf_secure_zero(&cipher_impl->working_iv);
    return ret_val;
}

static struct aws_symmetric_cipher_vtable s_aes_gcm_vtable = {
    .alg_name = "AES-GCM 256",
    .provider = "Windows CNG",
    .decrypt = s_aes_gcm_decrypt,
    .encrypt = s_aes_gcm_encrypt,
    .finalize_encryption = s_aes_gcm_finalize_encryption,
    .finalize_decryption = s_aes_gcm_finalize_decryption,
    .destroy = s_aes_default_destroy,
    .reset = s_reset_gcm_cipher,
};

struct aws_symmetric_cipher *aws_aes_gcm_256_new_impl(
    struct aws_allocator *allocator,
    const struct aws_byte_cursor *key,
    const struct aws_byte_cursor *iv,
    const struct aws_byte_cursor *aad,
    const struct aws_byte_cursor *decryption_tag) {

    aws_thread_call_once(&s_aes_thread_once, s_load_alg_handles, NULL);
    struct aes_bcrypt_cipher *cipher = aws_mem_calloc(allocator, 1, sizeof(struct aes_bcrypt_cipher));

    cipher->cipher.allocator = allocator;
    cipher->cipher.block_size = AWS_AES_256_CIPHER_BLOCK_SIZE;
    cipher->cipher.key_length_bits = AWS_AES_256_KEY_BIT_LEN;
    cipher->alg_handle = s_aes_gcm_algorithm_handle;
    cipher->cipher.vtable = &s_aes_gcm_vtable;

    /* GCM does the counting under the hood, so we let it handle the final 4 bytes of the IV. */
    if (s_initialize_cipher_materials(
            cipher, key, iv, decryption_tag, aad, AWS_AES_256_CIPHER_BLOCK_SIZE - 4, false, true) != AWS_OP_SUCCESS) {
        goto error;
    }

    aws_byte_buf_init(&cipher->overflow, allocator, AWS_AES_256_CIPHER_BLOCK_SIZE * 2);
    aws_byte_buf_init(&cipher->working_iv, allocator, AWS_AES_256_CIPHER_BLOCK_SIZE);
    aws_byte_buf_secure_zero(&cipher->working_iv);

    cipher->cipher.impl = cipher;
    cipher->cipher.good = true;

    return &cipher->cipher;

error:
    if (cipher != NULL) {
        s_aes_default_destroy(&cipher->cipher);
    }

    return NULL;
}

/* Take a and b, XOR them and store it in dest. Notice the XOR is done up to the length of the smallest input.
   If there's a bug in here, it's being hit inside the finalize call when there's an input stream that isn't an even
   multiple of 16.
 */
static int s_xor_cursors(const struct aws_byte_cursor *a, const struct aws_byte_cursor *b, struct aws_byte_buf *dest) {
    size_t min_size = aws_min_size(b->len, a->len);

    if (aws_symmetric_cipher_try_ensure_sufficient_buffer_space(dest, min_size)) {
        return aws_raise_error(AWS_ERROR_SHORT_BUFFER);
    }

    /* If the profiler is saying this is slow, SIMD the loop below. */
    uint8_t *array_ref = dest->buffer + dest->len;

    for (size_t i = 0; i < min_size; ++i) {
        array_ref[i] = a->ptr[i] ^ b->ptr[i];
    }

    dest->len += min_size;

    return AWS_OP_SUCCESS;
}

/* There is no CTR mode on windows. Instead, we use AES ECB to encrypt the IV a block at a time.
   That value is then XOR'd with the to_encrypt cursor and appended to out. The counter then needs
   to be incremented by 1 for the next call. This has to be done a block at a time, so we slice
   to_encrypt into a cursor per block and do this process for each block. Also notice that CTR mode
   is symmetric for encryption and decryption (encrypt and decrypt are the same thing). */
static int s_aes_ctr_encrypt(
    struct aws_symmetric_cipher *cipher,
    struct aws_byte_cursor to_encrypt,
    struct aws_byte_buf *out) {
    struct aes_bcrypt_cipher *cipher_impl = cipher->impl;

    if (to_encrypt.len == 0) {
        return AWS_OP_SUCCESS;
    }

    struct aws_byte_buf working_buffer;
    AWS_ZERO_STRUCT(working_buffer);

    /* prepend overflow to the working buffer and then append to_encrypt to it. */
    if (cipher_impl->overflow.len && to_encrypt.ptr != cipher_impl->overflow.buffer) {
        struct aws_byte_cursor overflow_cur = aws_byte_cursor_from_buf(&cipher_impl->overflow);
        aws_byte_buf_init_copy_from_cursor(&working_buffer, cipher->allocator, overflow_cur);
        aws_byte_buf_reset(&cipher_impl->overflow, true);
        aws_byte_buf_append_dynamic(&working_buffer, &to_encrypt);
    } else {
        aws_byte_buf_init_copy_from_cursor(&working_buffer, cipher->allocator, to_encrypt);
    }

    /* slice working_buffer into a slice per block. */
    struct aws_array_list sliced_buffers;
    aws_array_list_init_dynamic(
        &sliced_buffers,
        cipher->allocator,
        (to_encrypt.len / AWS_AES_256_CIPHER_BLOCK_SIZE) + 1,
        sizeof(struct aws_byte_cursor));

    struct aws_byte_cursor working_buf_cur = aws_byte_cursor_from_buf(&working_buffer);
    while (working_buf_cur.len) {
        struct aws_byte_cursor slice = working_buf_cur;

        if (working_buf_cur.len >= AWS_AES_256_CIPHER_BLOCK_SIZE) {
            slice = aws_byte_cursor_advance(&working_buf_cur, AWS_AES_256_CIPHER_BLOCK_SIZE);
        } else {
            aws_byte_cursor_advance(&working_buf_cur, slice.len);
        }

        aws_array_list_push_back(&sliced_buffers, &slice);
    }

    int ret_val = AWS_OP_ERR;

    size_t sliced_buffers_cnt = aws_array_list_length(&sliced_buffers);

    /* for each slice, if it's a full block, do ECB on the IV, xor it to the slice, and then increment the counter. */
    for (size_t i = 0; i < sliced_buffers_cnt; ++i) {
        struct aws_byte_cursor buffer_cur;
        AWS_ZERO_STRUCT(buffer_cur);

        aws_array_list_get_at(&sliced_buffers, &buffer_cur, i);
        if (buffer_cur.len == AWS_AES_256_CIPHER_BLOCK_SIZE ||
            /* this part of the branch is for handling the finalize call, which does not have to be on an even
               block boundary. */
            (cipher_impl->overflow.len > 0 && sliced_buffers_cnt) == 1) {

            ULONG lengthWritten = (ULONG)AWS_AES_256_CIPHER_BLOCK_SIZE;
            uint8_t temp_buffer[AWS_AES_256_CIPHER_BLOCK_SIZE] = {0};
            struct aws_byte_cursor temp_cur = aws_byte_cursor_from_array(temp_buffer, sizeof(temp_buffer));

            NTSTATUS status = BCryptEncrypt(
                cipher_impl->key_handle,
                cipher_impl->working_iv.buffer,
                (ULONG)cipher_impl->working_iv.len,
                NULL,
                NULL,
                0,
                temp_cur.ptr,
                (ULONG)temp_cur.len,
                &lengthWritten,
                cipher_impl->cipher_flags);

            if (!NT_SUCCESS(status)) {
                cipher->good = false;
                ret_val = aws_raise_error(AWS_ERROR_INVALID_ARGUMENT);
                goto clean_up;
            }

            /* this does the XOR, after this call the final encrypted output is added to out. */
            if (s_xor_cursors(&buffer_cur, &temp_cur, out)) {
                ret_val = AWS_OP_ERR;
                goto clean_up;
            }

            /* increment the counter. Get the buffers aligned for it first though. */
            size_t counter_offset = AWS_AES_256_CIPHER_BLOCK_SIZE - sizeof(uint32_t);
            struct aws_byte_buf counter_buf = cipher_impl->working_iv;
            /* roll it back 4 so the write works. */
            counter_buf.len = counter_offset;
            struct aws_byte_cursor counter_cur = aws_byte_cursor_from_buf(&cipher_impl->working_iv);
            aws_byte_cursor_advance(&counter_cur, counter_offset);

            /* read current counter value as a Big-endian 32-bit integer*/
            uint32_t counter = 0;
            aws_byte_cursor_read_be32(&counter_cur, &counter);

            /* check for overflow here. */
            if (aws_add_u32_checked(counter, 1, &counter) != AWS_OP_SUCCESS) {
                cipher->good = false;
                ret_val = AWS_OP_ERR;
                goto clean_up;
            }
            /* put the incremented counter back. */
            aws_byte_buf_write_be32(&counter_buf, counter);
        } else {
            /* otherwise dump it into the overflow and wait til the next call */
            aws_byte_buf_append_dynamic(&cipher_impl->overflow, &buffer_cur);
        }

        ret_val = AWS_OP_SUCCESS;
    }

clean_up:
    aws_array_list_clean_up_secure(&sliced_buffers);
    aws_byte_buf_clean_up_secure(&working_buffer);

    return ret_val;
}

static int s_aes_ctr_finalize_encryption(struct aws_symmetric_cipher *cipher, struct aws_byte_buf *out) {
    struct aes_bcrypt_cipher *cipher_impl = cipher->impl;

    struct aws_byte_cursor remaining_cur = aws_byte_cursor_from_buf(&cipher_impl->overflow);
    /* take the final overflow, and do the final encrypt call for it. */
    int ret_val = s_aes_ctr_encrypt(cipher, remaining_cur, out);
    aws_byte_buf_secure_zero(&cipher_impl->overflow);
    aws_byte_buf_secure_zero(&cipher_impl->working_iv);
    return ret_val;
}

static struct aws_symmetric_cipher_vtable s_aes_ctr_vtable = {
    .alg_name = "AES-CTR 256",
    .provider = "Windows CNG",
    .decrypt = s_aes_ctr_encrypt,
    .encrypt = s_aes_ctr_encrypt,
    .finalize_encryption = s_aes_ctr_finalize_encryption,
    .finalize_decryption = s_aes_ctr_finalize_encryption,
    .destroy = s_aes_default_destroy,
    .reset = s_reset_ctr_cipher,
};

struct aws_symmetric_cipher *aws_aes_ctr_256_new_impl(
    struct aws_allocator *allocator,
    const struct aws_byte_cursor *key,
    const struct aws_byte_cursor *iv) {

    aws_thread_call_once(&s_aes_thread_once, s_load_alg_handles, NULL);
    struct aes_bcrypt_cipher *cipher = aws_mem_calloc(allocator, 1, sizeof(struct aes_bcrypt_cipher));

    cipher->cipher.allocator = allocator;
    cipher->cipher.block_size = AWS_AES_256_CIPHER_BLOCK_SIZE;
    cipher->cipher.key_length_bits = AWS_AES_256_KEY_BIT_LEN;
    cipher->alg_handle = s_aes_ctr_algorithm_handle;
    cipher->cipher.vtable = &s_aes_ctr_vtable;

    if (s_initialize_cipher_materials(cipher, key, iv, NULL, NULL, AWS_AES_256_CIPHER_BLOCK_SIZE, true, false) !=
        AWS_OP_SUCCESS) {
        goto error;
    }

    aws_byte_buf_init(&cipher->overflow, allocator, AWS_AES_256_CIPHER_BLOCK_SIZE * 2);
    aws_byte_buf_init_copy(&cipher->working_iv, allocator, &cipher->cipher.iv);

    cipher->cipher.impl = cipher;
    cipher->cipher.good = true;

    return &cipher->cipher;

error:
    if (cipher != NULL) {
        s_aes_default_destroy(&cipher->cipher);
    }

    return NULL;
}

/* This is just an encrypted key. Append them to a buffer and on finalize export/import the key using AES keywrap. */
static int s_key_wrap_encrypt_decrypt(
    struct aws_symmetric_cipher *cipher,
    const struct aws_byte_cursor input,
    struct aws_byte_buf *out) {
    (void)out;
    struct aes_bcrypt_cipher *cipher_impl = cipher->impl;

    return aws_byte_buf_append_dynamic(&cipher_impl->overflow, &input);
}

/* Import the buffer we've been appending to as an AES key. Then export it using AES Keywrap format. */
static int s_keywrap_finalize_encryption(struct aws_symmetric_cipher *cipher, struct aws_byte_buf *out) {
    struct aes_bcrypt_cipher *cipher_impl = cipher->impl;

    BCRYPT_KEY_HANDLE key_handle_to_encrypt =
        s_import_key_blob(s_aes_keywrap_algorithm_handle, cipher->allocator, &cipher_impl->overflow);

    if (!key_handle_to_encrypt) {
        return AWS_OP_ERR;
    }

    NTSTATUS status = 0;

    ULONG output_size = 0;
    /* Call with NULL first to get the required size. */
    status = BCryptExportKey(
        key_handle_to_encrypt, cipher_impl->key_handle, BCRYPT_AES_WRAP_KEY_BLOB, NULL, 0, &output_size, 0);

    if (!NT_SUCCESS(status)) {
        cipher->good = false;
        return aws_raise_error(AWS_ERROR_INVALID_STATE);
    }

    int ret_val = AWS_OP_ERR;

    if (aws_symmetric_cipher_try_ensure_sufficient_buffer_space(out, output_size)) {
        goto clean_up;
    }

    /* now actually export the key */
    ULONG len_written = 0;
    status = BCryptExportKey(
        key_handle_to_encrypt,
        cipher_impl->key_handle,
        BCRYPT_AES_WRAP_KEY_BLOB,
        out->buffer + out->len,
        output_size,
        &len_written,
        0);

    if (!NT_SUCCESS(status)) {
        cipher->good = false;
        goto clean_up;
    }

    out->len += len_written;

    ret_val = AWS_OP_SUCCESS;

clean_up:
    if (key_handle_to_encrypt) {
        BCryptDestroyKey(key_handle_to_encrypt);
    }

    return ret_val;
}

/* Import the buffer we've been appending to as an AES Key Wrapped key. Then export the raw AES key. */

static int s_keywrap_finalize_decryption(struct aws_symmetric_cipher *cipher, struct aws_byte_buf *out) {
    struct aes_bcrypt_cipher *cipher_impl = cipher->impl;

    BCRYPT_KEY_HANDLE import_key = NULL;

    /* use the cipher key to import the buffer as an AES keywrapped key. */
    NTSTATUS status = BCryptImportKey(
        s_aes_keywrap_algorithm_handle,
        cipher_impl->key_handle,
        BCRYPT_AES_WRAP_KEY_BLOB,
        &import_key,
        NULL,
        0,
        cipher_impl->overflow.buffer,
        (ULONG)cipher_impl->overflow.len,
        0);
    int ret_val = AWS_OP_ERR;

    if (NT_SUCCESS(status) && import_key) {
        ULONG export_size = 0;

        struct aws_byte_buf key_data_blob;
        aws_byte_buf_init(
            &key_data_blob, cipher->allocator, sizeof(BCRYPT_KEY_DATA_BLOB_HEADER) + cipher_impl->overflow.len);

        /* Now just export the key out as a raw AES key. */
        status = BCryptExportKey(
            import_key,
            NULL,
            BCRYPT_KEY_DATA_BLOB,
            key_data_blob.buffer,
            (ULONG)key_data_blob.capacity,
            &export_size,
            0);

        key_data_blob.len += export_size;

        if (NT_SUCCESS(status)) {

            if (aws_symmetric_cipher_try_ensure_sufficient_buffer_space(out, export_size)) {
                goto clean_up;
            }

            BCRYPT_KEY_DATA_BLOB_HEADER *stream_header = (BCRYPT_KEY_DATA_BLOB_HEADER *)key_data_blob.buffer;

            AWS_FATAL_ASSERT(
                aws_byte_buf_write(
                    out, key_data_blob.buffer + sizeof(BCRYPT_KEY_DATA_BLOB_HEADER), stream_header->cbKeyData) &&
                "Copying key data failed but the allocation should have already occured successfully");
            ret_val = AWS_OP_SUCCESS;

        } else {
            aws_raise_error(AWS_ERROR_INVALID_ARGUMENT);
            cipher->good = false;
        }

    clean_up:
        aws_byte_buf_clean_up_secure(&key_data_blob);
        BCryptDestroyKey(import_key);

    } else {
        aws_raise_error(AWS_ERROR_INVALID_ARGUMENT);
        cipher->good = false;
    }

    return ret_val;
}

static int s_reset_keywrap_cipher(struct aws_symmetric_cipher *cipher) {
    struct aes_bcrypt_cipher *cipher_impl = cipher->impl;

    s_clear_reusable_components(cipher);

    return s_initialize_cipher_materials(cipher_impl, NULL, NULL, NULL, NULL, 0, false, false);
}

static struct aws_symmetric_cipher_vtable s_aes_keywrap_vtable = {
    .alg_name = "AES-KEYWRAP 256",
    .provider = "Windows CNG",
    .decrypt = s_key_wrap_encrypt_decrypt,
    .encrypt = s_key_wrap_encrypt_decrypt,
    .finalize_encryption = s_keywrap_finalize_encryption,
    .finalize_decryption = s_keywrap_finalize_decryption,
    .destroy = s_aes_default_destroy,
    .reset = s_reset_keywrap_cipher,
};

struct aws_symmetric_cipher *aws_aes_keywrap_256_new_impl(
    struct aws_allocator *allocator,
    const struct aws_byte_cursor *key) {

    aws_thread_call_once(&s_aes_thread_once, s_load_alg_handles, NULL);
    struct aes_bcrypt_cipher *cipher = aws_mem_calloc(allocator, 1, sizeof(struct aes_bcrypt_cipher));

    cipher->cipher.allocator = allocator;
    cipher->cipher.block_size = 8;
    cipher->cipher.key_length_bits = AWS_AES_256_KEY_BIT_LEN;
    cipher->alg_handle = s_aes_keywrap_algorithm_handle;
    cipher->cipher.vtable = &s_aes_keywrap_vtable;

    if (s_initialize_cipher_materials(cipher, key, NULL, NULL, NULL, 0, false, false) != AWS_OP_SUCCESS) {
        goto error;
    }

    aws_byte_buf_init(&cipher->overflow, allocator, (AWS_AES_256_CIPHER_BLOCK_SIZE * 2) + 8);

    cipher->cipher.impl = cipher;
    cipher->cipher.good = true;

    return &cipher->cipher;

error:
    if (cipher != NULL) {
        s_aes_default_destroy(&cipher->cipher);
    }

    return NULL;
}