1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
|
/**
* Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
* SPDX-License-Identifier: Apache-2.0.
*/
#include <aws/cal/hash.h>
#include <aws/cal/private/opensslcrypto_common.h>
#include <openssl/evp.h>
#include <openssl/sha.h>
static void s_destroy(struct aws_hash *hash);
static int s_update(struct aws_hash *hash, const struct aws_byte_cursor *to_hash);
static int s_finalize(struct aws_hash *hash, struct aws_byte_buf *output);
static struct aws_hash_vtable s_md5_vtable = {
.destroy = s_destroy,
.update = s_update,
.finalize = s_finalize,
.alg_name = "MD5",
.provider = "OpenSSL Compatible libcrypto",
};
static struct aws_hash_vtable s_sha256_vtable = {
.destroy = s_destroy,
.update = s_update,
.finalize = s_finalize,
.alg_name = "SHA256",
.provider = "OpenSSL Compatible libcrypto",
};
static struct aws_hash_vtable s_sha1_vtable = {
.destroy = s_destroy,
.update = s_update,
.finalize = s_finalize,
.alg_name = "SHA1",
.provider = "OpenSSL Compatible libcrypto",
};
static void s_destroy(struct aws_hash *hash) {
if (hash == NULL) {
return;
}
EVP_MD_CTX *ctx = hash->impl;
if (ctx != NULL) {
g_aws_openssl_evp_md_ctx_table->free_fn(ctx);
}
aws_mem_release(hash->allocator, hash);
}
struct aws_hash *aws_md5_default_new(struct aws_allocator *allocator) {
struct aws_hash *hash = aws_mem_acquire(allocator, sizeof(struct aws_hash));
if (!hash) {
return NULL;
}
hash->allocator = allocator;
hash->vtable = &s_md5_vtable;
hash->digest_size = AWS_MD5_LEN;
EVP_MD_CTX *ctx = g_aws_openssl_evp_md_ctx_table->new_fn();
hash->impl = ctx;
hash->good = true;
if (!hash->impl) {
s_destroy(hash);
aws_raise_error(AWS_ERROR_OOM);
return NULL;
}
if (!g_aws_openssl_evp_md_ctx_table->init_ex_fn(ctx, EVP_md5(), NULL)) {
s_destroy(hash);
aws_raise_error(AWS_ERROR_UNKNOWN);
return NULL;
}
return hash;
}
struct aws_hash *aws_sha256_default_new(struct aws_allocator *allocator) {
struct aws_hash *hash = aws_mem_acquire(allocator, sizeof(struct aws_hash));
if (!hash) {
return NULL;
}
hash->allocator = allocator;
hash->vtable = &s_sha256_vtable;
hash->digest_size = AWS_SHA256_LEN;
EVP_MD_CTX *ctx = g_aws_openssl_evp_md_ctx_table->new_fn();
hash->impl = ctx;
hash->good = true;
if (!hash->impl) {
s_destroy(hash);
aws_raise_error(AWS_ERROR_OOM);
return NULL;
}
if (!g_aws_openssl_evp_md_ctx_table->init_ex_fn(ctx, EVP_sha256(), NULL)) {
s_destroy(hash);
aws_raise_error(AWS_ERROR_UNKNOWN);
return NULL;
}
return hash;
}
struct aws_hash *aws_sha1_default_new(struct aws_allocator *allocator) {
struct aws_hash *hash = aws_mem_acquire(allocator, sizeof(struct aws_hash));
if (!hash) {
return NULL;
}
hash->allocator = allocator;
hash->vtable = &s_sha1_vtable;
hash->digest_size = AWS_SHA1_LEN;
EVP_MD_CTX *ctx = g_aws_openssl_evp_md_ctx_table->new_fn();
hash->impl = ctx;
hash->good = true;
if (!hash->impl) {
s_destroy(hash);
aws_raise_error(AWS_ERROR_OOM);
return NULL;
}
if (!g_aws_openssl_evp_md_ctx_table->init_ex_fn(ctx, EVP_sha1(), NULL)) {
s_destroy(hash);
aws_raise_error(AWS_ERROR_UNKNOWN);
return NULL;
}
return hash;
}
static int s_update(struct aws_hash *hash, const struct aws_byte_cursor *to_hash) {
if (!hash->good) {
return aws_raise_error(AWS_ERROR_INVALID_STATE);
}
EVP_MD_CTX *ctx = hash->impl;
if (AWS_LIKELY(g_aws_openssl_evp_md_ctx_table->update_fn(ctx, to_hash->ptr, to_hash->len))) {
return AWS_OP_SUCCESS;
}
hash->good = false;
return aws_raise_error(AWS_ERROR_INVALID_ARGUMENT);
}
static int s_finalize(struct aws_hash *hash, struct aws_byte_buf *output) {
if (!hash->good) {
return aws_raise_error(AWS_ERROR_INVALID_STATE);
}
EVP_MD_CTX *ctx = hash->impl;
size_t buffer_len = output->capacity - output->len;
if (buffer_len < hash->digest_size) {
return aws_raise_error(AWS_ERROR_SHORT_BUFFER);
}
if (AWS_LIKELY(g_aws_openssl_evp_md_ctx_table->final_ex_fn(
ctx, output->buffer + output->len, (unsigned int *)&buffer_len))) {
output->len += hash->digest_size;
hash->good = false;
return AWS_OP_SUCCESS;
}
hash->good = false;
return aws_raise_error(AWS_ERROR_INVALID_ARGUMENT);
}
|