1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
|
/**
* Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
* SPDX-License-Identifier: Apache-2.0.
*/
#include <aws/cal/private/ecc.h>
#include <aws/cal/cal.h>
#include <aws/cal/private/der.h>
#include <openssl/bn.h>
#include <openssl/ec.h>
#include <openssl/ecdsa.h>
#include <openssl/obj_mac.h>
struct libcrypto_ecc_key {
struct aws_ecc_key_pair key_pair;
EC_KEY *ec_key;
};
static int s_curve_name_to_nid(enum aws_ecc_curve_name curve_name) {
switch (curve_name) {
case AWS_CAL_ECDSA_P256:
return NID_X9_62_prime256v1;
case AWS_CAL_ECDSA_P384:
return NID_secp384r1;
}
AWS_FATAL_ASSERT(!"Unsupported elliptic curve name");
return -1;
}
static void s_key_pair_destroy(struct aws_ecc_key_pair *key_pair) {
if (key_pair) {
aws_byte_buf_clean_up(&key_pair->pub_x);
aws_byte_buf_clean_up(&key_pair->pub_y);
aws_byte_buf_clean_up_secure(&key_pair->priv_d);
struct libcrypto_ecc_key *key_impl = key_pair->impl;
if (key_impl->ec_key) {
EC_KEY_free(key_impl->ec_key);
}
aws_mem_release(key_pair->allocator, key_pair);
}
}
static int s_sign_payload(
const struct aws_ecc_key_pair *key_pair,
const struct aws_byte_cursor *hash,
struct aws_byte_buf *signature_output) {
struct libcrypto_ecc_key *libcrypto_key_pair = key_pair->impl;
unsigned int signature_size = signature_output->capacity - signature_output->len;
int ret_val = ECDSA_sign(
0,
hash->ptr,
hash->len,
signature_output->buffer + signature_output->len,
&signature_size,
libcrypto_key_pair->ec_key);
signature_output->len += signature_size;
return ret_val == 1 ? AWS_OP_SUCCESS : aws_raise_error(AWS_ERROR_INVALID_ARGUMENT);
}
static int s_verify_payload(
const struct aws_ecc_key_pair *key_pair,
const struct aws_byte_cursor *hash,
const struct aws_byte_cursor *signature) {
struct libcrypto_ecc_key *libcrypto_key_pair = key_pair->impl;
return ECDSA_verify(0, hash->ptr, hash->len, signature->ptr, signature->len, libcrypto_key_pair->ec_key) == 1
? AWS_OP_SUCCESS
: aws_raise_error(AWS_ERROR_CAL_SIGNATURE_VALIDATION_FAILED);
}
static size_t s_signature_length(const struct aws_ecc_key_pair *key_pair) {
struct libcrypto_ecc_key *libcrypto_key_pair = key_pair->impl;
return ECDSA_size(libcrypto_key_pair->ec_key);
}
static int s_fill_in_public_key_info(
struct libcrypto_ecc_key *libcrypto_key_pair,
const EC_GROUP *group,
const EC_POINT *pub_key_point) {
BIGNUM *big_num_x = BN_new();
BIGNUM *big_num_y = BN_new();
int ret_val = AWS_OP_ERR;
if (EC_POINT_get_affine_coordinates_GFp(group, pub_key_point, big_num_x, big_num_y, NULL) != 1) {
aws_raise_error(AWS_ERROR_INVALID_STATE);
goto clean_up;
}
size_t x_coor_size = BN_num_bytes(big_num_x);
size_t y_coor_size = BN_num_bytes(big_num_y);
if (aws_byte_buf_init(&libcrypto_key_pair->key_pair.pub_x, libcrypto_key_pair->key_pair.allocator, x_coor_size)) {
goto clean_up;
}
if (aws_byte_buf_init(&libcrypto_key_pair->key_pair.pub_y, libcrypto_key_pair->key_pair.allocator, y_coor_size)) {
goto clean_up;
}
BN_bn2bin(big_num_x, libcrypto_key_pair->key_pair.pub_x.buffer);
BN_bn2bin(big_num_y, libcrypto_key_pair->key_pair.pub_y.buffer);
libcrypto_key_pair->key_pair.pub_x.len = x_coor_size;
libcrypto_key_pair->key_pair.pub_y.len = y_coor_size;
ret_val = AWS_OP_SUCCESS;
clean_up:
BN_free(big_num_x);
BN_free(big_num_y);
return ret_val;
}
static int s_derive_public_key(struct aws_ecc_key_pair *key_pair) {
struct libcrypto_ecc_key *libcrypto_key_pair = key_pair->impl;
if (!libcrypto_key_pair->key_pair.priv_d.buffer) {
return aws_raise_error(AWS_ERROR_INVALID_STATE);
}
/* we already have a public key. */
if (libcrypto_key_pair->key_pair.pub_x.len) {
return AWS_OP_SUCCESS;
}
BIGNUM *priv_key_num =
BN_bin2bn(libcrypto_key_pair->key_pair.priv_d.buffer, libcrypto_key_pair->key_pair.priv_d.len, NULL);
const EC_GROUP *group = EC_KEY_get0_group(libcrypto_key_pair->ec_key);
EC_POINT *point = EC_POINT_new(group);
EC_POINT_mul(group, point, priv_key_num, NULL, NULL, NULL);
BN_free(priv_key_num);
EC_KEY_set_public_key(libcrypto_key_pair->ec_key, point);
int ret_val = s_fill_in_public_key_info(libcrypto_key_pair, group, point);
EC_POINT_free(point);
return ret_val;
}
static struct aws_ecc_key_pair_vtable vtable = {
.sign_message = s_sign_payload,
.verify_signature = s_verify_payload,
.derive_pub_key = s_derive_public_key,
.signature_length = s_signature_length,
.destroy = s_key_pair_destroy,
};
struct aws_ecc_key_pair *aws_ecc_key_pair_new_from_private_key_impl(
struct aws_allocator *allocator,
enum aws_ecc_curve_name curve_name,
const struct aws_byte_cursor *priv_key) {
size_t key_length = aws_ecc_key_coordinate_byte_size_from_curve_name(curve_name);
if (priv_key->len != key_length) {
AWS_LOGF_ERROR(AWS_LS_CAL_ECC, "Private key length does not match curve's expected length");
aws_raise_error(AWS_ERROR_CAL_INVALID_KEY_LENGTH_FOR_ALGORITHM);
return NULL;
}
struct libcrypto_ecc_key *key_impl = aws_mem_calloc(allocator, 1, sizeof(struct libcrypto_ecc_key));
key_impl->ec_key = EC_KEY_new_by_curve_name(s_curve_name_to_nid(curve_name));
key_impl->key_pair.curve_name = curve_name;
key_impl->key_pair.allocator = allocator;
key_impl->key_pair.vtable = &vtable;
key_impl->key_pair.impl = key_impl;
aws_atomic_init_int(&key_impl->key_pair.ref_count, 1);
aws_byte_buf_init_copy_from_cursor(&key_impl->key_pair.priv_d, allocator, *priv_key);
BIGNUM *priv_key_num = BN_bin2bn(key_impl->key_pair.priv_d.buffer, key_impl->key_pair.priv_d.len, NULL);
if (!EC_KEY_set_private_key(key_impl->ec_key, priv_key_num)) {
AWS_LOGF_ERROR(AWS_LS_CAL_ECC, "Failed to set openssl private key");
aws_raise_error(AWS_ERROR_INVALID_ARGUMENT);
BN_free(priv_key_num);
s_key_pair_destroy(&key_impl->key_pair);
return NULL;
}
BN_free(priv_key_num);
return &key_impl->key_pair;
}
struct aws_ecc_key_pair *aws_ecc_key_pair_new_generate_random(
struct aws_allocator *allocator,
enum aws_ecc_curve_name curve_name) {
struct libcrypto_ecc_key *key_impl = aws_mem_calloc(allocator, 1, sizeof(struct libcrypto_ecc_key));
key_impl->ec_key = EC_KEY_new_by_curve_name(s_curve_name_to_nid(curve_name));
key_impl->key_pair.curve_name = curve_name;
key_impl->key_pair.allocator = allocator;
key_impl->key_pair.vtable = &vtable;
key_impl->key_pair.impl = key_impl;
aws_atomic_init_int(&key_impl->key_pair.ref_count, 1);
if (EC_KEY_generate_key(key_impl->ec_key) != 1) {
goto error;
}
const EC_POINT *pub_key_point = EC_KEY_get0_public_key(key_impl->ec_key);
const EC_GROUP *group = EC_KEY_get0_group(key_impl->ec_key);
const BIGNUM *private_key_num = EC_KEY_get0_private_key(key_impl->ec_key);
size_t priv_key_size = BN_num_bytes(private_key_num);
if (aws_byte_buf_init(&key_impl->key_pair.priv_d, allocator, priv_key_size)) {
goto error;
}
BN_bn2bin(private_key_num, key_impl->key_pair.priv_d.buffer);
key_impl->key_pair.priv_d.len = priv_key_size;
if (!s_fill_in_public_key_info(key_impl, group, pub_key_point)) {
return &key_impl->key_pair;
}
error:
s_key_pair_destroy(&key_impl->key_pair);
return NULL;
}
struct aws_ecc_key_pair *aws_ecc_key_pair_new_from_public_key_impl(
struct aws_allocator *allocator,
enum aws_ecc_curve_name curve_name,
const struct aws_byte_cursor *public_key_x,
const struct aws_byte_cursor *public_key_y) {
struct libcrypto_ecc_key *key_impl = aws_mem_calloc(allocator, 1, sizeof(struct libcrypto_ecc_key));
BIGNUM *pub_x_num = NULL;
BIGNUM *pub_y_num = NULL;
EC_POINT *point = NULL;
if (!key_impl) {
return NULL;
}
key_impl->ec_key = EC_KEY_new_by_curve_name(s_curve_name_to_nid(curve_name));
key_impl->key_pair.curve_name = curve_name;
key_impl->key_pair.allocator = allocator;
key_impl->key_pair.vtable = &vtable;
key_impl->key_pair.impl = key_impl;
aws_atomic_init_int(&key_impl->key_pair.ref_count, 1);
if (aws_byte_buf_init_copy_from_cursor(&key_impl->key_pair.pub_x, allocator, *public_key_x)) {
s_key_pair_destroy(&key_impl->key_pair);
return NULL;
}
if (aws_byte_buf_init_copy_from_cursor(&key_impl->key_pair.pub_y, allocator, *public_key_y)) {
s_key_pair_destroy(&key_impl->key_pair);
return NULL;
}
pub_x_num = BN_bin2bn(public_key_x->ptr, public_key_x->len, NULL);
pub_y_num = BN_bin2bn(public_key_y->ptr, public_key_y->len, NULL);
const EC_GROUP *group = EC_KEY_get0_group(key_impl->ec_key);
point = EC_POINT_new(group);
if (EC_POINT_set_affine_coordinates_GFp(group, point, pub_x_num, pub_y_num, NULL) != 1) {
goto error;
}
if (EC_KEY_set_public_key(key_impl->ec_key, point) != 1) {
goto error;
}
EC_POINT_free(point);
BN_free(pub_x_num);
BN_free(pub_y_num);
return &key_impl->key_pair;
error:
if (point) {
EC_POINT_free(point);
}
if (pub_x_num) {
BN_free(pub_x_num);
}
if (pub_y_num) {
BN_free(pub_y_num);
}
s_key_pair_destroy(&key_impl->key_pair);
return NULL;
}
struct aws_ecc_key_pair *aws_ecc_key_pair_new_from_asn1(
struct aws_allocator *allocator,
const struct aws_byte_cursor *encoded_keys) {
struct aws_ecc_key_pair *key = NULL;
struct aws_der_decoder *decoder = aws_der_decoder_new(allocator, *encoded_keys);
if (!decoder) {
return NULL;
}
struct aws_byte_cursor pub_x;
struct aws_byte_cursor pub_y;
struct aws_byte_cursor priv_d;
enum aws_ecc_curve_name curve_name;
if (aws_der_decoder_load_ecc_key_pair(decoder, &pub_x, &pub_y, &priv_d, &curve_name)) {
goto error;
}
if (priv_d.ptr) {
struct libcrypto_ecc_key *key_impl = aws_mem_calloc(allocator, 1, sizeof(struct libcrypto_ecc_key));
key_impl->key_pair.curve_name = curve_name;
/* as awkward as it seems, there's not a great way to manually set the public key, so let openssl just parse
* the der document manually now that we know what parts are what. */
if (!d2i_ECPrivateKey(&key_impl->ec_key, (const unsigned char **)&encoded_keys->ptr, encoded_keys->len)) {
aws_mem_release(allocator, key_impl);
aws_raise_error(AWS_ERROR_CAL_MISSING_REQUIRED_KEY_COMPONENT);
goto error;
}
key_impl->key_pair.allocator = allocator;
key_impl->key_pair.vtable = &vtable;
key_impl->key_pair.impl = key_impl;
aws_atomic_init_int(&key_impl->key_pair.ref_count, 1);
key = &key_impl->key_pair;
struct aws_byte_buf temp_buf;
AWS_ZERO_STRUCT(temp_buf);
if (pub_x.ptr) {
temp_buf = aws_byte_buf_from_array(pub_x.ptr, pub_x.len);
if (aws_byte_buf_init_copy(&key->pub_x, allocator, &temp_buf)) {
goto error;
}
}
if (pub_y.ptr) {
temp_buf = aws_byte_buf_from_array(pub_y.ptr, pub_y.len);
if (aws_byte_buf_init_copy(&key->pub_y, allocator, &temp_buf)) {
goto error;
}
}
if (priv_d.ptr) {
temp_buf = aws_byte_buf_from_array(priv_d.ptr, priv_d.len);
if (aws_byte_buf_init_copy(&key->priv_d, allocator, &temp_buf)) {
goto error;
}
}
} else {
key = aws_ecc_key_pair_new_from_public_key(allocator, curve_name, &pub_x, &pub_y);
if (!key) {
goto error;
}
}
aws_der_decoder_destroy(decoder);
return key;
error:
aws_der_decoder_destroy(decoder);
s_key_pair_destroy(key);
return NULL;
}
|