aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/restricted/aws/aws-c-cal/source/unix/openssl_rsa.c
blob: 9d891677558b0b3b7888f58e1e54152d54571475 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
/**
 * Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
 * SPDX-License-Identifier: Apache-2.0.
 */
#include <aws/cal/private/opensslcrypto_common.h>
#include <aws/cal/private/rsa.h>

#include <aws/cal/cal.h>
#include <aws/common/encoding.h>

#define OPENSSL_SUPPRESS_DEPRECATED
#include <openssl/err.h>
#include <openssl/evp.h>

#if defined(OPENSSL_IS_OPENSSL)
/*Error defines were part of evp.h in 1.0.x and were moved to evperr.h in 1.1.0*/
#    if OPENSSL_VERSION_NUMBER >= 0x10100000L
#        include <openssl/evperr.h>
#    endif
#else
#    error #include <openssl/evp_errors.h>
#endif

#include <openssl/rsa.h>

struct lc_rsa_key_pair {
    struct aws_rsa_key_pair base;
    EVP_PKEY *key;
};

static void s_rsa_destroy_key(void *key_pair) {
    if (key_pair == NULL) {
        return;
    }

    struct aws_rsa_key_pair *base = key_pair;
    struct lc_rsa_key_pair *impl = base->impl;

    if (impl->key != NULL) {
        EVP_PKEY_free(impl->key);
    }

    aws_rsa_key_pair_base_clean_up(base);

    aws_mem_release(base->allocator, impl);
}

/*
 * Transforms evp error code into crt error code and raises it as necessary.
 * All evp functions follow the same:
 * >= 1 for success
 * <= 0 for failure
 * -2 always indicates incorrect algo for operation
 */
static int s_reinterpret_evp_error_as_crt(int evp_error, const char *function_name) {
    if (evp_error > 0) {
        return AWS_OP_SUCCESS;
    }

    /* AWS-LC/BoringSSL error code is uint32_t, but OpenSSL uses unsigned long. */
#if defined(OPENSSL_IS_OPENSSL)
    uint32_t error = ERR_peek_error();
#else
    unsigned long error = ERR_peek_error();
#endif

    int crt_error = AWS_OP_ERR;
    const char *error_message = ERR_reason_error_string(error);

    if (evp_error == -2) {
        crt_error = AWS_ERROR_CAL_UNSUPPORTED_ALGORITHM;
        goto on_error;
    }

    if (ERR_GET_LIB(error) == ERR_LIB_EVP) {
        switch (ERR_GET_REASON(error)) {
            case EVP_R_BUFFER_TOO_SMALL: {
                crt_error = AWS_ERROR_SHORT_BUFFER;
                goto on_error;
            }
            case EVP_R_UNSUPPORTED_ALGORITHM: {
                crt_error = AWS_ERROR_CAL_UNSUPPORTED_ALGORITHM;
                goto on_error;
            }
        }
    }

    crt_error = AWS_ERROR_CAL_CRYPTO_OPERATION_FAILED;

on_error:
    AWS_LOGF_ERROR(
        AWS_LS_CAL_RSA,
        "%s() failed. returned: %d extended error:%lu(%s) aws_error:%s",
        function_name,
        evp_error,
        (unsigned long)error,
        error_message == NULL ? "" : error_message,
        aws_error_name(crt_error));

    return aws_raise_error(crt_error);
}

static int s_set_encryption_ctx_from_algo(EVP_PKEY_CTX *ctx, enum aws_rsa_encryption_algorithm algorithm) {
    if (algorithm == AWS_CAL_RSA_ENCRYPTION_PKCS1_5) {
        if (s_reinterpret_evp_error_as_crt(
                EVP_PKEY_CTX_set_rsa_padding(ctx, RSA_PKCS1_PADDING), "EVP_PKEY_CTX_set_rsa_padding")) {
            return AWS_OP_ERR;
        }

    } else if (algorithm == AWS_CAL_RSA_ENCRYPTION_OAEP_SHA256 || algorithm == AWS_CAL_RSA_ENCRYPTION_OAEP_SHA512) {
        if (s_reinterpret_evp_error_as_crt(
                EVP_PKEY_CTX_set_rsa_padding(ctx, RSA_PKCS1_OAEP_PADDING), "EVP_PKEY_CTX_set_rsa_padding")) {
            return AWS_OP_ERR;
        }

        const EVP_MD *md = algorithm == AWS_CAL_RSA_ENCRYPTION_OAEP_SHA256 ? EVP_sha256() : EVP_sha512();
        if (s_reinterpret_evp_error_as_crt(EVP_PKEY_CTX_set_rsa_oaep_md(ctx, md), "EVP_PKEY_CTX_set_rsa_oaep_md")) {
            return AWS_OP_ERR;
        }
    } else {
        return aws_raise_error(AWS_ERROR_CAL_UNSUPPORTED_ALGORITHM);
    }

    return AWS_OP_SUCCESS;
}

static int s_rsa_encrypt(
    const struct aws_rsa_key_pair *key_pair,
    enum aws_rsa_encryption_algorithm algorithm,
    struct aws_byte_cursor plaintext,
    struct aws_byte_buf *out) {
    struct lc_rsa_key_pair *key_pair_impl = key_pair->impl;

    EVP_PKEY_CTX *ctx = EVP_PKEY_CTX_new(key_pair_impl->key, NULL);
    if (ctx == NULL) {
        return aws_raise_error(AWS_ERROR_CAL_CRYPTO_OPERATION_FAILED);
    }

    if (s_reinterpret_evp_error_as_crt(EVP_PKEY_encrypt_init(ctx), "EVP_PKEY_encrypt_init")) {
        goto on_error;
    }

    if (s_set_encryption_ctx_from_algo(ctx, algorithm)) {
        goto on_error;
    }

    size_t needed_buffer_len = 0;
    if (s_reinterpret_evp_error_as_crt(
            EVP_PKEY_encrypt(ctx, NULL, &needed_buffer_len, plaintext.ptr, plaintext.len),
            "EVP_PKEY_encrypt get length")) {
        goto on_error;
    }

    size_t ct_len = out->capacity - out->len;
    if (needed_buffer_len > ct_len) {
        /*
         * OpenSSL 3 seems to no longer fail if the buffer is too short.
         * Instead it seems to write out enough data to fill the buffer and then
         * updates the out_len to full buffer. It does not seem to corrupt
         * memory after the buffer, but behavior is non-ideal.
         * Let get length needed for buffer from api first and then manually ensure that
         * buffer we have is big enough.
         */
        aws_raise_error(AWS_ERROR_SHORT_BUFFER);
        goto on_error;
    }

    if (s_reinterpret_evp_error_as_crt(
            EVP_PKEY_encrypt(ctx, out->buffer + out->len, &ct_len, plaintext.ptr, plaintext.len), "EVP_PKEY_encrypt")) {
        goto on_error;
    }
    out->len += ct_len;

    EVP_PKEY_CTX_free(ctx);
    return AWS_OP_SUCCESS;

on_error:
    EVP_PKEY_CTX_free(ctx);
    return AWS_OP_ERR;
}

static int s_rsa_decrypt(
    const struct aws_rsa_key_pair *key_pair,
    enum aws_rsa_encryption_algorithm algorithm,
    struct aws_byte_cursor ciphertext,
    struct aws_byte_buf *out) {
    struct lc_rsa_key_pair *key_pair_impl = key_pair->impl;

    EVP_PKEY_CTX *ctx = EVP_PKEY_CTX_new(key_pair_impl->key, NULL);
    if (ctx == NULL) {
        return aws_raise_error(AWS_ERROR_CAL_CRYPTO_OPERATION_FAILED);
    }

    if (s_reinterpret_evp_error_as_crt(EVP_PKEY_decrypt_init(ctx), "EVP_PKEY_decrypt_init")) {
        goto on_error;
    }

    if (s_set_encryption_ctx_from_algo(ctx, algorithm)) {
        goto on_error;
    }

    size_t needed_buffer_len = 0;
    if (s_reinterpret_evp_error_as_crt(
            EVP_PKEY_decrypt(ctx, NULL, &needed_buffer_len, ciphertext.ptr, ciphertext.len),
            "EVP_PKEY_decrypt get length")) {
        goto on_error;
    }

    size_t ct_len = out->capacity - out->len;
    if (needed_buffer_len > ct_len) {
        /*
         * manual short buffer length check for OpenSSL 3.
         * refer to encrypt implementation for more details
         */
        aws_raise_error(AWS_ERROR_SHORT_BUFFER);
        goto on_error;
    }

    if (s_reinterpret_evp_error_as_crt(
            EVP_PKEY_decrypt(ctx, out->buffer + out->len, &ct_len, ciphertext.ptr, ciphertext.len),
            "EVP_PKEY_decrypt")) {
        goto on_error;
    }
    out->len += ct_len;

    EVP_PKEY_CTX_free(ctx);
    return AWS_OP_SUCCESS;

on_error:
    EVP_PKEY_CTX_free(ctx);
    return AWS_OP_ERR;
}

static int s_set_signature_ctx_from_algo(EVP_PKEY_CTX *ctx, enum aws_rsa_signature_algorithm algorithm) {
    if (algorithm == AWS_CAL_RSA_SIGNATURE_PKCS1_5_SHA256) {
        if (s_reinterpret_evp_error_as_crt(
                EVP_PKEY_CTX_set_rsa_padding(ctx, RSA_PKCS1_PADDING), "EVP_PKEY_CTX_set_rsa_padding")) {
            return AWS_OP_ERR;
        }
        if (s_reinterpret_evp_error_as_crt(
                EVP_PKEY_CTX_set_signature_md(ctx, EVP_sha256()), "EVP_PKEY_CTX_set_signature_md")) {
            return AWS_OP_ERR;
        }
    } else if (algorithm == AWS_CAL_RSA_SIGNATURE_PSS_SHA256) {
        if (s_reinterpret_evp_error_as_crt(
                EVP_PKEY_CTX_set_rsa_padding(ctx, RSA_PKCS1_PSS_PADDING), "EVP_PKEY_CTX_set_rsa_padding")) {
            return AWS_OP_ERR;
        }

#if defined(OPENSSL_IS_BORINGSSL) || OPENSSL_VERSION_NUMBER < 0x10100000L
        int saltlen = -1; /* RSA_PSS_SALTLEN_DIGEST not defined in BoringSSL and old versions of openssl */
#else
        int saltlen = RSA_PSS_SALTLEN_DIGEST;
#endif

        if (s_reinterpret_evp_error_as_crt(
                EVP_PKEY_CTX_set_rsa_pss_saltlen(ctx, saltlen), "EVP_PKEY_CTX_set_rsa_pss_saltlen")) {
            return AWS_OP_ERR;
        }

        if (s_reinterpret_evp_error_as_crt(
                EVP_PKEY_CTX_set_signature_md(ctx, EVP_sha256()), "EVP_PKEY_CTX_set_signature_md")) {
            return AWS_OP_ERR;
        }
    } else {
        return aws_raise_error(AWS_ERROR_CAL_UNSUPPORTED_ALGORITHM);
    }

    return AWS_OP_SUCCESS;
}

static int s_rsa_sign(
    const struct aws_rsa_key_pair *key_pair,
    enum aws_rsa_signature_algorithm algorithm,
    struct aws_byte_cursor digest,
    struct aws_byte_buf *out) {
    struct lc_rsa_key_pair *key_pair_impl = key_pair->impl;

    EVP_PKEY_CTX *ctx = EVP_PKEY_CTX_new(key_pair_impl->key, NULL);
    if (ctx == NULL) {
        return aws_raise_error(AWS_ERROR_CAL_CRYPTO_OPERATION_FAILED);
    }

    if (s_reinterpret_evp_error_as_crt(EVP_PKEY_sign_init(ctx), "EVP_PKEY_sign_init")) {
        goto on_error;
    }

    if (s_set_signature_ctx_from_algo(ctx, algorithm)) {
        goto on_error;
    }

    size_t needed_buffer_len = 0;
    if (s_reinterpret_evp_error_as_crt(
            EVP_PKEY_sign(ctx, NULL, &needed_buffer_len, digest.ptr, digest.len), "EVP_PKEY_sign get length")) {
        goto on_error;
    }

    size_t ct_len = out->capacity - out->len;
    if (needed_buffer_len > ct_len) {
        /*
         * manual short buffer length check for OpenSSL 3.
         * refer to encrypt implementation for more details.
         * OpenSSL3 actually does throw an error here, but error code comes from
         * component that does not exist in OpenSSL 1.x. So check manually right
         * now and we can figure out how to handle it better, once we can
         * properly support OpenSSL 3.
         */
        aws_raise_error(AWS_ERROR_SHORT_BUFFER);
        goto on_error;
    }

    if (s_reinterpret_evp_error_as_crt(
            EVP_PKEY_sign(ctx, out->buffer + out->len, &ct_len, digest.ptr, digest.len), "EVP_PKEY_sign")) {
        goto on_error;
    }
    out->len += ct_len;

    EVP_PKEY_CTX_free(ctx);
    return AWS_OP_SUCCESS;

on_error:
    EVP_PKEY_CTX_free(ctx);
    return AWS_OP_ERR;
}

static int s_rsa_verify(
    const struct aws_rsa_key_pair *key_pair,
    enum aws_rsa_signature_algorithm algorithm,
    struct aws_byte_cursor digest,
    struct aws_byte_cursor signature) {
    struct lc_rsa_key_pair *key_pair_impl = key_pair->impl;

    EVP_PKEY_CTX *ctx = EVP_PKEY_CTX_new(key_pair_impl->key, NULL);
    if (ctx == NULL) {
        return aws_raise_error(AWS_ERROR_CAL_CRYPTO_OPERATION_FAILED);
    }

    if (s_reinterpret_evp_error_as_crt(EVP_PKEY_verify_init(ctx), "EVP_PKEY_verify_init")) {
        goto on_error;
    }

    if (s_set_signature_ctx_from_algo(ctx, algorithm)) {
        goto on_error;
    }

    int error_code = EVP_PKEY_verify(ctx, signature.ptr, signature.len, digest.ptr, digest.len);
    EVP_PKEY_CTX_free(ctx);

    /* Verify errors slightly differently from the rest of evp functions.
     * 0 indicates signature does not pass verification, it's not necessarily an error. */
    if (error_code > 0) {
        return AWS_OP_SUCCESS;
    } else if (error_code == 0) {
        return aws_raise_error(AWS_ERROR_CAL_SIGNATURE_VALIDATION_FAILED);
    } else {
        return s_reinterpret_evp_error_as_crt(error_code, "EVP_PKEY_verify");
    }

on_error:
    EVP_PKEY_CTX_free(ctx);
    return AWS_OP_ERR;
}

static struct aws_rsa_key_vtable s_rsa_key_pair_vtable = {
    .encrypt = s_rsa_encrypt,
    .decrypt = s_rsa_decrypt,
    .sign = s_rsa_sign,
    .verify = s_rsa_verify,
};

struct aws_rsa_key_pair *aws_rsa_key_pair_new_from_private_key_pkcs1_impl(
    struct aws_allocator *allocator,
    struct aws_byte_cursor key) {
    struct lc_rsa_key_pair *key_pair_impl = aws_mem_calloc(allocator, 1, sizeof(struct lc_rsa_key_pair));

    aws_ref_count_init(&key_pair_impl->base.ref_count, &key_pair_impl->base, s_rsa_destroy_key);
    key_pair_impl->base.impl = key_pair_impl;
    key_pair_impl->base.allocator = allocator;
    aws_byte_buf_init_copy_from_cursor(&key_pair_impl->base.priv, allocator, key);

    RSA *rsa = NULL;
    EVP_PKEY *private_key = NULL;

    if (d2i_RSAPrivateKey(&rsa, (const uint8_t **)&key.ptr, key.len) == NULL) {
        aws_raise_error(AWS_ERROR_CAL_CRYPTO_OPERATION_FAILED);
        goto on_error;
    }

    private_key = EVP_PKEY_new();
    if (private_key == NULL || EVP_PKEY_assign_RSA(private_key, rsa) == 0) {
        RSA_free(rsa);
        aws_raise_error(AWS_ERROR_CAL_CRYPTO_OPERATION_FAILED);
        goto on_error;
    }

    key_pair_impl->key = private_key;

    key_pair_impl->base.vtable = &s_rsa_key_pair_vtable;
    key_pair_impl->base.key_size_in_bits = EVP_PKEY_bits(key_pair_impl->key);

    return &key_pair_impl->base;

on_error:
    if (private_key) {
        EVP_PKEY_free(private_key);
    }

    s_rsa_destroy_key(&key_pair_impl->base);
    return NULL;
}

struct aws_rsa_key_pair *aws_rsa_key_pair_new_from_public_key_pkcs1_impl(
    struct aws_allocator *allocator,
    struct aws_byte_cursor key) {
    struct lc_rsa_key_pair *key_pair_impl = aws_mem_calloc(allocator, 1, sizeof(struct lc_rsa_key_pair));

    aws_ref_count_init(&key_pair_impl->base.ref_count, &key_pair_impl->base, s_rsa_destroy_key);
    key_pair_impl->base.impl = key_pair_impl;
    key_pair_impl->base.allocator = allocator;
    aws_byte_buf_init_copy_from_cursor(&key_pair_impl->base.pub, allocator, key);

    RSA *rsa = NULL;
    EVP_PKEY *public_key = NULL;

    if (d2i_RSAPublicKey(&rsa, (const uint8_t **)&key.ptr, key.len) == NULL) {
        aws_raise_error(AWS_ERROR_CAL_CRYPTO_OPERATION_FAILED);
        goto on_error;
    }

    public_key = EVP_PKEY_new();
    if (public_key == NULL || EVP_PKEY_assign_RSA(public_key, rsa) == 0) {
        RSA_free(rsa);
        aws_raise_error(AWS_ERROR_CAL_CRYPTO_OPERATION_FAILED);
        goto on_error;
    }

    key_pair_impl->key = public_key;

    key_pair_impl->base.vtable = &s_rsa_key_pair_vtable;
    key_pair_impl->base.key_size_in_bits = EVP_PKEY_bits(key_pair_impl->key);

    return &key_pair_impl->base;

on_error:
    if (public_key) {
        EVP_PKEY_free(public_key);
    }
    s_rsa_destroy_key(&key_pair_impl->base);
    return NULL;
}