aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/restricted/aws/aws-c-cal/source/darwin/commoncrypto_aes.c
blob: 8656d54d0717b2f1f5b7767802f887eea10b20a3 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
/**
 * Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
 * SPDX-License-Identifier: Apache-2.0.
 */

#include <aws/cal/private/symmetric_cipher_priv.h>

#include <CommonCrypto/CommonCryptor.h>
#include <CommonCrypto/CommonHMAC.h>
#include <CommonCrypto/CommonSymmetricKeywrap.h>

#include "common_cryptor_spi.h"

#if (defined(__MAC_OS_X_VERSION_MAX_ALLOWED) && (__MAC_OS_X_VERSION_MAX_ALLOWED >= 101300 /* macOS 10.13 */)) ||       \
    (defined(__IPHONE_OS_VERSION_MAX_ALLOWED) && (__IPHONE_OS_VERSION_MAX_ALLOWED >= 110000 /* iOS v11 */))
#    define USE_LATEST_CRYPTO_API 1
#endif

struct cc_aes_cipher {
    struct aws_symmetric_cipher cipher_base;
    struct _CCCryptor *encryptor_handle;
    struct _CCCryptor *decryptor_handle;
    struct aws_byte_buf working_buffer;
};

static int s_encrypt(struct aws_symmetric_cipher *cipher, struct aws_byte_cursor input, struct aws_byte_buf *out) {
    /* allow for a padded block by making sure we have at least a block of padding reserved. */
    size_t required_buffer_space = input.len + cipher->block_size - 1;

    if (aws_symmetric_cipher_try_ensure_sufficient_buffer_space(out, required_buffer_space)) {
        return aws_raise_error(AWS_ERROR_SHORT_BUFFER);
    }

    size_t available_write_space = out->capacity - out->len;
    struct cc_aes_cipher *cc_cipher = cipher->impl;

    size_t len_written = 0;
    CCStatus status = CCCryptorUpdate(
        cc_cipher->encryptor_handle, input.ptr, input.len, out->buffer + out->len, available_write_space, &len_written);

    if (status != kCCSuccess) {
        cipher->good = false;
        return aws_raise_error(AWS_ERROR_INVALID_ARGUMENT);
    }

    out->len += len_written;
    return AWS_OP_SUCCESS;
}

static int s_decrypt(struct aws_symmetric_cipher *cipher, struct aws_byte_cursor input, struct aws_byte_buf *out) {
    /* allow for a padded block by making sure we have at least a block of padding reserved. */
    size_t required_buffer_space = input.len + cipher->block_size - 1;

    if (aws_symmetric_cipher_try_ensure_sufficient_buffer_space(out, required_buffer_space)) {
        return aws_raise_error(AWS_ERROR_SHORT_BUFFER);
    }

    size_t available_write_space = out->capacity - out->len;
    struct cc_aes_cipher *cc_cipher = cipher->impl;

    size_t len_written = 0;
    CCStatus status = CCCryptorUpdate(
        cc_cipher->decryptor_handle, input.ptr, input.len, out->buffer + out->len, available_write_space, &len_written);

    if (status != kCCSuccess) {
        cipher->good = false;
        return aws_raise_error(AWS_ERROR_INVALID_ARGUMENT);
    }

    out->len += len_written;
    return AWS_OP_SUCCESS;
}

static int s_finalize_encryption(struct aws_symmetric_cipher *cipher, struct aws_byte_buf *out) {
    /* in CBC mode, this will pad the final block from the previous encrypt call, or do nothing
     * if we were already on a block boundary. In CTR mode this will do nothing. */
    size_t required_buffer_space = cipher->block_size;
    size_t len_written = 0;

    if (aws_symmetric_cipher_try_ensure_sufficient_buffer_space(out, required_buffer_space)) {
        return aws_raise_error(AWS_ERROR_SHORT_BUFFER);
    }

    size_t available_write_space = out->capacity - out->len;
    struct cc_aes_cipher *cc_cipher = cipher->impl;

    CCStatus status =
        CCCryptorFinal(cc_cipher->encryptor_handle, out->buffer + out->len, available_write_space, &len_written);

    if (status != kCCSuccess) {
        cipher->good = false;
        return aws_raise_error(AWS_ERROR_INVALID_ARGUMENT);
    }

    out->len += len_written;
    return AWS_OP_SUCCESS;
}

static int s_finalize_decryption(struct aws_symmetric_cipher *cipher, struct aws_byte_buf *out) {
    /* in CBC mode, this will pad the final block from the previous encrypt call, or do nothing
     * if we were already on a block boundary. In CTR mode this will do nothing. */
    size_t required_buffer_space = cipher->block_size;
    size_t len_written = 0;

    if (aws_symmetric_cipher_try_ensure_sufficient_buffer_space(out, required_buffer_space)) {
        return aws_raise_error(AWS_ERROR_SHORT_BUFFER);
    }

    size_t available_write_space = out->capacity - out->len;
    struct cc_aes_cipher *cc_cipher = cipher->impl;

    CCStatus status =
        CCCryptorFinal(cc_cipher->decryptor_handle, out->buffer + out->len, available_write_space, &len_written);

    if (status != kCCSuccess) {
        cipher->good = false;
        return aws_raise_error(AWS_ERROR_INVALID_ARGUMENT);
    }

    out->len += len_written;
    return AWS_OP_SUCCESS;
}

static int s_initialize_cbc_cipher_materials(
    struct cc_aes_cipher *cc_cipher,
    const struct aws_byte_cursor *key,
    const struct aws_byte_cursor *iv) {
    if (!cc_cipher->cipher_base.key.len) {
        if (key) {
            aws_byte_buf_init_copy_from_cursor(&cc_cipher->cipher_base.key, cc_cipher->cipher_base.allocator, *key);
        } else {
            aws_byte_buf_init(&cc_cipher->cipher_base.key, cc_cipher->cipher_base.allocator, AWS_AES_256_KEY_BYTE_LEN);
            aws_symmetric_cipher_generate_key(AWS_AES_256_KEY_BYTE_LEN, &cc_cipher->cipher_base.key);
        }
    }

    if (!cc_cipher->cipher_base.iv.len) {
        if (iv) {
            aws_byte_buf_init_copy_from_cursor(&cc_cipher->cipher_base.iv, cc_cipher->cipher_base.allocator, *iv);
        } else {
            aws_byte_buf_init(
                &cc_cipher->cipher_base.iv, cc_cipher->cipher_base.allocator, AWS_AES_256_CIPHER_BLOCK_SIZE);
            aws_symmetric_cipher_generate_initialization_vector(
                AWS_AES_256_CIPHER_BLOCK_SIZE, false, &cc_cipher->cipher_base.iv);
        }
    }

    CCCryptorStatus status = CCCryptorCreateWithMode(
        kCCEncrypt,
        kCCModeCBC,
        kCCAlgorithmAES,
        ccPKCS7Padding,
        cc_cipher->cipher_base.iv.buffer,
        cc_cipher->cipher_base.key.buffer,
        cc_cipher->cipher_base.key.len,
        NULL,
        0,
        0,
        0,
        &cc_cipher->encryptor_handle);

    status |= CCCryptorCreateWithMode(
        kCCDecrypt,
        kCCModeCBC,
        kCCAlgorithmAES,
        ccPKCS7Padding,
        cc_cipher->cipher_base.iv.buffer,
        cc_cipher->cipher_base.key.buffer,
        cc_cipher->cipher_base.key.len,
        NULL,
        0,
        0,
        0,
        &cc_cipher->decryptor_handle);

    return status == kCCSuccess ? AWS_OP_SUCCESS : aws_raise_error(AWS_ERROR_INVALID_ARGUMENT);
}

static int s_reset(struct aws_symmetric_cipher *cipher) {
    struct cc_aes_cipher *cc_cipher = cipher->impl;

    if (cc_cipher->encryptor_handle) {
        CCCryptorRelease(cc_cipher->encryptor_handle);
        cc_cipher->encryptor_handle = NULL;
    }

    if (cc_cipher->decryptor_handle) {
        CCCryptorRelease(cc_cipher->decryptor_handle);
        cc_cipher->decryptor_handle = NULL;
    }

    aws_byte_buf_secure_zero(&cc_cipher->working_buffer);

    return AWS_OP_SUCCESS;
}

static void s_destroy(struct aws_symmetric_cipher *cipher) {
    aws_byte_buf_clean_up_secure(&cipher->key);
    aws_byte_buf_clean_up_secure(&cipher->iv);
    aws_byte_buf_clean_up_secure(&cipher->tag);
    aws_byte_buf_clean_up_secure(&cipher->aad);

    s_reset(cipher);

    struct cc_aes_cipher *cc_cipher = cipher->impl;
    aws_byte_buf_clean_up_secure(&cc_cipher->working_buffer);

    aws_mem_release(cipher->allocator, cc_cipher);
}

static int s_cbc_reset(struct aws_symmetric_cipher *cipher) {
    struct cc_aes_cipher *cc_cipher = cipher->impl;

    int ret_val = s_reset(cipher);

    if (ret_val == AWS_OP_SUCCESS) {
        ret_val = s_initialize_cbc_cipher_materials(cc_cipher, NULL, NULL);
    }

    return ret_val;
}

static struct aws_symmetric_cipher_vtable s_aes_cbc_vtable = {
    .finalize_decryption = s_finalize_decryption,
    .finalize_encryption = s_finalize_encryption,
    .decrypt = s_decrypt,
    .encrypt = s_encrypt,
    .provider = "CommonCrypto",
    .alg_name = "AES-CBC 256",
    .destroy = s_destroy,
    .reset = s_cbc_reset,
};

struct aws_symmetric_cipher *aws_aes_cbc_256_new_impl(
    struct aws_allocator *allocator,
    const struct aws_byte_cursor *key,
    const struct aws_byte_cursor *iv) {
    struct cc_aes_cipher *cc_cipher = aws_mem_calloc(allocator, 1, sizeof(struct cc_aes_cipher));
    cc_cipher->cipher_base.allocator = allocator;
    cc_cipher->cipher_base.block_size = AWS_AES_256_CIPHER_BLOCK_SIZE;
    cc_cipher->cipher_base.key_length_bits = AWS_AES_256_KEY_BIT_LEN;
    cc_cipher->cipher_base.impl = cc_cipher;
    cc_cipher->cipher_base.vtable = &s_aes_cbc_vtable;

    if (s_initialize_cbc_cipher_materials(cc_cipher, key, iv) != AWS_OP_SUCCESS) {
        s_destroy(&cc_cipher->cipher_base);
        return NULL;
    }

    cc_cipher->cipher_base.good = true;
    cc_cipher->cipher_base.key_length_bits = AWS_AES_256_KEY_BIT_LEN;

    return &cc_cipher->cipher_base;
}

static int s_initialize_ctr_cipher_materials(
    struct cc_aes_cipher *cc_cipher,
    const struct aws_byte_cursor *key,
    const struct aws_byte_cursor *iv) {
    if (!cc_cipher->cipher_base.key.len) {
        if (key) {
            aws_byte_buf_init_copy_from_cursor(&cc_cipher->cipher_base.key, cc_cipher->cipher_base.allocator, *key);
        } else {
            aws_byte_buf_init(&cc_cipher->cipher_base.key, cc_cipher->cipher_base.allocator, AWS_AES_256_KEY_BYTE_LEN);
            aws_symmetric_cipher_generate_key(AWS_AES_256_KEY_BYTE_LEN, &cc_cipher->cipher_base.key);
        }
    }

    if (!cc_cipher->cipher_base.iv.len) {
        if (iv) {
            aws_byte_buf_init_copy_from_cursor(&cc_cipher->cipher_base.iv, cc_cipher->cipher_base.allocator, *iv);
        } else {
            aws_byte_buf_init(
                &cc_cipher->cipher_base.iv, cc_cipher->cipher_base.allocator, AWS_AES_256_CIPHER_BLOCK_SIZE);
            aws_symmetric_cipher_generate_initialization_vector(
                AWS_AES_256_CIPHER_BLOCK_SIZE, true, &cc_cipher->cipher_base.iv);
        }
    }

    CCCryptorStatus status = CCCryptorCreateWithMode(
        kCCEncrypt,
        kCCModeCTR,
        kCCAlgorithmAES,
        ccNoPadding,
        cc_cipher->cipher_base.iv.buffer,
        cc_cipher->cipher_base.key.buffer,
        cc_cipher->cipher_base.key.len,
        NULL,
        0,
        0,
        kCCModeOptionCTR_BE,
        &cc_cipher->encryptor_handle);

    status |= CCCryptorCreateWithMode(
        kCCDecrypt,
        kCCModeCTR,
        kCCAlgorithmAES,
        ccNoPadding,
        cc_cipher->cipher_base.iv.buffer,
        cc_cipher->cipher_base.key.buffer,
        cc_cipher->cipher_base.key.len,
        NULL,
        0,
        0,
        kCCModeOptionCTR_BE,
        &cc_cipher->decryptor_handle);

    return status == kCCSuccess ? AWS_OP_SUCCESS : aws_raise_error(AWS_ERROR_INVALID_ARGUMENT);
}

static int s_ctr_reset(struct aws_symmetric_cipher *cipher) {
    struct cc_aes_cipher *cc_cipher = cipher->impl;

    int ret_val = s_reset(cipher);

    if (ret_val == AWS_OP_SUCCESS) {
        ret_val = s_initialize_ctr_cipher_materials(cc_cipher, NULL, NULL);
    }

    return ret_val;
}

static struct aws_symmetric_cipher_vtable s_aes_ctr_vtable = {
    .finalize_decryption = s_finalize_decryption,
    .finalize_encryption = s_finalize_encryption,
    .decrypt = s_decrypt,
    .encrypt = s_encrypt,
    .provider = "CommonCrypto",
    .alg_name = "AES-CTR 256",
    .destroy = s_destroy,
    .reset = s_ctr_reset,
};

struct aws_symmetric_cipher *aws_aes_ctr_256_new_impl(
    struct aws_allocator *allocator,
    const struct aws_byte_cursor *key,
    const struct aws_byte_cursor *iv) {
    struct cc_aes_cipher *cc_cipher = aws_mem_calloc(allocator, 1, sizeof(struct cc_aes_cipher));
    cc_cipher->cipher_base.allocator = allocator;
    cc_cipher->cipher_base.block_size = AWS_AES_256_CIPHER_BLOCK_SIZE;
    cc_cipher->cipher_base.impl = cc_cipher;
    cc_cipher->cipher_base.vtable = &s_aes_ctr_vtable;

    if (s_initialize_ctr_cipher_materials(cc_cipher, key, iv) != AWS_OP_SUCCESS) {
        aws_raise_error(AWS_ERROR_INVALID_ARGUMENT);
        s_destroy(&cc_cipher->cipher_base);
        return NULL;
    }

    cc_cipher->cipher_base.good = true;
    cc_cipher->cipher_base.key_length_bits = AWS_AES_256_KEY_BIT_LEN;

    return &cc_cipher->cipher_base;
}

/*
 * Note that CCCryptorGCMFinal is deprecated in Mac 10.13. It also doesn't compare the tag with expected tag
 * https://opensource.apple.com/source/CommonCrypto/CommonCrypto-60118.1.1/include/CommonCryptorSPI.h.auto.html
 */
static CCStatus s_cc_crypto_gcm_finalize(struct _CCCryptor *encryptor_handle, uint8_t *buffer, size_t tag_length) {
#ifdef USE_LATEST_CRYPTO_API
    if (__builtin_available(macOS 10.13, iOS 11.0, *)) {
        return CCCryptorGCMFinalize(encryptor_handle, buffer, tag_length);
    } else {
/* We would never hit this branch for newer macOS and iOS versions because of the __builtin_available check, so we can
 * suppress the compiler warning. */
#    pragma clang diagnostic push
#    pragma clang diagnostic ignored "-Wdeprecated-declarations"
        return CCCryptorGCMFinal(encryptor_handle, buffer, &tag_length);
#    pragma clang diagnostic pop
    }
#else
    return CCCryptorGCMFinal(encryptor_handle, buffer, &tag_length);

#endif
}

static CCCryptorStatus s_cc_cryptor_gcm_set_iv(struct _CCCryptor *encryptor_handle, uint8_t *buffer, size_t length) {
#ifdef USE_LATEST_CRYPTO_API
    if (__builtin_available(macOS 10.13, iOS 11.0, *)) {
        return CCCryptorGCMSetIV(encryptor_handle, buffer, length);
    } else {
/* We would never hit this branch for newer macOS and iOS versions because of the __builtin_available check, so we can
 * suppress the compiler warning. */
#    pragma clang diagnostic push
#    pragma clang diagnostic ignored "-Wdeprecated-declarations"
        return CCCryptorGCMAddIV(encryptor_handle, buffer, length);
#    pragma clang diagnostic pop
    }
#else
    return CCCryptorGCMAddIV(encryptor_handle, buffer, length);
#endif
}

static int s_finalize_gcm_encryption(struct aws_symmetric_cipher *cipher, struct aws_byte_buf *out) {
    (void)out;

    /* user specification takes precedence. If its wrong its wrong */
    if (!cipher->tag.len) {
        aws_byte_buf_init(&cipher->tag, cipher->allocator, AWS_AES_256_CIPHER_BLOCK_SIZE);
    }

    struct cc_aes_cipher *cc_cipher = cipher->impl;

    size_t tag_length = AWS_AES_256_CIPHER_BLOCK_SIZE;
    CCStatus status = s_cc_crypto_gcm_finalize(cc_cipher->encryptor_handle, cipher->tag.buffer, tag_length);
    if (status != kCCSuccess) {
        cipher->good = false;
        return aws_raise_error(AWS_ERROR_INVALID_ARGUMENT);
    }

    cipher->tag.len = tag_length;
    return AWS_OP_SUCCESS;
}

static int s_finalize_gcm_decryption(struct aws_symmetric_cipher *cipher, struct aws_byte_buf *out) {
    (void)out;

    struct cc_aes_cipher *cc_cipher = cipher->impl;

    size_t tag_length = AWS_AES_256_CIPHER_BLOCK_SIZE;
    CCStatus status = s_cc_crypto_gcm_finalize(cc_cipher->encryptor_handle, cipher->tag.buffer, tag_length);
    if (status != kCCSuccess) {
        cipher->good = false;
        return aws_raise_error(AWS_ERROR_INVALID_ARGUMENT);
    }

    return AWS_OP_SUCCESS;
}

static int s_initialize_gcm_cipher_materials(
    struct cc_aes_cipher *cc_cipher,
    const struct aws_byte_cursor *key,
    const struct aws_byte_cursor *iv,
    const struct aws_byte_cursor *aad,
    const struct aws_byte_cursor *tag) {
    if (!cc_cipher->cipher_base.key.len) {
        if (key) {
            aws_byte_buf_init_copy_from_cursor(&cc_cipher->cipher_base.key, cc_cipher->cipher_base.allocator, *key);
        } else {
            aws_byte_buf_init(&cc_cipher->cipher_base.key, cc_cipher->cipher_base.allocator, AWS_AES_256_KEY_BYTE_LEN);
            aws_symmetric_cipher_generate_key(AWS_AES_256_KEY_BYTE_LEN, &cc_cipher->cipher_base.key);
        }
    }

    if (!cc_cipher->cipher_base.iv.len) {
        if (iv) {
            aws_byte_buf_init_copy_from_cursor(&cc_cipher->cipher_base.iv, cc_cipher->cipher_base.allocator, *iv);
        } else {
            /* GCM IVs are kind of a hidden implementation detail. 4 are reserved by the system for long running stream
             * blocks. */
            /* This is because there's a GMAC attached to the cipher (that's what tag is for). For that to work, it has
             * to control the actual counter */
            aws_byte_buf_init(
                &cc_cipher->cipher_base.iv, cc_cipher->cipher_base.allocator, AWS_AES_256_CIPHER_BLOCK_SIZE - 4);
            aws_symmetric_cipher_generate_initialization_vector(
                AWS_AES_256_CIPHER_BLOCK_SIZE - 4, false, &cc_cipher->cipher_base.iv);
        }
    }

    if (aad && aad->len) {
        aws_byte_buf_init_copy_from_cursor(&cc_cipher->cipher_base.aad, cc_cipher->cipher_base.allocator, *aad);
    }

    if (tag && tag->len) {
        aws_byte_buf_init_copy_from_cursor(&cc_cipher->cipher_base.tag, cc_cipher->cipher_base.allocator, *tag);
    }

    CCCryptorStatus status = CCCryptorCreateWithMode(
        kCCEncrypt,
        kCCModeGCM,
        kCCAlgorithmAES,
        ccNoPadding,
        NULL,
        cc_cipher->cipher_base.key.buffer,
        cc_cipher->cipher_base.key.len,
        NULL,
        0,
        0,
        kCCModeOptionCTR_BE,
        &cc_cipher->encryptor_handle);

    if (status != kCCSuccess) {
        return aws_raise_error(AWS_ERROR_INVALID_ARGUMENT);
    }
    status = s_cc_cryptor_gcm_set_iv(
        cc_cipher->encryptor_handle, cc_cipher->cipher_base.iv.buffer, cc_cipher->cipher_base.iv.len);

    if (status != kCCSuccess) {
        return aws_raise_error(AWS_ERROR_INVALID_ARGUMENT);
    }

    if (cc_cipher->cipher_base.aad.len) {
        status = CCCryptorGCMAddAAD(
            cc_cipher->encryptor_handle, cc_cipher->cipher_base.aad.buffer, cc_cipher->cipher_base.aad.len);

        if (status != kCCSuccess) {
            return aws_raise_error(AWS_ERROR_INVALID_ARGUMENT);
        }
    }

    status = CCCryptorCreateWithMode(
        kCCDecrypt,
        kCCModeGCM,
        kCCAlgorithmAES,
        ccNoPadding,
        NULL,
        cc_cipher->cipher_base.key.buffer,
        cc_cipher->cipher_base.key.len,
        NULL,
        0,
        0,
        kCCModeOptionCTR_BE,
        &cc_cipher->decryptor_handle);

    if (status != kCCSuccess) {
        return aws_raise_error(AWS_ERROR_INVALID_ARGUMENT);
    }
    status = s_cc_cryptor_gcm_set_iv(
        cc_cipher->decryptor_handle, cc_cipher->cipher_base.iv.buffer, cc_cipher->cipher_base.iv.len);

    if (status != kCCSuccess) {
        return aws_raise_error(AWS_ERROR_INVALID_ARGUMENT);
    }

    if (cc_cipher->cipher_base.aad.len) {
        status = CCCryptorGCMAddAAD(
            cc_cipher->decryptor_handle, cc_cipher->cipher_base.aad.buffer, cc_cipher->cipher_base.aad.len);
    }

    if (status != kCCSuccess) {
        return aws_raise_error(AWS_ERROR_INVALID_ARGUMENT);
    }

    return AWS_OP_SUCCESS;
}

static int s_gcm_reset(struct aws_symmetric_cipher *cipher) {
    struct cc_aes_cipher *cc_cipher = cipher->impl;

    int ret_val = s_reset(cipher);

    if (ret_val == AWS_OP_SUCCESS) {
        ret_val = s_initialize_gcm_cipher_materials(cc_cipher, NULL, NULL, NULL, NULL);
    }

    return ret_val;
}

static struct aws_symmetric_cipher_vtable s_aes_gcm_vtable = {
    .finalize_decryption = s_finalize_gcm_decryption,
    .finalize_encryption = s_finalize_gcm_encryption,
    .decrypt = s_decrypt,
    .encrypt = s_encrypt,
    .provider = "CommonCrypto",
    .alg_name = "AES-GCM 256",
    .destroy = s_destroy,
    .reset = s_gcm_reset,
};

struct aws_symmetric_cipher *aws_aes_gcm_256_new_impl(
    struct aws_allocator *allocator,
    const struct aws_byte_cursor *key,
    const struct aws_byte_cursor *iv,
    const struct aws_byte_cursor *aad,
    const struct aws_byte_cursor *tag) {
    struct cc_aes_cipher *cc_cipher = aws_mem_calloc(allocator, 1, sizeof(struct cc_aes_cipher));
    cc_cipher->cipher_base.allocator = allocator;
    cc_cipher->cipher_base.block_size = AWS_AES_256_CIPHER_BLOCK_SIZE;
    cc_cipher->cipher_base.impl = cc_cipher;
    cc_cipher->cipher_base.vtable = &s_aes_gcm_vtable;

    if (s_initialize_gcm_cipher_materials(cc_cipher, key, iv, aad, tag) != AWS_OP_SUCCESS) {
        s_destroy(&cc_cipher->cipher_base);
        return NULL;
    }

    cc_cipher->cipher_base.good = true;
    cc_cipher->cipher_base.key_length_bits = AWS_AES_256_KEY_BIT_LEN;

    return &cc_cipher->cipher_base;
}

static int s_keywrap_encrypt_decrypt(
    struct aws_symmetric_cipher *cipher,
    struct aws_byte_cursor input,
    struct aws_byte_buf *out) {
    struct cc_aes_cipher *cc_cipher = cipher->impl;
    return aws_byte_buf_append_dynamic(&cc_cipher->working_buffer, &input);
}

static int s_finalize_keywrap_encryption(struct aws_symmetric_cipher *cipher, struct aws_byte_buf *out) {
    struct cc_aes_cipher *cc_cipher = cipher->impl;

    if (cc_cipher->working_buffer.len == 0) {
        cipher->good = false;
        return aws_raise_error(AWS_ERROR_INVALID_STATE);
    }

    size_t output_buffer_len = cipher->block_size + cc_cipher->working_buffer.len;

    if (aws_symmetric_cipher_try_ensure_sufficient_buffer_space(out, output_buffer_len)) {
        return aws_raise_error(AWS_ERROR_SHORT_BUFFER);
    }

    CCCryptorStatus status = CCSymmetricKeyWrap(
        kCCWRAPAES,
        CCrfc3394_iv,
        CCrfc3394_ivLen,
        cipher->key.buffer,
        cipher->key.len,
        cc_cipher->working_buffer.buffer,
        cc_cipher->working_buffer.len,
        out->buffer,
        &output_buffer_len);

    if (status != kCCSuccess) {
        cipher->good = false;
        return aws_raise_error(AWS_ERROR_INVALID_STATE);
    }

    out->len += output_buffer_len;

    return AWS_OP_SUCCESS;
}

static int s_finalize_keywrap_decryption(struct aws_symmetric_cipher *cipher, struct aws_byte_buf *out) {
    struct cc_aes_cipher *cc_cipher = cipher->impl;

    if (cc_cipher->working_buffer.len == 0) {
        cipher->good = false;
        return aws_raise_error(AWS_ERROR_INVALID_STATE);
    }

    size_t output_buffer_len = cipher->block_size + cc_cipher->working_buffer.len;

    if (aws_symmetric_cipher_try_ensure_sufficient_buffer_space(out, output_buffer_len)) {
        return aws_raise_error(AWS_ERROR_SHORT_BUFFER);
    }

    CCCryptorStatus status = CCSymmetricKeyUnwrap(
        kCCWRAPAES,
        CCrfc3394_iv,
        CCrfc3394_ivLen,
        cipher->key.buffer,
        cipher->key.len,
        cc_cipher->working_buffer.buffer,
        cc_cipher->working_buffer.len,
        out->buffer,
        &output_buffer_len);

    if (status != kCCSuccess) {
        cipher->good = false;
        return aws_raise_error(AWS_ERROR_INVALID_STATE);
    }

    out->len += output_buffer_len;

    return AWS_OP_SUCCESS;
}

static struct aws_symmetric_cipher_vtable s_aes_keywrap_vtable = {
    .finalize_decryption = s_finalize_keywrap_decryption,
    .finalize_encryption = s_finalize_keywrap_encryption,
    .decrypt = s_keywrap_encrypt_decrypt,
    .encrypt = s_keywrap_encrypt_decrypt,
    .provider = "CommonCrypto",
    .alg_name = "AES-KEYWRAP 256",
    .destroy = s_destroy,
    .reset = s_reset,
};

struct aws_symmetric_cipher *aws_aes_keywrap_256_new_impl(
    struct aws_allocator *allocator,
    const struct aws_byte_cursor *key) {
    struct cc_aes_cipher *cc_cipher = aws_mem_calloc(allocator, 1, sizeof(struct cc_aes_cipher));
    cc_cipher->cipher_base.allocator = allocator;
    cc_cipher->cipher_base.block_size = AWS_AES_256_CIPHER_BLOCK_SIZE / 2;
    cc_cipher->cipher_base.impl = cc_cipher;
    cc_cipher->cipher_base.vtable = &s_aes_keywrap_vtable;

    if (key) {
        aws_byte_buf_init_copy_from_cursor(&cc_cipher->cipher_base.key, cc_cipher->cipher_base.allocator, *key);
    } else {
        aws_byte_buf_init(&cc_cipher->cipher_base.key, cc_cipher->cipher_base.allocator, AWS_AES_256_KEY_BYTE_LEN);
        aws_symmetric_cipher_generate_key(AWS_AES_256_KEY_BYTE_LEN, &cc_cipher->cipher_base.key);
    }

    aws_byte_buf_init(&cc_cipher->working_buffer, allocator, (AWS_AES_256_CIPHER_BLOCK_SIZE * 2) + 8);
    cc_cipher->cipher_base.good = true;
    cc_cipher->cipher_base.key_length_bits = AWS_AES_256_KEY_BIT_LEN;

    return &cc_cipher->cipher_base;
}