1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
|
/**
* Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
* SPDX-License-Identifier: Apache-2.0.
*/
#include <aws/auth/private/key_derivation.h>
#include <aws/auth/credentials.h>
#include <aws/cal/ecc.h>
#include <aws/cal/hash.h>
#include <aws/cal/hmac.h>
#include <aws/common/byte_buf.h>
#include <aws/common/string.h>
/*
* The maximum number of iterations we will attempt to derive a valid ecc key for. The probability that this counter
* value ever gets reached is vanishingly low -- with reasonable uniformity/independence assumptions, it's
* approximately
*
* 2 ^ (-32 * 254)
*/
#define MAX_KEY_DERIVATION_COUNTER_VALUE 254
/*
* The encoding (32-bit, big-endian) of the prefix to the FixedInputString when fed to the hmac function, per
* the sigv4a key derivation specification.
*/
AWS_STATIC_STRING_FROM_LITERAL(s_1_as_four_bytes_be, "\x00\x00\x00\x01");
/*
* The encoding (32-bit, big-endian) of the "Length" component of the sigv4a key derivation specification
*/
AWS_STATIC_STRING_FROM_LITERAL(s_256_as_four_bytes_be, "\x00\x00\x01\x00");
AWS_STRING_FROM_LITERAL(g_signature_type_sigv4a_http_request, "AWS4-ECDSA-P256-SHA256");
AWS_STATIC_STRING_FROM_LITERAL(s_secret_buffer_prefix, "AWS4A");
/*
* This constructs the fixed input byte sequence of the Sigv4a key derivation specification. It also includes the
* value (0x01 as a 32-bit big endian value) that is pre-pended to the fixed input before invoking the hmac to
* generate the candidate key value.
*
* The final output looks like
*
* 0x00000001 || "AWS4-ECDSA-P256-SHA256" || 0x00 || AccessKeyId || CounterValue as uint8_t || 0x00000100 (Length)
*
* From this, we can determine the necessary buffer capacity when setting up the fixed input buffer:
*
* 4 + 22 + 1 + len(AccessKeyId) + 1 + 4 = 32 + len(AccessKeyId)
*/
static int s_aws_build_fixed_input_buffer(
struct aws_byte_buf *fixed_input,
const struct aws_credentials *credentials,
const uint8_t counter) {
if (counter == 0 || counter > MAX_KEY_DERIVATION_COUNTER_VALUE) {
return aws_raise_error(AWS_ERROR_INVALID_ARGUMENT);
}
if (!aws_byte_buf_is_valid(fixed_input)) {
return aws_raise_error(AWS_ERROR_INVALID_ARGUMENT);
}
aws_byte_buf_reset(fixed_input, false);
/*
* A placeholder value that's not actually part of the fixed input string in the spec, but is always this value
* and is always the first byte of the hmac-ed string.
*/
struct aws_byte_cursor one_cursor = aws_byte_cursor_from_string(s_1_as_four_bytes_be);
if (aws_byte_buf_append_dynamic(fixed_input, &one_cursor)) {
return AWS_OP_ERR;
}
struct aws_byte_cursor sigv4a_algorithm_cursor = aws_byte_cursor_from_string(g_signature_type_sigv4a_http_request);
if (aws_byte_buf_append(fixed_input, &sigv4a_algorithm_cursor)) {
return AWS_OP_ERR;
}
if (aws_byte_buf_append_byte_dynamic(fixed_input, 0)) {
return AWS_OP_ERR;
}
struct aws_byte_cursor access_key_cursor = aws_credentials_get_access_key_id(credentials);
if (aws_byte_buf_append(fixed_input, &access_key_cursor)) {
return AWS_OP_ERR;
}
if (aws_byte_buf_append_byte_dynamic(fixed_input, counter)) {
return AWS_OP_ERR;
}
struct aws_byte_cursor encoded_bit_length_cursor = aws_byte_cursor_from_string(s_256_as_four_bytes_be);
if (aws_byte_buf_append_dynamic(fixed_input, &encoded_bit_length_cursor)) {
return AWS_OP_ERR;
}
return AWS_OP_SUCCESS;
}
/*
* aws_be_bytes_compare_constant_time() and aws_be_bytes_add_one_constant_time() are constant-time arithmetic functions
* that operate on raw bytes as if they were unbounded integers in a big-endian base 255 format.
*/
/*
* In the following function gt and eq are updated together. After each update, the variables will be
* in one of the following states:
*
* (1) gt is 0, eq is 1, and from an ordering perspective, lhs == rhs, as checked "so far"
* (2) gt is 1, eq is 0, (lhs > rhs)
* (3) gt is 0, eq is 0, (lhs < rhs)
*
* States (2) and (3) are terminal states that cannot be exited since eq is 0 and is the and-wise mask of all
* subsequent gt updates. Similarly, once eq is zero it cannot ever become non-zero.
*
* Intuitively these ideas match the standard way of comparing magnitude equality by considering digit count and
* digits from most significant to least significant.
*
* Let l and r be the the two digits that we are
* comparing between lhs and rhs. Assume 0 <= l, r <= 255 seated in 32-bit integers
*
* gt is maintained by the following bit trick:
*
* l > r <=>
* (r - l) < 0 <=>
* (r - l) as an int32 has the high bit set <=>
* ((r - l) >> 31) & 0x01 == 1
*
* eq is maintained by the following bit trick:
*
* l == r <=>
* l ^ r == 0 <=>
* (l ^ r) - 1 == -1 <=>
* (((l ^ r) - 1) >> 31) & 0x01 == 1
*
* We apply to the volatile type modifier to attempt to prevent all early-out optimizations that a compiler might
* apply if it performed constraint-based reasoning on the logic. This is based on treating volatile
* semantically as "this value can change underneath you at any time so you always have to re-read it and cannot
* reason statically about program behavior when it reaches a certain value (like 0)"
*/
/**
* Compares two large unsigned integers in a raw byte format.
* The two operands *must* be the same size (simplifies the problem significantly).
*
* The output parameter comparison_result is set to:
* -1 if lhs_raw_be_bigint < rhs_raw_be_bigint
* 0 if lhs_raw_be_bigint == rhs_raw_be_bigint
* 1 if lhs_raw_be_bigint > rhs_raw_be_bigint
*/
int aws_be_bytes_compare_constant_time(
const struct aws_byte_buf *lhs_raw_be_bigint,
const struct aws_byte_buf *rhs_raw_be_bigint,
int *comparison_result) {
AWS_FATAL_PRECONDITION(aws_byte_buf_is_valid(lhs_raw_be_bigint));
AWS_FATAL_PRECONDITION(aws_byte_buf_is_valid(rhs_raw_be_bigint));
/*
* We only need to support comparing byte sequences of the same length here
*/
const size_t lhs_len = lhs_raw_be_bigint->len;
if (lhs_len != rhs_raw_be_bigint->len) {
return aws_raise_error(AWS_ERROR_INVALID_ARGUMENT);
}
volatile uint8_t gt = 0;
volatile uint8_t eq = 1;
const uint8_t *lhs_raw_bytes = lhs_raw_be_bigint->buffer;
const uint8_t *rhs_raw_bytes = rhs_raw_be_bigint->buffer;
for (size_t i = 0; i < lhs_len; ++i) {
volatile int32_t lhs_digit = (int32_t)lhs_raw_bytes[i];
volatile int32_t rhs_digit = (int32_t)rhs_raw_bytes[i];
/*
* For each digit, check for a state (1) => (2) ie lhs > rhs, or (1) => (3) ie lhs < rhs transition
* based on comparing the two digits in constant time using the ideas explained in the giant comment
* block above this function.
*/
gt |= ((rhs_digit - lhs_digit) >> 31) & eq;
eq &= (((lhs_digit ^ rhs_digit) - 1) >> 31) & 0x01;
}
*comparison_result = gt + gt + eq - 1;
return AWS_OP_SUCCESS;
}
/**
* Adds one to a large unsigned integer represented by a sequence of bytes.
*
* A maximal value will roll over to zero. This does not affect the correctness of the users
* of this function.
*/
void aws_be_bytes_add_one_constant_time(struct aws_byte_buf *raw_be_bigint) {
AWS_FATAL_PRECONDITION(aws_byte_buf_is_valid(raw_be_bigint));
const size_t byte_count = raw_be_bigint->len;
volatile uint32_t carry = 1;
uint8_t *raw_bytes = raw_be_bigint->buffer;
for (size_t i = 0; i < byte_count; ++i) {
const size_t index = byte_count - i - 1;
volatile uint32_t current_digit = raw_bytes[index];
current_digit += carry;
carry = (current_digit >> 8) & 0x01;
raw_bytes[index] = (uint8_t)(current_digit & 0xFF);
}
}
/* clang-format off */
/* In the spec, this is N-2 */
static uint8_t s_n_minus_2[32] = {
0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xBC, 0xE6, 0xFA, 0xAD, 0xA7, 0x17, 0x9E, 0x84,
0xF3, 0xB9, 0xCA, 0xC2, 0xFC, 0x63, 0x25, 0x4F,
};
/* clang-format on */
enum aws_key_derivation_result {
AKDR_SUCCESS,
AKDR_NEXT_COUNTER,
AKDR_FAILURE,
};
static enum aws_key_derivation_result s_aws_derive_ecc_private_key(
struct aws_byte_buf *private_key_value,
const struct aws_byte_buf *k0) {
AWS_FATAL_ASSERT(k0->len == aws_ecc_key_coordinate_byte_size_from_curve_name(AWS_CAL_ECDSA_P256));
aws_byte_buf_reset(private_key_value, false);
struct aws_byte_buf s_n_minus_2_buf = {
.allocator = NULL,
.buffer = s_n_minus_2,
.capacity = AWS_ARRAY_SIZE(s_n_minus_2),
.len = AWS_ARRAY_SIZE(s_n_minus_2),
};
int comparison_result = 0;
if (aws_be_bytes_compare_constant_time(k0, &s_n_minus_2_buf, &comparison_result)) {
return AKDR_FAILURE;
}
if (comparison_result > 0) {
return AKDR_NEXT_COUNTER;
}
struct aws_byte_cursor k0_cursor = aws_byte_cursor_from_buf(k0);
if (aws_byte_buf_append(private_key_value, &k0_cursor)) {
return AKDR_FAILURE;
}
aws_be_bytes_add_one_constant_time(private_key_value);
return AKDR_SUCCESS;
}
static int s_init_secret_buf(
struct aws_byte_buf *secret_buf,
struct aws_allocator *allocator,
const struct aws_credentials *credentials) {
struct aws_byte_cursor secret_access_key_cursor = aws_credentials_get_secret_access_key(credentials);
size_t secret_buffer_length = secret_access_key_cursor.len + s_secret_buffer_prefix->len;
if (aws_byte_buf_init(secret_buf, allocator, secret_buffer_length)) {
return AWS_OP_ERR;
}
struct aws_byte_cursor prefix_cursor = aws_byte_cursor_from_string(s_secret_buffer_prefix);
if (aws_byte_buf_append(secret_buf, &prefix_cursor)) {
return AWS_OP_ERR;
}
if (aws_byte_buf_append(secret_buf, &secret_access_key_cursor)) {
return AWS_OP_ERR;
}
return AWS_OP_SUCCESS;
}
struct aws_ecc_key_pair *aws_ecc_key_pair_new_ecdsa_p256_key_from_aws_credentials(
struct aws_allocator *allocator,
const struct aws_credentials *credentials) {
if (allocator == NULL || credentials == NULL) {
aws_raise_error(AWS_ERROR_INVALID_ARGUMENT);
return NULL;
}
struct aws_ecc_key_pair *ecc_key_pair = NULL;
struct aws_byte_buf fixed_input;
AWS_ZERO_STRUCT(fixed_input);
struct aws_byte_buf fixed_input_hmac_digest;
AWS_ZERO_STRUCT(fixed_input_hmac_digest);
struct aws_byte_buf private_key_buf;
AWS_ZERO_STRUCT(private_key_buf);
struct aws_byte_buf secret_buf;
AWS_ZERO_STRUCT(secret_buf);
size_t access_key_length = aws_credentials_get_access_key_id(credentials).len;
/*
* This value is calculated based on the format of the fixed input string as described above at
* the definition of s_aws_build_fixed_input_buffer()
*/
size_t required_fixed_input_capacity = 32 + access_key_length;
if (aws_byte_buf_init(&fixed_input, allocator, required_fixed_input_capacity)) {
goto done;
}
if (aws_byte_buf_init(&fixed_input_hmac_digest, allocator, AWS_SHA256_LEN)) {
goto done;
}
size_t key_length = aws_ecc_key_coordinate_byte_size_from_curve_name(AWS_CAL_ECDSA_P256);
AWS_FATAL_ASSERT(key_length == AWS_SHA256_LEN);
if (aws_byte_buf_init(&private_key_buf, allocator, key_length)) {
goto done;
}
if (s_init_secret_buf(&secret_buf, allocator, credentials)) {
goto done;
}
struct aws_byte_cursor secret_cursor = aws_byte_cursor_from_buf(&secret_buf);
uint8_t counter = 1;
enum aws_key_derivation_result result = AKDR_NEXT_COUNTER;
while ((result == AKDR_NEXT_COUNTER) && (counter <= MAX_KEY_DERIVATION_COUNTER_VALUE)) {
if (s_aws_build_fixed_input_buffer(&fixed_input, credentials, counter++)) {
break;
}
aws_byte_buf_reset(&fixed_input_hmac_digest, true);
struct aws_byte_cursor fixed_input_cursor = aws_byte_cursor_from_buf(&fixed_input);
if (aws_sha256_hmac_compute(allocator, &secret_cursor, &fixed_input_cursor, &fixed_input_hmac_digest, 0)) {
break;
}
result = s_aws_derive_ecc_private_key(&private_key_buf, &fixed_input_hmac_digest);
}
if (result == AKDR_SUCCESS) {
struct aws_byte_cursor private_key_cursor = aws_byte_cursor_from_buf(&private_key_buf);
ecc_key_pair = aws_ecc_key_pair_new_from_private_key(allocator, AWS_CAL_ECDSA_P256, &private_key_cursor);
}
done:
aws_byte_buf_clean_up_secure(&secret_buf);
aws_byte_buf_clean_up_secure(&private_key_buf);
aws_byte_buf_clean_up_secure(&fixed_input_hmac_digest);
aws_byte_buf_clean_up(&fixed_input);
return ecc_key_pair;
}
|