1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
|
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// -----------------------------------------------------------------------------
// File: numbers.h
// -----------------------------------------------------------------------------
//
// This package contains functions for converting strings to numbers. For
// converting numbers to strings, use `StrCat()` or `StrAppend()` in str_cat.h,
// which automatically detect and convert most number values appropriately.
#ifndef ABSL_STRINGS_NUMBERS_H_
#define ABSL_STRINGS_NUMBERS_H_
#ifdef __SSSE3__
#include <tmmintrin.h>
#endif
#ifdef _MSC_VER
#include <intrin.h>
#endif
#include <cstddef>
#include <cstdint>
#include <cstdlib>
#include <cstring>
#include <ctime>
#include <limits>
#include <string>
#include <type_traits>
#include "absl/base/attributes.h"
#include "absl/base/config.h"
#include "absl/base/internal/endian.h"
#include "absl/base/macros.h"
#include "absl/base/nullability.h"
#include "absl/base/optimization.h"
#include "absl/base/port.h"
#include "absl/numeric/bits.h"
#include "absl/numeric/int128.h"
#include "absl/strings/string_view.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
// SimpleAtoi()
//
// Converts the given string (optionally followed or preceded by ASCII
// whitespace) into an integer value, returning `true` if successful. The string
// must reflect a base-10 integer whose value falls within the range of the
// integer type (optionally preceded by a `+` or `-`). If any errors are
// encountered, this function returns `false`, leaving `out` in an unspecified
// state.
template <typename int_type>
ABSL_MUST_USE_RESULT bool SimpleAtoi(absl::string_view str,
absl::Nonnull<int_type*> out);
// SimpleAtof()
//
// Converts the given string (optionally followed or preceded by ASCII
// whitespace) into a float, which may be rounded on overflow or underflow,
// returning `true` if successful.
// See https://en.cppreference.com/w/c/string/byte/strtof for details about the
// allowed formats for `str`, except SimpleAtof() is locale-independent and will
// always use the "C" locale. If any errors are encountered, this function
// returns `false`, leaving `out` in an unspecified state.
ABSL_MUST_USE_RESULT bool SimpleAtof(absl::string_view str,
absl::Nonnull<float*> out);
// SimpleAtod()
//
// Converts the given string (optionally followed or preceded by ASCII
// whitespace) into a double, which may be rounded on overflow or underflow,
// returning `true` if successful.
// See https://en.cppreference.com/w/c/string/byte/strtof for details about the
// allowed formats for `str`, except SimpleAtod is locale-independent and will
// always use the "C" locale. If any errors are encountered, this function
// returns `false`, leaving `out` in an unspecified state.
ABSL_MUST_USE_RESULT bool SimpleAtod(absl::string_view str,
absl::Nonnull<double*> out);
// SimpleAtob()
//
// Converts the given string into a boolean, returning `true` if successful.
// The following case-insensitive strings are interpreted as boolean `true`:
// "true", "t", "yes", "y", "1". The following case-insensitive strings
// are interpreted as boolean `false`: "false", "f", "no", "n", "0". If any
// errors are encountered, this function returns `false`, leaving `out` in an
// unspecified state.
ABSL_MUST_USE_RESULT bool SimpleAtob(absl::string_view str,
absl::Nonnull<bool*> out);
// SimpleHexAtoi()
//
// Converts a hexadecimal string (optionally followed or preceded by ASCII
// whitespace) to an integer, returning `true` if successful. Only valid base-16
// hexadecimal integers whose value falls within the range of the integer type
// (optionally preceded by a `+` or `-`) can be converted. A valid hexadecimal
// value may include both upper and lowercase character symbols, and may
// optionally include a leading "0x" (or "0X") number prefix, which is ignored
// by this function. If any errors are encountered, this function returns
// `false`, leaving `out` in an unspecified state.
template <typename int_type>
ABSL_MUST_USE_RESULT bool SimpleHexAtoi(absl::string_view str,
absl::Nonnull<int_type*> out);
// Overloads of SimpleHexAtoi() for 128 bit integers.
ABSL_MUST_USE_RESULT inline bool SimpleHexAtoi(
absl::string_view str, absl::Nonnull<absl::int128*> out);
ABSL_MUST_USE_RESULT inline bool SimpleHexAtoi(
absl::string_view str, absl::Nonnull<absl::uint128*> out);
ABSL_NAMESPACE_END
} // namespace absl
// End of public API. Implementation details follow.
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace numbers_internal {
// Digit conversion.
ABSL_DLL extern const char kHexChar[17]; // 0123456789abcdef
ABSL_DLL extern const char
kHexTable[513]; // 000102030405060708090a0b0c0d0e0f1011...
// Writes a two-character representation of 'i' to 'buf'. 'i' must be in the
// range 0 <= i < 100, and buf must have space for two characters. Example:
// char buf[2];
// PutTwoDigits(42, buf);
// // buf[0] == '4'
// // buf[1] == '2'
void PutTwoDigits(uint32_t i, absl::Nonnull<char*> buf);
// safe_strto?() functions for implementing SimpleAtoi()
bool safe_strto32_base(absl::string_view text, absl::Nonnull<int32_t*> value,
int base);
bool safe_strto64_base(absl::string_view text, absl::Nonnull<int64_t*> value,
int base);
bool safe_strto128_base(absl::string_view text,
absl::Nonnull<absl::int128*> value, int base);
bool safe_strtou32_base(absl::string_view text, absl::Nonnull<uint32_t*> value,
int base);
bool safe_strtou64_base(absl::string_view text, absl::Nonnull<uint64_t*> value,
int base);
bool safe_strtou128_base(absl::string_view text,
absl::Nonnull<absl::uint128*> value, int base);
static const int kFastToBufferSize = 32;
static const int kSixDigitsToBufferSize = 16;
template <class T>
std::enable_if_t<!std::is_unsigned<T>::value, bool> IsNegative(const T& v) {
return v < T();
}
template <class T>
std::enable_if_t<std::is_unsigned<T>::value, std::false_type> IsNegative(
const T&) {
// The integer is unsigned, so return a compile-time constant.
// This can help the optimizer avoid having to prove bool to be false later.
return std::false_type();
}
template <class T>
std::enable_if_t<std::is_unsigned<std::decay_t<T>>::value, T&&>
UnsignedAbsoluteValue(T&& v ABSL_ATTRIBUTE_LIFETIME_BOUND) {
// The value is unsigned; just return the original.
return std::forward<T>(v);
}
template <class T>
ABSL_ATTRIBUTE_CONST_FUNCTION
std::enable_if_t<!std::is_unsigned<T>::value, std::make_unsigned_t<T>>
UnsignedAbsoluteValue(T v) {
using U = std::make_unsigned_t<T>;
return IsNegative(v) ? U() - static_cast<U>(v) : static_cast<U>(v);
}
// Returns the number of base-10 digits in the given number.
// Note that this strictly counts digits. It does not count the sign.
// The `initial_digits` parameter is the starting point, which is normally equal
// to 1 because the number of digits in 0 is 1 (a special case).
// However, callers may e.g. wish to change it to 2 to account for the sign.
template <typename T>
std::enable_if_t<std::is_unsigned<T>::value, uint32_t> Base10Digits(
T v, const uint32_t initial_digits = 1) {
uint32_t r = initial_digits;
// If code size becomes an issue, the 'if' stage can be removed for a minor
// performance loss.
for (;;) {
if (ABSL_PREDICT_TRUE(v < 10 * 10)) {
r += (v >= 10);
break;
}
if (ABSL_PREDICT_TRUE(v < 1000 * 10)) {
r += (v >= 1000) + 2;
break;
}
if (ABSL_PREDICT_TRUE(v < 100000 * 10)) {
r += (v >= 100000) + 4;
break;
}
r += 6;
v = static_cast<T>(v / 1000000);
}
return r;
}
template <typename T>
std::enable_if_t<std::is_signed<T>::value, uint32_t> Base10Digits(
T v, uint32_t r = 1) {
// Branchlessly add 1 to account for a minus sign.
r += static_cast<uint32_t>(IsNegative(v));
return Base10Digits(UnsignedAbsoluteValue(v), r);
}
// These functions return the number of base-10 digits, but multiplied by -1 if
// the input itself is negative. This is handy and efficient for later usage,
// since the bitwise complement of the result becomes equal to the number of
// characters required.
ABSL_ATTRIBUTE_CONST_FUNCTION int GetNumDigitsOrNegativeIfNegative(
signed char v);
ABSL_ATTRIBUTE_CONST_FUNCTION int GetNumDigitsOrNegativeIfNegative(
unsigned char v);
ABSL_ATTRIBUTE_CONST_FUNCTION int GetNumDigitsOrNegativeIfNegative(
short v); // NOLINT
ABSL_ATTRIBUTE_CONST_FUNCTION int GetNumDigitsOrNegativeIfNegative(
unsigned short v); // NOLINT
ABSL_ATTRIBUTE_CONST_FUNCTION int GetNumDigitsOrNegativeIfNegative(int v);
ABSL_ATTRIBUTE_CONST_FUNCTION int GetNumDigitsOrNegativeIfNegative(
unsigned int v);
ABSL_ATTRIBUTE_CONST_FUNCTION int GetNumDigitsOrNegativeIfNegative(
long v); // NOLINT
ABSL_ATTRIBUTE_CONST_FUNCTION int GetNumDigitsOrNegativeIfNegative(
unsigned long v); // NOLINT
ABSL_ATTRIBUTE_CONST_FUNCTION int GetNumDigitsOrNegativeIfNegative(
long long v); // NOLINT
ABSL_ATTRIBUTE_CONST_FUNCTION int GetNumDigitsOrNegativeIfNegative(
unsigned long long v); // NOLINT
// Helper function for fast formatting of floating-point values.
// The result is the same as printf's "%g", a.k.a. "%.6g"; that is, six
// significant digits are returned, trailing zeros are removed, and numbers
// outside the range 0.0001-999999 are output using scientific notation
// (1.23456e+06). This routine is heavily optimized.
// Required buffer size is `kSixDigitsToBufferSize`.
size_t SixDigitsToBuffer(double d, absl::Nonnull<char*> buffer);
// All of these functions take an output buffer
// as an argument and return a pointer to the last byte they wrote, which is the
// terminating '\0'. At most `kFastToBufferSize` bytes are written.
absl::Nonnull<char*> FastIntToBuffer(int32_t i, absl::Nonnull<char*> buffer);
absl::Nonnull<char*> FastIntToBuffer(uint32_t i, absl::Nonnull<char*> buffer);
absl::Nonnull<char*> FastIntToBuffer(int64_t i, absl::Nonnull<char*> buffer);
absl::Nonnull<char*> FastIntToBuffer(uint64_t i, absl::Nonnull<char*> buffer);
// For enums and integer types that are not an exact match for the types above,
// use templates to call the appropriate one of the four overloads above.
template <typename int_type>
absl::Nonnull<char*> FastIntToBuffer(int_type i, absl::Nonnull<char*> buffer) {
static_assert(sizeof(i) <= 64 / 8,
"FastIntToBuffer works only with 64-bit-or-less integers.");
// TODO(jorg): This signed-ness check is used because it works correctly
// with enums, and it also serves to check that int_type is not a pointer.
// If one day something like std::is_signed<enum E> works, switch to it.
// These conditions are constexpr bools to suppress MSVC warning C4127.
constexpr bool kIsSigned = static_cast<int_type>(1) - 2 < 0;
constexpr bool kUse64Bit = sizeof(i) > 32 / 8;
if (kIsSigned) {
if (kUse64Bit) {
return FastIntToBuffer(static_cast<int64_t>(i), buffer);
} else {
return FastIntToBuffer(static_cast<int32_t>(i), buffer);
}
} else {
if (kUse64Bit) {
return FastIntToBuffer(static_cast<uint64_t>(i), buffer);
} else {
return FastIntToBuffer(static_cast<uint32_t>(i), buffer);
}
}
}
// These functions do NOT add any null-terminator.
// They return a pointer to the beginning of the written string.
// The digit counts provided must *exactly* match the number of base-10 digits
// in the number, or the behavior is undefined.
// (i.e. do NOT count the minus sign, or over- or under-count the digits.)
absl::Nonnull<char*> FastIntToBufferBackward(int32_t i,
absl::Nonnull<char*> buffer_end,
uint32_t exact_digit_count);
absl::Nonnull<char*> FastIntToBufferBackward(uint32_t i,
absl::Nonnull<char*> buffer_end,
uint32_t exact_digit_count);
absl::Nonnull<char*> FastIntToBufferBackward(int64_t i,
absl::Nonnull<char*> buffer_end,
uint32_t exact_digit_count);
absl::Nonnull<char*> FastIntToBufferBackward(uint64_t i,
absl::Nonnull<char*> buffer_end,
uint32_t exact_digit_count);
// For enums and integer types that are not an exact match for the types above,
// use templates to call the appropriate one of the four overloads above.
template <typename int_type>
absl::Nonnull<char*> FastIntToBufferBackward(int_type i,
absl::Nonnull<char*> buffer_end,
uint32_t exact_digit_count) {
static_assert(
sizeof(i) <= 64 / 8,
"FastIntToBufferBackward works only with 64-bit-or-less integers.");
// This signed-ness check is used because it works correctly
// with enums, and it also serves to check that int_type is not a pointer.
// If one day something like std::is_signed<enum E> works, switch to it.
// These conditions are constexpr bools to suppress MSVC warning C4127.
constexpr bool kIsSigned = static_cast<int_type>(1) - 2 < 0;
constexpr bool kUse64Bit = sizeof(i) > 32 / 8;
if (kIsSigned) {
if (kUse64Bit) {
return FastIntToBufferBackward(static_cast<int64_t>(i), buffer_end,
exact_digit_count);
} else {
return FastIntToBufferBackward(static_cast<int32_t>(i), buffer_end,
exact_digit_count);
}
} else {
if (kUse64Bit) {
return FastIntToBufferBackward(static_cast<uint64_t>(i), buffer_end,
exact_digit_count);
} else {
return FastIntToBufferBackward(static_cast<uint32_t>(i), buffer_end,
exact_digit_count);
}
}
}
// Implementation of SimpleAtoi, generalized to support arbitrary base (used
// with base different from 10 elsewhere in Abseil implementation).
template <typename int_type>
ABSL_MUST_USE_RESULT bool safe_strtoi_base(absl::string_view s,
absl::Nonnull<int_type*> out,
int base) {
static_assert(sizeof(*out) == 4 || sizeof(*out) == 8,
"SimpleAtoi works only with 32-bit or 64-bit integers.");
static_assert(!std::is_floating_point<int_type>::value,
"Use SimpleAtof or SimpleAtod instead.");
bool parsed;
// TODO(jorg): This signed-ness check is used because it works correctly
// with enums, and it also serves to check that int_type is not a pointer.
// If one day something like std::is_signed<enum E> works, switch to it.
// These conditions are constexpr bools to suppress MSVC warning C4127.
constexpr bool kIsSigned = static_cast<int_type>(1) - 2 < 0;
constexpr bool kUse64Bit = sizeof(*out) == 64 / 8;
if (kIsSigned) {
if (kUse64Bit) {
int64_t val;
parsed = numbers_internal::safe_strto64_base(s, &val, base);
*out = static_cast<int_type>(val);
} else {
int32_t val;
parsed = numbers_internal::safe_strto32_base(s, &val, base);
*out = static_cast<int_type>(val);
}
} else {
if (kUse64Bit) {
uint64_t val;
parsed = numbers_internal::safe_strtou64_base(s, &val, base);
*out = static_cast<int_type>(val);
} else {
uint32_t val;
parsed = numbers_internal::safe_strtou32_base(s, &val, base);
*out = static_cast<int_type>(val);
}
}
return parsed;
}
// FastHexToBufferZeroPad16()
//
// Outputs `val` into `out` as if by `snprintf(out, 17, "%016x", val)` but
// without the terminating null character. Thus `out` must be of length >= 16.
// Returns the number of non-pad digits of the output (it can never be zero
// since 0 has one digit).
inline size_t FastHexToBufferZeroPad16(uint64_t val, absl::Nonnull<char*> out) {
#ifdef ABSL_INTERNAL_HAVE_SSSE3
uint64_t be = absl::big_endian::FromHost64(val);
const auto kNibbleMask = _mm_set1_epi8(0xf);
const auto kHexDigits = _mm_setr_epi8('0', '1', '2', '3', '4', '5', '6', '7',
'8', '9', 'a', 'b', 'c', 'd', 'e', 'f');
auto v = _mm_loadl_epi64(reinterpret_cast<__m128i*>(&be)); // load lo dword
auto v4 = _mm_srli_epi64(v, 4); // shift 4 right
auto il = _mm_unpacklo_epi8(v4, v); // interleave bytes
auto m = _mm_and_si128(il, kNibbleMask); // mask out nibbles
auto hexchars = _mm_shuffle_epi8(kHexDigits, m); // hex chars
_mm_storeu_si128(reinterpret_cast<__m128i*>(out), hexchars);
#else
for (int i = 0; i < 8; ++i) {
auto byte = (val >> (56 - 8 * i)) & 0xFF;
auto* hex = &absl::numbers_internal::kHexTable[byte * 2];
std::memcpy(out + 2 * i, hex, 2);
}
#endif
// | 0x1 so that even 0 has 1 digit.
return 16 - static_cast<size_t>(countl_zero(val | 0x1) / 4);
}
} // namespace numbers_internal
template <typename int_type>
ABSL_MUST_USE_RESULT bool SimpleAtoi(absl::string_view str,
absl::Nonnull<int_type*> out) {
return numbers_internal::safe_strtoi_base(str, out, 10);
}
ABSL_MUST_USE_RESULT inline bool SimpleAtoi(absl::string_view str,
absl::Nonnull<absl::int128*> out) {
return numbers_internal::safe_strto128_base(str, out, 10);
}
ABSL_MUST_USE_RESULT inline bool SimpleAtoi(absl::string_view str,
absl::Nonnull<absl::uint128*> out) {
return numbers_internal::safe_strtou128_base(str, out, 10);
}
template <typename int_type>
ABSL_MUST_USE_RESULT bool SimpleHexAtoi(absl::string_view str,
absl::Nonnull<int_type*> out) {
return numbers_internal::safe_strtoi_base(str, out, 16);
}
ABSL_MUST_USE_RESULT inline bool SimpleHexAtoi(
absl::string_view str, absl::Nonnull<absl::int128*> out) {
return numbers_internal::safe_strto128_base(str, out, 16);
}
ABSL_MUST_USE_RESULT inline bool SimpleHexAtoi(
absl::string_view str, absl::Nonnull<absl::uint128*> out) {
return numbers_internal::safe_strtou128_base(str, out, 16);
}
ABSL_NAMESPACE_END
} // namespace absl
#endif // ABSL_STRINGS_NUMBERS_H_
|