aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/restricted/abseil-cpp/absl/random/uniform_int_distribution.h
blob: fae80252e39b5e9456ba929aba0c4cd82329395b (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//      https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// -----------------------------------------------------------------------------
// File: uniform_int_distribution.h
// -----------------------------------------------------------------------------
//
// This header defines a class for representing a uniform integer distribution
// over the closed (inclusive) interval [a,b]. You use this distribution in
// combination with an Abseil random bit generator to produce random values
// according to the rules of the distribution.
//
// `absl::uniform_int_distribution` is a drop-in replacement for the C++11
// `std::uniform_int_distribution` [rand.dist.uni.int] but is considerably
// faster than the libstdc++ implementation.

#ifndef ABSL_RANDOM_UNIFORM_INT_DISTRIBUTION_H_
#define ABSL_RANDOM_UNIFORM_INT_DISTRIBUTION_H_

#include <cassert>
#include <istream>
#include <limits>
#include <type_traits>

#include "absl/base/optimization.h"
#include "absl/random/internal/fast_uniform_bits.h"
#include "absl/random/internal/iostream_state_saver.h"
#include "absl/random/internal/traits.h"
#include "absl/random/internal/wide_multiply.h"

namespace absl {
ABSL_NAMESPACE_BEGIN

// absl::uniform_int_distribution<T>
//
// This distribution produces random integer values uniformly distributed in the
// closed (inclusive) interval [a, b].
//
// Example:
//
//   absl::BitGen gen;
//
//   // Use the distribution to produce a value between 1 and 6, inclusive.
//   int die_roll = absl::uniform_int_distribution<int>(1, 6)(gen);
//
template <typename IntType = int>
class uniform_int_distribution {
 private:
  using unsigned_type =
      typename random_internal::make_unsigned_bits<IntType>::type;

 public:
  using result_type = IntType;

  class param_type {
   public:
    using distribution_type = uniform_int_distribution;

    explicit param_type(
        result_type lo = 0,
        result_type hi = (std::numeric_limits<result_type>::max)())
        : lo_(lo),
          range_(static_cast<unsigned_type>(hi) -
                 static_cast<unsigned_type>(lo)) {
      // [rand.dist.uni.int] precondition 2
      assert(lo <= hi);
    }

    result_type a() const { return lo_; }
    result_type b() const {
      return static_cast<result_type>(static_cast<unsigned_type>(lo_) + range_);
    }

    friend bool operator==(const param_type& a, const param_type& b) {
      return a.lo_ == b.lo_ && a.range_ == b.range_;
    }

    friend bool operator!=(const param_type& a, const param_type& b) {
      return !(a == b);
    }

   private:
    friend class uniform_int_distribution;
    unsigned_type range() const { return range_; }

    result_type lo_;
    unsigned_type range_;

    static_assert(random_internal::IsIntegral<result_type>::value,
                  "Class-template absl::uniform_int_distribution<> must be "
                  "parameterized using an integral type.");
  };  // param_type

  uniform_int_distribution() : uniform_int_distribution(0) {}

  explicit uniform_int_distribution(
      result_type lo,
      result_type hi = (std::numeric_limits<result_type>::max)())
      : param_(lo, hi) {}

  explicit uniform_int_distribution(const param_type& param) : param_(param) {}

  // uniform_int_distribution<T>::reset()
  //
  // Resets the uniform int distribution. Note that this function has no effect
  // because the distribution already produces independent values.
  void reset() {}

  template <typename URBG>
  result_type operator()(URBG& gen) {  // NOLINT(runtime/references)
    return (*this)(gen, param());
  }

  template <typename URBG>
  result_type operator()(
      URBG& gen, const param_type& param) {  // NOLINT(runtime/references)
    return static_cast<result_type>(param.a() + Generate(gen, param.range()));
  }

  result_type a() const { return param_.a(); }
  result_type b() const { return param_.b(); }

  param_type param() const { return param_; }
  void param(const param_type& params) { param_ = params; }

  result_type(min)() const { return a(); }
  result_type(max)() const { return b(); }

  friend bool operator==(const uniform_int_distribution& a,
                         const uniform_int_distribution& b) {
    return a.param_ == b.param_;
  }
  friend bool operator!=(const uniform_int_distribution& a,
                         const uniform_int_distribution& b) {
    return !(a == b);
  }

 private:
  // Generates a value in the *closed* interval [0, R]
  template <typename URBG>
  unsigned_type Generate(URBG& g,  // NOLINT(runtime/references)
                         unsigned_type R);
  param_type param_;
};

// -----------------------------------------------------------------------------
// Implementation details follow
// -----------------------------------------------------------------------------
template <typename CharT, typename Traits, typename IntType>
std::basic_ostream<CharT, Traits>& operator<<(
    std::basic_ostream<CharT, Traits>& os,
    const uniform_int_distribution<IntType>& x) {
  using stream_type =
      typename random_internal::stream_format_type<IntType>::type;
  auto saver = random_internal::make_ostream_state_saver(os);
  os << static_cast<stream_type>(x.a()) << os.fill()
     << static_cast<stream_type>(x.b());
  return os;
}

template <typename CharT, typename Traits, typename IntType>
std::basic_istream<CharT, Traits>& operator>>(
    std::basic_istream<CharT, Traits>& is,
    uniform_int_distribution<IntType>& x) {
  using param_type = typename uniform_int_distribution<IntType>::param_type;
  using result_type = typename uniform_int_distribution<IntType>::result_type;
  using stream_type =
      typename random_internal::stream_format_type<IntType>::type;

  stream_type a;
  stream_type b;

  auto saver = random_internal::make_istream_state_saver(is);
  is >> a >> b;
  if (!is.fail()) {
    x.param(
        param_type(static_cast<result_type>(a), static_cast<result_type>(b)));
  }
  return is;
}

template <typename IntType>
template <typename URBG>
typename random_internal::make_unsigned_bits<IntType>::type
uniform_int_distribution<IntType>::Generate(
    URBG& g,  // NOLINT(runtime/references)
    typename random_internal::make_unsigned_bits<IntType>::type R) {
  random_internal::FastUniformBits<unsigned_type> fast_bits;
  unsigned_type bits = fast_bits(g);
  const unsigned_type Lim = R + 1;
  if ((R & Lim) == 0) {
    // If the interval's length is a power of two range, just take the low bits.
    return bits & R;
  }

  // Generates a uniform variate on [0, Lim) using fixed-point multiplication.
  // The above fast-path guarantees that Lim is representable in unsigned_type.
  //
  // Algorithm adapted from
  // http://lemire.me/blog/2016/06/30/fast-random-shuffling/, with added
  // explanation.
  //
  // The algorithm creates a uniform variate `bits` in the interval [0, 2^N),
  // and treats it as the fractional part of a fixed-point real value in [0, 1),
  // multiplied by 2^N.  For example, 0.25 would be represented as 2^(N - 2),
  // because 2^N * 0.25 == 2^(N - 2).
  //
  // Next, `bits` and `Lim` are multiplied with a wide-multiply to bring the
  // value into the range [0, Lim).  The integral part (the high word of the
  // multiplication result) is then very nearly the desired result.  However,
  // this is not quite accurate; viewing the multiplication result as one
  // double-width integer, the resulting values for the sample are mapped as
  // follows:
  //
  // If the result lies in this interval:       Return this value:
  //        [0, 2^N)                                    0
  //        [2^N, 2 * 2^N)                              1
  //        ...                                         ...
  //        [K * 2^N, (K + 1) * 2^N)                    K
  //        ...                                         ...
  //        [(Lim - 1) * 2^N, Lim * 2^N)                Lim - 1
  //
  // While all of these intervals have the same size, the result of `bits * Lim`
  // must be a multiple of `Lim`, and not all of these intervals contain the
  // same number of multiples of `Lim`.  In particular, some contain
  // `F = floor(2^N / Lim)` and some contain `F + 1 = ceil(2^N / Lim)`.  This
  // difference produces a small nonuniformity, which is corrected by applying
  // rejection sampling to one of the values in the "larger intervals" (i.e.,
  // the intervals containing `F + 1` multiples of `Lim`.
  //
  // An interval contains `F + 1` multiples of `Lim` if and only if its smallest
  // value modulo 2^N is less than `2^N % Lim`.  The unique value satisfying
  // this property is used as the one for rejection.  That is, a value of
  // `bits * Lim` is rejected if `(bit * Lim) % 2^N < (2^N % Lim)`.

  using helper = random_internal::wide_multiply<unsigned_type>;
  auto product = helper::multiply(bits, Lim);

  // Two optimizations here:
  // * Rejection occurs with some probability less than 1/2, and for reasonable
  //   ranges considerably less (in particular, less than 1/(F+1)), so
  //   ABSL_PREDICT_FALSE is apt.
  // * `Lim` is an overestimate of `threshold`, and doesn't require a divide.
  if (ABSL_PREDICT_FALSE(helper::lo(product) < Lim)) {
    // This quantity is exactly equal to `2^N % Lim`, but does not require high
    // precision calculations: `2^N % Lim` is congruent to `(2^N - Lim) % Lim`.
    // Ideally this could be expressed simply as `-X` rather than `2^N - X`, but
    // for types smaller than int, this calculation is incorrect due to integer
    // promotion rules.
    const unsigned_type threshold =
        ((std::numeric_limits<unsigned_type>::max)() - Lim + 1) % Lim;
    while (helper::lo(product) < threshold) {
      bits = fast_bits(g);
      product = helper::multiply(bits, Lim);
    }
  }

  return helper::hi(product);
}

ABSL_NAMESPACE_END
}  // namespace absl

#endif  // ABSL_RANDOM_UNIFORM_INT_DISTRIBUTION_H_