1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
|
//
// Copyright 2019 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef ABSL_FLAGS_INTERNAL_FLAG_H_
#define ABSL_FLAGS_INTERNAL_FLAG_H_
#include <stddef.h>
#include <stdint.h>
#include <atomic>
#include <cstring>
#include <memory>
#include <string>
#include <type_traits>
#include <typeinfo>
#include "absl/base/attributes.h"
#include "absl/base/call_once.h"
#include "absl/base/casts.h"
#include "absl/base/config.h"
#include "absl/base/optimization.h"
#include "absl/base/thread_annotations.h"
#include "absl/flags/commandlineflag.h"
#include "absl/flags/config.h"
#include "absl/flags/internal/commandlineflag.h"
#include "absl/flags/internal/registry.h"
#include "absl/flags/internal/sequence_lock.h"
#include "absl/flags/marshalling.h"
#include "absl/meta/type_traits.h"
#include "absl/strings/string_view.h"
#include "absl/synchronization/mutex.h"
#include "absl/utility/utility.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
///////////////////////////////////////////////////////////////////////////////
// Forward declaration of absl::Flag<T> public API.
namespace flags_internal {
template <typename T>
class Flag;
} // namespace flags_internal
template <typename T>
using Flag = flags_internal::Flag<T>;
template <typename T>
ABSL_MUST_USE_RESULT T GetFlag(const absl::Flag<T>& flag);
template <typename T>
void SetFlag(absl::Flag<T>* flag, const T& v);
template <typename T, typename V>
void SetFlag(absl::Flag<T>* flag, const V& v);
template <typename U>
const CommandLineFlag& GetFlagReflectionHandle(const absl::Flag<U>& f);
///////////////////////////////////////////////////////////////////////////////
// Flag value type operations, eg., parsing, copying, etc. are provided
// by function specific to that type with a signature matching FlagOpFn.
namespace flags_internal {
enum class FlagOp {
kAlloc,
kDelete,
kCopy,
kCopyConstruct,
kSizeof,
kFastTypeId,
kRuntimeTypeId,
kParse,
kUnparse,
kValueOffset,
};
using FlagOpFn = void* (*)(FlagOp, const void*, void*, void*);
// Forward declaration for Flag value specific operations.
template <typename T>
void* FlagOps(FlagOp op, const void* v1, void* v2, void* v3);
// Allocate aligned memory for a flag value.
inline void* Alloc(FlagOpFn op) {
return op(FlagOp::kAlloc, nullptr, nullptr, nullptr);
}
// Deletes memory interpreting obj as flag value type pointer.
inline void Delete(FlagOpFn op, void* obj) {
op(FlagOp::kDelete, nullptr, obj, nullptr);
}
// Copies src to dst interpreting as flag value type pointers.
inline void Copy(FlagOpFn op, const void* src, void* dst) {
op(FlagOp::kCopy, src, dst, nullptr);
}
// Construct a copy of flag value in a location pointed by dst
// based on src - pointer to the flag's value.
inline void CopyConstruct(FlagOpFn op, const void* src, void* dst) {
op(FlagOp::kCopyConstruct, src, dst, nullptr);
}
// Makes a copy of flag value pointed by obj.
inline void* Clone(FlagOpFn op, const void* obj) {
void* res = flags_internal::Alloc(op);
flags_internal::CopyConstruct(op, obj, res);
return res;
}
// Returns true if parsing of input text is successful.
inline bool Parse(FlagOpFn op, absl::string_view text, void* dst,
std::string* error) {
return op(FlagOp::kParse, &text, dst, error) != nullptr;
}
// Returns string representing supplied value.
inline std::string Unparse(FlagOpFn op, const void* val) {
std::string result;
op(FlagOp::kUnparse, val, &result, nullptr);
return result;
}
// Returns size of flag value type.
inline size_t Sizeof(FlagOpFn op) {
// This sequence of casts reverses the sequence from
// `flags_internal::FlagOps()`
return static_cast<size_t>(reinterpret_cast<intptr_t>(
op(FlagOp::kSizeof, nullptr, nullptr, nullptr)));
}
// Returns fast type id corresponding to the value type.
inline FlagFastTypeId FastTypeId(FlagOpFn op) {
return reinterpret_cast<FlagFastTypeId>(
op(FlagOp::kFastTypeId, nullptr, nullptr, nullptr));
}
// Returns fast type id corresponding to the value type.
inline const std::type_info* RuntimeTypeId(FlagOpFn op) {
return reinterpret_cast<const std::type_info*>(
op(FlagOp::kRuntimeTypeId, nullptr, nullptr, nullptr));
}
// Returns offset of the field value_ from the field impl_ inside of
// absl::Flag<T> data. Given FlagImpl pointer p you can get the
// location of the corresponding value as:
// reinterpret_cast<char*>(p) + ValueOffset().
inline ptrdiff_t ValueOffset(FlagOpFn op) {
// This sequence of casts reverses the sequence from
// `flags_internal::FlagOps()`
return static_cast<ptrdiff_t>(reinterpret_cast<intptr_t>(
op(FlagOp::kValueOffset, nullptr, nullptr, nullptr)));
}
// Returns an address of RTTI's typeid(T).
template <typename T>
inline const std::type_info* GenRuntimeTypeId() {
#ifdef ABSL_INTERNAL_HAS_RTTI
return &typeid(T);
#else
return nullptr;
#endif
}
///////////////////////////////////////////////////////////////////////////////
// Flag help auxiliary structs.
// This is help argument for absl::Flag encapsulating the string literal pointer
// or pointer to function generating it as well as enum descriminating two
// cases.
using HelpGenFunc = std::string (*)();
template <size_t N>
struct FixedCharArray {
char value[N];
template <size_t... I>
static constexpr FixedCharArray<N> FromLiteralString(
absl::string_view str, absl::index_sequence<I...>) {
return (void)str, FixedCharArray<N>({{str[I]..., '\0'}});
}
};
template <typename Gen, size_t N = Gen::Value().size()>
constexpr FixedCharArray<N + 1> HelpStringAsArray(int) {
return FixedCharArray<N + 1>::FromLiteralString(
Gen::Value(), absl::make_index_sequence<N>{});
}
template <typename Gen>
constexpr std::false_type HelpStringAsArray(char) {
return std::false_type{};
}
union FlagHelpMsg {
constexpr explicit FlagHelpMsg(const char* help_msg) : literal(help_msg) {}
constexpr explicit FlagHelpMsg(HelpGenFunc help_gen) : gen_func(help_gen) {}
const char* literal;
HelpGenFunc gen_func;
};
enum class FlagHelpKind : uint8_t { kLiteral = 0, kGenFunc = 1 };
struct FlagHelpArg {
FlagHelpMsg source;
FlagHelpKind kind;
};
extern const char kStrippedFlagHelp[];
// These two HelpArg overloads allows us to select at compile time one of two
// way to pass Help argument to absl::Flag. We'll be passing
// AbslFlagHelpGenFor##name as Gen and integer 0 as a single argument to prefer
// first overload if possible. If help message is evaluatable on constexpr
// context We'll be able to make FixedCharArray out of it and we'll choose first
// overload. In this case the help message expression is immediately evaluated
// and is used to construct the absl::Flag. No additional code is generated by
// ABSL_FLAG Otherwise SFINAE kicks in and first overload is dropped from the
// consideration, in which case the second overload will be used. The second
// overload does not attempt to evaluate the help message expression
// immediately and instead delays the evaluation by returning the function
// pointer (&T::NonConst) generating the help message when necessary. This is
// evaluatable in constexpr context, but the cost is an extra function being
// generated in the ABSL_FLAG code.
template <typename Gen, size_t N>
constexpr FlagHelpArg HelpArg(const FixedCharArray<N>& value) {
return {FlagHelpMsg(value.value), FlagHelpKind::kLiteral};
}
template <typename Gen>
constexpr FlagHelpArg HelpArg(std::false_type) {
return {FlagHelpMsg(&Gen::NonConst), FlagHelpKind::kGenFunc};
}
///////////////////////////////////////////////////////////////////////////////
// Flag default value auxiliary structs.
// Signature for the function generating the initial flag value (usually
// based on default value supplied in flag's definition)
using FlagDfltGenFunc = void (*)(void*);
union FlagDefaultSrc {
constexpr explicit FlagDefaultSrc(FlagDfltGenFunc gen_func_arg)
: gen_func(gen_func_arg) {}
#define ABSL_FLAGS_INTERNAL_DFLT_FOR_TYPE(T, name) \
T name##_value; \
constexpr explicit FlagDefaultSrc(T value) : name##_value(value) {} // NOLINT
ABSL_FLAGS_INTERNAL_BUILTIN_TYPES(ABSL_FLAGS_INTERNAL_DFLT_FOR_TYPE)
#undef ABSL_FLAGS_INTERNAL_DFLT_FOR_TYPE
void* dynamic_value;
FlagDfltGenFunc gen_func;
};
enum class FlagDefaultKind : uint8_t {
kDynamicValue = 0,
kGenFunc = 1,
kOneWord = 2 // for default values UP to one word in size
};
struct FlagDefaultArg {
FlagDefaultSrc source;
FlagDefaultKind kind;
};
// This struct and corresponding overload to InitDefaultValue are used to
// facilitate usage of {} as default value in ABSL_FLAG macro.
// TODO(rogeeff): Fix handling types with explicit constructors.
struct EmptyBraces {};
template <typename T>
constexpr T InitDefaultValue(T t) {
return t;
}
template <typename T>
constexpr T InitDefaultValue(EmptyBraces) {
return T{};
}
template <typename ValueT, typename GenT,
typename std::enable_if<std::is_integral<ValueT>::value, int>::type =
((void)GenT{}, 0)>
constexpr FlagDefaultArg DefaultArg(int) {
return {FlagDefaultSrc(GenT{}.value), FlagDefaultKind::kOneWord};
}
template <typename ValueT, typename GenT>
constexpr FlagDefaultArg DefaultArg(char) {
return {FlagDefaultSrc(&GenT::Gen), FlagDefaultKind::kGenFunc};
}
///////////////////////////////////////////////////////////////////////////////
// Flag storage selector traits. Each trait indicates what kind of storage kind
// to use for the flag value.
template <typename T>
using FlagUseValueAndInitBitStorage =
std::integral_constant<bool, std::is_trivially_copyable<T>::value &&
std::is_default_constructible<T>::value &&
(sizeof(T) < 8)>;
template <typename T>
using FlagUseOneWordStorage =
std::integral_constant<bool, std::is_trivially_copyable<T>::value &&
(sizeof(T) <= 8)>;
template <class T>
using FlagUseSequenceLockStorage =
std::integral_constant<bool, std::is_trivially_copyable<T>::value &&
(sizeof(T) > 8)>;
enum class FlagValueStorageKind : uint8_t {
kValueAndInitBit = 0,
kOneWordAtomic = 1,
kSequenceLocked = 2,
kHeapAllocated = 3,
};
// This constexpr function returns the storage kind for the given flag value
// type.
template <typename T>
static constexpr FlagValueStorageKind StorageKind() {
return FlagUseValueAndInitBitStorage<T>::value
? FlagValueStorageKind::kValueAndInitBit
: FlagUseOneWordStorage<T>::value
? FlagValueStorageKind::kOneWordAtomic
: FlagUseSequenceLockStorage<T>::value
? FlagValueStorageKind::kSequenceLocked
: FlagValueStorageKind::kHeapAllocated;
}
// This is a base class for the storage classes used by kOneWordAtomic and
// kValueAndInitBit storage kinds. It literally just stores the one word value
// as an atomic. By default, it is initialized to a magic value that is unlikely
// a valid value for the flag value type.
struct FlagOneWordValue {
constexpr static int64_t Uninitialized() {
return static_cast<int64_t>(0xababababababababll);
}
constexpr FlagOneWordValue() : value(Uninitialized()) {}
constexpr explicit FlagOneWordValue(int64_t v) : value(v) {}
std::atomic<int64_t> value;
};
// This class represents a memory layout used by kValueAndInitBit storage kind.
template <typename T>
struct alignas(8) FlagValueAndInitBit {
T value;
// Use an int instead of a bool to guarantee that a non-zero value has
// a bit set.
uint8_t init;
};
// This class implements an aligned pointer with two options stored via masks
// in unused bits of the pointer value (due to alignment requirement).
// - IsUnprotectedReadCandidate - indicates that the value can be switched to
// unprotected read without a lock.
// - HasBeenRead - indicates that the value has been read at least once.
// - AllowsUnprotectedRead - combination of the two options above and indicates
// that the value can now be read without a lock.
// Further details of these options and their use is covered in the description
// of the FlagValue<T, FlagValueStorageKind::kHeapAllocated> specialization.
class MaskedPointer {
public:
using mask_t = uintptr_t;
using ptr_t = void*;
static constexpr int RequiredAlignment() { return 4; }
constexpr explicit MaskedPointer(ptr_t rhs) : ptr_(rhs) {}
MaskedPointer(ptr_t rhs, bool is_candidate);
void* Ptr() const {
return reinterpret_cast<void*>(reinterpret_cast<mask_t>(ptr_) &
kPtrValueMask);
}
bool AllowsUnprotectedRead() const {
return (reinterpret_cast<mask_t>(ptr_) & kAllowsUnprotectedRead) ==
kAllowsUnprotectedRead;
}
bool IsUnprotectedReadCandidate() const;
bool HasBeenRead() const;
void Set(FlagOpFn op, const void* src, bool is_candidate);
void MarkAsRead();
private:
// Masks
// Indicates that the flag value either default or originated from command
// line.
static constexpr mask_t kUnprotectedReadCandidate = 0x1u;
// Indicates that flag has been read.
static constexpr mask_t kHasBeenRead = 0x2u;
static constexpr mask_t kAllowsUnprotectedRead =
kUnprotectedReadCandidate | kHasBeenRead;
static constexpr mask_t kPtrValueMask = ~kAllowsUnprotectedRead;
void ApplyMask(mask_t mask);
bool CheckMask(mask_t mask) const;
ptr_t ptr_;
};
// This class implements a type erased storage of the heap allocated flag value.
// It is used as a base class for the storage class for kHeapAllocated storage
// kind. The initial_buffer is expected to have an alignment of at least
// MaskedPointer::RequiredAlignment(), so that the bits used by the
// MaskedPointer to store masks are set to 0. This guarantees that value starts
// in an uninitialized state.
struct FlagMaskedPointerValue {
constexpr explicit FlagMaskedPointerValue(MaskedPointer::ptr_t initial_buffer)
: value(MaskedPointer(initial_buffer)) {}
std::atomic<MaskedPointer> value;
};
// This is the forward declaration for the template that represents a storage
// for the flag values. This template is expected to be explicitly specialized
// for each storage kind and it does not have a generic default
// implementation.
template <typename T,
FlagValueStorageKind Kind = flags_internal::StorageKind<T>()>
struct FlagValue;
// This specialization represents the storage of flag values types with the
// kValueAndInitBit storage kind. It is based on the FlagOneWordValue class
// and relies on memory layout in FlagValueAndInitBit<T> to indicate that the
// value has been initialized or not.
template <typename T>
struct FlagValue<T, FlagValueStorageKind::kValueAndInitBit> : FlagOneWordValue {
constexpr FlagValue() : FlagOneWordValue(0) {}
bool Get(const SequenceLock&, T& dst) const {
int64_t storage = value.load(std::memory_order_acquire);
if (ABSL_PREDICT_FALSE(storage == 0)) {
// This assert is to ensure that the initialization inside FlagImpl::Init
// is able to set init member correctly.
static_assert(offsetof(FlagValueAndInitBit<T>, init) == sizeof(T),
"Unexpected memory layout of FlagValueAndInitBit");
return false;
}
dst = absl::bit_cast<FlagValueAndInitBit<T>>(storage).value;
return true;
}
};
// This specialization represents the storage of flag values types with the
// kOneWordAtomic storage kind. It is based on the FlagOneWordValue class
// and relies on the magic uninitialized state of default constructed instead of
// FlagOneWordValue to indicate that the value has been initialized or not.
template <typename T>
struct FlagValue<T, FlagValueStorageKind::kOneWordAtomic> : FlagOneWordValue {
constexpr FlagValue() : FlagOneWordValue() {}
bool Get(const SequenceLock&, T& dst) const {
int64_t one_word_val = value.load(std::memory_order_acquire);
if (ABSL_PREDICT_FALSE(one_word_val == FlagOneWordValue::Uninitialized())) {
return false;
}
std::memcpy(&dst, static_cast<const void*>(&one_word_val), sizeof(T));
return true;
}
};
// This specialization represents the storage of flag values types with the
// kSequenceLocked storage kind. This storage is used by trivially copyable
// types with size greater than 8 bytes. This storage relies on uninitialized
// state of the SequenceLock to indicate that the value has been initialized or
// not. This storage also provides lock-free read access to the underlying
// value once it is initialized.
template <typename T>
struct FlagValue<T, FlagValueStorageKind::kSequenceLocked> {
bool Get(const SequenceLock& lock, T& dst) const {
return lock.TryRead(&dst, value_words, sizeof(T));
}
static constexpr int kNumWords =
flags_internal::AlignUp(sizeof(T), sizeof(uint64_t)) / sizeof(uint64_t);
alignas(T) alignas(
std::atomic<uint64_t>) std::atomic<uint64_t> value_words[kNumWords];
};
// This specialization represents the storage of flag values types with the
// kHeapAllocated storage kind. This is a storage of last resort and is used
// if none of other storage kinds are applicable.
//
// Generally speaking the values with this storage kind can't be accessed
// atomically and thus can't be read without holding a lock. If we would ever
// want to avoid the lock, we'd need to leak the old value every time new flag
// value is being set (since we are in danger of having a race condition
// otherwise).
//
// Instead of doing that, this implementation attempts to cater to some common
// use cases by allowing at most 2 values to be leaked - default value and
// value set from the command line.
//
// This specialization provides an initial buffer for the first flag value. This
// is where the default value is going to be stored. We attempt to reuse this
// buffer if possible, including storing the value set from the command line
// there.
//
// As long as we only read this value, we can access it without a lock (in
// practice we still use the lock for the very first read to be able set
// "has been read" option on this flag).
//
// If flag is specified on the command line we store the parsed value either
// in the internal buffer (if the default value never been read) or we leak the
// default value and allocate the new storage for the parse value. This value is
// also a candidate for an unprotected read. If flag is set programmatically
// after the command line is parsed, the storage for this value is going to be
// leaked. Note that in both scenarios we are not going to have a real leak.
// Instead we'll store the leaked value pointers in the internal freelist to
// avoid triggering the memory leak checker complains.
//
// If the flag is ever set programmatically, it stops being the candidate for an
// unprotected read, and any follow up access to the flag value requires a lock.
// Note that if the value if set programmatically before the command line is
// parsed, we can switch back to enabling unprotected reads for that value.
template <typename T>
struct FlagValue<T, FlagValueStorageKind::kHeapAllocated>
: FlagMaskedPointerValue {
// We const initialize the value with unmasked pointer to the internal buffer,
// making sure it is not a candidate for unprotected read. This way we can
// ensure Init is done before any access to the flag value.
constexpr FlagValue() : FlagMaskedPointerValue(&buffer[0]) {}
bool Get(const SequenceLock&, T& dst) const {
MaskedPointer ptr_value = value.load(std::memory_order_acquire);
if (ABSL_PREDICT_TRUE(ptr_value.AllowsUnprotectedRead())) {
::new (static_cast<void*>(&dst)) T(*static_cast<T*>(ptr_value.Ptr()));
return true;
}
return false;
}
alignas(MaskedPointer::RequiredAlignment()) alignas(
T) char buffer[sizeof(T)]{};
};
///////////////////////////////////////////////////////////////////////////////
// Flag callback auxiliary structs.
// Signature for the mutation callback used by watched Flags
// The callback is noexcept.
// TODO(rogeeff): add noexcept after C++17 support is added.
using FlagCallbackFunc = void (*)();
struct FlagCallback {
FlagCallbackFunc func;
absl::Mutex guard; // Guard for concurrent callback invocations.
};
///////////////////////////////////////////////////////////////////////////////
// Flag implementation, which does not depend on flag value type.
// The class encapsulates the Flag's data and access to it.
struct DynValueDeleter {
explicit DynValueDeleter(FlagOpFn op_arg = nullptr);
void operator()(void* ptr) const;
FlagOpFn op;
};
class FlagState;
// These are only used as constexpr global objects.
// They do not use a virtual destructor to simplify their implementation.
// They are not destroyed except at program exit, so leaks do not matter.
#if defined(__GNUC__) && !defined(__clang__)
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wnon-virtual-dtor"
#endif
class FlagImpl final : public CommandLineFlag {
public:
constexpr FlagImpl(const char* name, const char* filename, FlagOpFn op,
FlagHelpArg help, FlagValueStorageKind value_kind,
FlagDefaultArg default_arg)
: name_(name),
filename_(filename),
op_(op),
help_(help.source),
help_source_kind_(static_cast<uint8_t>(help.kind)),
value_storage_kind_(static_cast<uint8_t>(value_kind)),
def_kind_(static_cast<uint8_t>(default_arg.kind)),
modified_(false),
on_command_line_(false),
callback_(nullptr),
default_value_(default_arg.source),
data_guard_{} {}
// Constant access methods
int64_t ReadOneWord() const ABSL_LOCKS_EXCLUDED(*DataGuard());
bool ReadOneBool() const ABSL_LOCKS_EXCLUDED(*DataGuard());
void Read(void* dst) const override ABSL_LOCKS_EXCLUDED(*DataGuard());
void Read(bool* value) const ABSL_LOCKS_EXCLUDED(*DataGuard()) {
*value = ReadOneBool();
}
template <typename T,
absl::enable_if_t<flags_internal::StorageKind<T>() ==
FlagValueStorageKind::kOneWordAtomic,
int> = 0>
void Read(T* value) const ABSL_LOCKS_EXCLUDED(*DataGuard()) {
int64_t v = ReadOneWord();
std::memcpy(value, static_cast<const void*>(&v), sizeof(T));
}
template <typename T,
typename std::enable_if<flags_internal::StorageKind<T>() ==
FlagValueStorageKind::kValueAndInitBit,
int>::type = 0>
void Read(T* value) const ABSL_LOCKS_EXCLUDED(*DataGuard()) {
*value = absl::bit_cast<FlagValueAndInitBit<T>>(ReadOneWord()).value;
}
// Mutating access methods
void Write(const void* src) ABSL_LOCKS_EXCLUDED(*DataGuard());
// Interfaces to operate on callbacks.
void SetCallback(const FlagCallbackFunc mutation_callback)
ABSL_LOCKS_EXCLUDED(*DataGuard());
void InvokeCallback() const ABSL_EXCLUSIVE_LOCKS_REQUIRED(*DataGuard());
// Used in read/write operations to validate source/target has correct type.
// For example if flag is declared as absl::Flag<int> FLAGS_foo, a call to
// absl::GetFlag(FLAGS_foo) validates that the type of FLAGS_foo is indeed
// int. To do that we pass the assumed type id (which is deduced from type
// int) as an argument `type_id`, which is in turn is validated against the
// type id stored in flag object by flag definition statement.
void AssertValidType(FlagFastTypeId type_id,
const std::type_info* (*gen_rtti)()) const;
private:
template <typename T>
friend class Flag;
friend class FlagState;
// Ensures that `data_guard_` is initialized and returns it.
absl::Mutex* DataGuard() const
ABSL_LOCK_RETURNED(reinterpret_cast<absl::Mutex*>(data_guard_));
// Returns heap allocated value of type T initialized with default value.
std::unique_ptr<void, DynValueDeleter> MakeInitValue() const
ABSL_EXCLUSIVE_LOCKS_REQUIRED(*DataGuard());
// Flag initialization called via absl::call_once.
void Init();
// Offset value access methods. One per storage kind. These methods to not
// respect const correctness, so be very careful using them.
// This is a shared helper routine which encapsulates most of the magic. Since
// it is only used inside the three routines below, which are defined in
// flag.cc, we can define it in that file as well.
template <typename StorageT>
StorageT* OffsetValue() const;
// The same as above, but used for sequencelock-protected storage.
std::atomic<uint64_t>* AtomicBufferValue() const;
// This is an accessor for a value stored as one word atomic. Returns a
// mutable reference to an atomic value.
std::atomic<int64_t>& OneWordValue() const;
std::atomic<MaskedPointer>& PtrStorage() const;
// Attempts to parse supplied `value` string. If parsing is successful,
// returns new value. Otherwise returns nullptr.
std::unique_ptr<void, DynValueDeleter> TryParse(absl::string_view value,
std::string& err) const
ABSL_EXCLUSIVE_LOCKS_REQUIRED(*DataGuard());
// Stores the flag value based on the pointer to the source.
void StoreValue(const void* src, ValueSource source)
ABSL_EXCLUSIVE_LOCKS_REQUIRED(*DataGuard());
// Copy the flag data, protected by `seq_lock_` into `dst`.
//
// REQUIRES: ValueStorageKind() == kSequenceLocked.
void ReadSequenceLockedData(void* dst) const
ABSL_LOCKS_EXCLUDED(*DataGuard());
FlagHelpKind HelpSourceKind() const {
return static_cast<FlagHelpKind>(help_source_kind_);
}
FlagValueStorageKind ValueStorageKind() const {
return static_cast<FlagValueStorageKind>(value_storage_kind_);
}
FlagDefaultKind DefaultKind() const
ABSL_EXCLUSIVE_LOCKS_REQUIRED(*DataGuard()) {
return static_cast<FlagDefaultKind>(def_kind_);
}
// CommandLineFlag interface implementation
absl::string_view Name() const override;
std::string Filename() const override;
std::string Help() const override;
FlagFastTypeId TypeId() const override;
bool IsSpecifiedOnCommandLine() const override
ABSL_LOCKS_EXCLUDED(*DataGuard());
std::string DefaultValue() const override ABSL_LOCKS_EXCLUDED(*DataGuard());
std::string CurrentValue() const override ABSL_LOCKS_EXCLUDED(*DataGuard());
bool ValidateInputValue(absl::string_view value) const override
ABSL_LOCKS_EXCLUDED(*DataGuard());
void CheckDefaultValueParsingRoundtrip() const override
ABSL_LOCKS_EXCLUDED(*DataGuard());
int64_t ModificationCount() const ABSL_EXCLUSIVE_LOCKS_REQUIRED(*DataGuard());
// Interfaces to save and restore flags to/from persistent state.
// Returns current flag state or nullptr if flag does not support
// saving and restoring a state.
std::unique_ptr<FlagStateInterface> SaveState() override
ABSL_LOCKS_EXCLUDED(*DataGuard());
// Restores the flag state to the supplied state object. If there is
// nothing to restore returns false. Otherwise returns true.
bool RestoreState(const FlagState& flag_state)
ABSL_LOCKS_EXCLUDED(*DataGuard());
bool ParseFrom(absl::string_view value, FlagSettingMode set_mode,
ValueSource source, std::string& error) override
ABSL_LOCKS_EXCLUDED(*DataGuard());
// Immutable flag's state.
// Flags name passed to ABSL_FLAG as second arg.
const char* const name_;
// The file name where ABSL_FLAG resides.
const char* const filename_;
// Type-specific operations vtable.
const FlagOpFn op_;
// Help message literal or function to generate it.
const FlagHelpMsg help_;
// Indicates if help message was supplied as literal or generator func.
const uint8_t help_source_kind_ : 1;
// Kind of storage this flag is using for the flag's value.
const uint8_t value_storage_kind_ : 2;
uint8_t : 0; // The bytes containing the const bitfields must not be
// shared with bytes containing the mutable bitfields.
// Mutable flag's state (guarded by `data_guard_`).
// def_kind_ is not guard by DataGuard() since it is accessed in Init without
// locks.
uint8_t def_kind_ : 2;
// Has this flag's value been modified?
bool modified_ : 1 ABSL_GUARDED_BY(*DataGuard());
// Has this flag been specified on command line.
bool on_command_line_ : 1 ABSL_GUARDED_BY(*DataGuard());
// Unique tag for absl::call_once call to initialize this flag.
absl::once_flag init_control_;
// Sequence lock / mutation counter.
flags_internal::SequenceLock seq_lock_;
// Optional flag's callback and absl::Mutex to guard the invocations.
FlagCallback* callback_ ABSL_GUARDED_BY(*DataGuard());
// Either a pointer to the function generating the default value based on the
// value specified in ABSL_FLAG or pointer to the dynamically set default
// value via SetCommandLineOptionWithMode. def_kind_ is used to distinguish
// these two cases.
FlagDefaultSrc default_value_;
// This is reserved space for an absl::Mutex to guard flag data. It will be
// initialized in FlagImpl::Init via placement new.
// We can't use "absl::Mutex data_guard_", since this class is not literal.
// We do not want to use "absl::Mutex* data_guard_", since this would require
// heap allocation during initialization, which is both slows program startup
// and can fail. Using reserved space + placement new allows us to avoid both
// problems.
alignas(absl::Mutex) mutable char data_guard_[sizeof(absl::Mutex)];
};
#if defined(__GNUC__) && !defined(__clang__)
#pragma GCC diagnostic pop
#endif
///////////////////////////////////////////////////////////////////////////////
// The Flag object parameterized by the flag's value type. This class implements
// flag reflection handle interface.
template <typename T>
class Flag {
public:
constexpr Flag(const char* name, const char* filename, FlagHelpArg help,
const FlagDefaultArg default_arg)
: impl_(name, filename, &FlagOps<T>, help,
flags_internal::StorageKind<T>(), default_arg),
value_() {}
// CommandLineFlag interface
absl::string_view Name() const { return impl_.Name(); }
std::string Filename() const { return impl_.Filename(); }
std::string Help() const { return impl_.Help(); }
// Do not use. To be removed.
bool IsSpecifiedOnCommandLine() const {
return impl_.IsSpecifiedOnCommandLine();
}
std::string DefaultValue() const { return impl_.DefaultValue(); }
std::string CurrentValue() const { return impl_.CurrentValue(); }
private:
template <typename, bool>
friend class FlagRegistrar;
friend class FlagImplPeer;
T Get() const {
// See implementation notes in CommandLineFlag::Get().
union U {
T value;
U() {}
~U() { value.~T(); }
};
U u;
#if !defined(NDEBUG)
impl_.AssertValidType(base_internal::FastTypeId<T>(), &GenRuntimeTypeId<T>);
#endif
if (ABSL_PREDICT_FALSE(!value_.Get(impl_.seq_lock_, u.value))) {
impl_.Read(&u.value);
}
return std::move(u.value);
}
void Set(const T& v) {
impl_.AssertValidType(base_internal::FastTypeId<T>(), &GenRuntimeTypeId<T>);
impl_.Write(&v);
}
// Access to the reflection.
const CommandLineFlag& Reflect() const { return impl_; }
// Flag's data
// The implementation depends on value_ field to be placed exactly after the
// impl_ field, so that impl_ can figure out the offset to the value and
// access it.
FlagImpl impl_;
FlagValue<T> value_;
};
///////////////////////////////////////////////////////////////////////////////
// Trampoline for friend access
class FlagImplPeer {
public:
template <typename T, typename FlagType>
static T InvokeGet(const FlagType& flag) {
return flag.Get();
}
template <typename FlagType, typename T>
static void InvokeSet(FlagType& flag, const T& v) {
flag.Set(v);
}
template <typename FlagType>
static const CommandLineFlag& InvokeReflect(const FlagType& f) {
return f.Reflect();
}
};
///////////////////////////////////////////////////////////////////////////////
// Implementation of Flag value specific operations routine.
template <typename T>
void* FlagOps(FlagOp op, const void* v1, void* v2, void* v3) {
struct AlignedSpace {
alignas(MaskedPointer::RequiredAlignment()) alignas(T) char buf[sizeof(T)];
};
using Allocator = std::allocator<AlignedSpace>;
switch (op) {
case FlagOp::kAlloc: {
Allocator alloc;
return std::allocator_traits<Allocator>::allocate(alloc, 1);
}
case FlagOp::kDelete: {
T* p = static_cast<T*>(v2);
p->~T();
Allocator alloc;
std::allocator_traits<Allocator>::deallocate(
alloc, reinterpret_cast<AlignedSpace*>(p), 1);
return nullptr;
}
case FlagOp::kCopy:
*static_cast<T*>(v2) = *static_cast<const T*>(v1);
return nullptr;
case FlagOp::kCopyConstruct:
new (v2) T(*static_cast<const T*>(v1));
return nullptr;
case FlagOp::kSizeof:
return reinterpret_cast<void*>(static_cast<uintptr_t>(sizeof(T)));
case FlagOp::kFastTypeId:
return const_cast<void*>(base_internal::FastTypeId<T>());
case FlagOp::kRuntimeTypeId:
return const_cast<std::type_info*>(GenRuntimeTypeId<T>());
case FlagOp::kParse: {
// Initialize the temporary instance of type T based on current value in
// destination (which is going to be flag's default value).
T temp(*static_cast<T*>(v2));
if (!absl::ParseFlag<T>(*static_cast<const absl::string_view*>(v1), &temp,
static_cast<std::string*>(v3))) {
return nullptr;
}
*static_cast<T*>(v2) = std::move(temp);
return v2;
}
case FlagOp::kUnparse:
*static_cast<std::string*>(v2) =
absl::UnparseFlag<T>(*static_cast<const T*>(v1));
return nullptr;
case FlagOp::kValueOffset: {
// Round sizeof(FlagImp) to a multiple of alignof(FlagValue<T>) to get the
// offset of the data.
size_t round_to = alignof(FlagValue<T>);
size_t offset = (sizeof(FlagImpl) + round_to - 1) / round_to * round_to;
return reinterpret_cast<void*>(offset);
}
}
return nullptr;
}
///////////////////////////////////////////////////////////////////////////////
// This class facilitates Flag object registration and tail expression-based
// flag definition, for example:
// ABSL_FLAG(int, foo, 42, "Foo help").OnUpdate(NotifyFooWatcher);
struct FlagRegistrarEmpty {};
template <typename T, bool do_register>
class FlagRegistrar {
public:
constexpr explicit FlagRegistrar(Flag<T>& flag, const char* filename)
: flag_(flag) {
if (do_register)
flags_internal::RegisterCommandLineFlag(flag_.impl_, filename);
}
FlagRegistrar OnUpdate(FlagCallbackFunc cb) && {
flag_.impl_.SetCallback(cb);
return *this;
}
// Makes the registrar die gracefully as an empty struct on a line where
// registration happens. Registrar objects are intended to live only as
// temporary.
constexpr operator FlagRegistrarEmpty() const { return {}; } // NOLINT
private:
Flag<T>& flag_; // Flag being registered (not owned).
};
///////////////////////////////////////////////////////////////////////////////
// Test only API
uint64_t NumLeakedFlagValues();
} // namespace flags_internal
ABSL_NAMESPACE_END
} // namespace absl
#endif // ABSL_FLAGS_INTERNAL_FLAG_H_
|