aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/restricted/abseil-cpp-tstring/y_absl/synchronization/mutex.h
blob: 6dae8b408dbf3990f697f169385448b828686faa (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//      https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// -----------------------------------------------------------------------------
// mutex.h
// -----------------------------------------------------------------------------
//
// This header file defines a `Mutex` -- a mutually exclusive lock -- and the
// most common type of synchronization primitive for facilitating locks on
// shared resources. A mutex is used to prevent multiple threads from accessing
// and/or writing to a shared resource concurrently.
//
// Unlike a `std::mutex`, the Abseil `Mutex` provides the following additional
// features:
//   * Conditional predicates intrinsic to the `Mutex` object
//   * Shared/reader locks, in addition to standard exclusive/writer locks
//   * Deadlock detection and debug support.
//
// The following helper classes are also defined within this file:
//
//  MutexLock - An RAII wrapper to acquire and release a `Mutex` for exclusive/
//              write access within the current scope.
//
//  ReaderMutexLock
//            - An RAII wrapper to acquire and release a `Mutex` for shared/read
//              access within the current scope.
//
//  WriterMutexLock
//            - Effectively an alias for `MutexLock` above, designed for use in
//              distinguishing reader and writer locks within code.
//
// In addition to simple mutex locks, this file also defines ways to perform
// locking under certain conditions.
//
//  Condition - (Preferred) Used to wait for a particular predicate that
//              depends on state protected by the `Mutex` to become true.
//  CondVar   - A lower-level variant of `Condition` that relies on
//              application code to explicitly signal the `CondVar` when
//              a condition has been met.
//
// See below for more information on using `Condition` or `CondVar`.
//
// Mutexes and mutex behavior can be quite complicated. The information within
// this header file is limited, as a result. Please consult the Mutex guide for
// more complete information and examples.

#ifndef Y_ABSL_SYNCHRONIZATION_MUTEX_H_
#define Y_ABSL_SYNCHRONIZATION_MUTEX_H_

#include <atomic>
#include <cstdint>
#include <cstring>
#include <iterator>
#include <util/generic/string.h>

#include "y_absl/base/attributes.h"
#include "y_absl/base/const_init.h"
#include "y_absl/base/internal/identity.h"
#include "y_absl/base/internal/low_level_alloc.h"
#include "y_absl/base/internal/thread_identity.h"
#include "y_absl/base/internal/tsan_mutex_interface.h"
#include "y_absl/base/port.h"
#include "y_absl/base/thread_annotations.h"
#include "y_absl/synchronization/internal/kernel_timeout.h"
#include "y_absl/synchronization/internal/per_thread_sem.h"
#include "y_absl/time/time.h"

namespace y_absl {
Y_ABSL_NAMESPACE_BEGIN

class Condition;
struct SynchWaitParams;

// -----------------------------------------------------------------------------
// Mutex
// -----------------------------------------------------------------------------
//
// A `Mutex` is a non-reentrant (aka non-recursive) Mutually Exclusive lock
// on some resource, typically a variable or data structure with associated
// invariants. Proper usage of mutexes prevents concurrent access by different
// threads to the same resource.
//
// A `Mutex` has two basic operations: `Mutex::Lock()` and `Mutex::Unlock()`.
// The `Lock()` operation *acquires* a `Mutex` (in a state known as an
// *exclusive* -- or *write* -- lock), and the `Unlock()` operation *releases* a
// Mutex. During the span of time between the Lock() and Unlock() operations,
// a mutex is said to be *held*. By design, all mutexes support exclusive/write
// locks, as this is the most common way to use a mutex.
//
// Mutex operations are only allowed under certain conditions; otherwise an
// operation is "invalid", and disallowed by the API. The conditions concern
// both the current state of the mutex and the identity of the threads that
// are performing the operations.
//
// The `Mutex` state machine for basic lock/unlock operations is quite simple:
//
// |                | Lock()                 | Unlock() |
// |----------------+------------------------+----------|
// | Free           | Exclusive              | invalid  |
// | Exclusive      | blocks, then exclusive | Free     |
//
// The full conditions are as follows.
//
// * Calls to `Unlock()` require that the mutex be held, and must be made in the
//   same thread that performed the corresponding `Lock()` operation which
//   acquired the mutex; otherwise the call is invalid.
//
// * The mutex being non-reentrant (or non-recursive) means that a call to
//   `Lock()` or `TryLock()` must not be made in a thread that already holds the
//   mutex; such a call is invalid.
//
// * In other words, the state of being "held" has both a temporal component
//   (from `Lock()` until `Unlock()`) as well as a thread identity component:
//   the mutex is held *by a particular thread*.
//
// An "invalid" operation has undefined behavior. The `Mutex` implementation
// is allowed to do anything on an invalid call, including, but not limited to,
// crashing with a useful error message, silently succeeding, or corrupting
// data structures. In debug mode, the implementation may crash with a useful
// error message.
//
// `Mutex` is not guaranteed to be "fair" in prioritizing waiting threads; it
// is, however, approximately fair over long periods, and starvation-free for
// threads at the same priority.
//
// The lock/unlock primitives are now annotated with lock annotations
// defined in (base/thread_annotations.h). When writing multi-threaded code,
// you should use lock annotations whenever possible to document your lock
// synchronization policy. Besides acting as documentation, these annotations
// also help compilers or static analysis tools to identify and warn about
// issues that could potentially result in race conditions and deadlocks.
//
// For more information about the lock annotations, please see
// [Thread Safety
// Analysis](http://clang.llvm.org/docs/ThreadSafetyAnalysis.html) in the Clang
// documentation.
//
// See also `MutexLock`, below, for scoped `Mutex` acquisition.

class Y_ABSL_LOCKABLE Mutex {
 public:
  // Creates a `Mutex` that is not held by anyone. This constructor is
  // typically used for Mutexes allocated on the heap or the stack.
  //
  // To create `Mutex` instances with static storage duration
  // (e.g. a namespace-scoped or global variable), see
  // `Mutex::Mutex(y_absl::kConstInit)` below instead.
  Mutex();

  // Creates a mutex with static storage duration.  A global variable
  // constructed this way avoids the lifetime issues that can occur on program
  // startup and shutdown.  (See y_absl/base/const_init.h.)
  //
  // For Mutexes allocated on the heap and stack, instead use the default
  // constructor, which can interact more fully with the thread sanitizer.
  //
  // Example usage:
  //   namespace foo {
  //   Y_ABSL_CONST_INIT y_absl::Mutex mu(y_absl::kConstInit);
  //   }
  explicit constexpr Mutex(y_absl::ConstInitType);

  ~Mutex();

  // Mutex::Lock()
  //
  // Blocks the calling thread, if necessary, until this `Mutex` is free, and
  // then acquires it exclusively. (This lock is also known as a "write lock.")
  void Lock() Y_ABSL_EXCLUSIVE_LOCK_FUNCTION();

  // Mutex::Unlock()
  //
  // Releases this `Mutex` and returns it from the exclusive/write state to the
  // free state. Calling thread must hold the `Mutex` exclusively.
  void Unlock() Y_ABSL_UNLOCK_FUNCTION();

  // Mutex::TryLock()
  //
  // If the mutex can be acquired without blocking, does so exclusively and
  // returns `true`. Otherwise, returns `false`. Returns `true` with high
  // probability if the `Mutex` was free.
  bool TryLock() Y_ABSL_EXCLUSIVE_TRYLOCK_FUNCTION(true);

  // Mutex::AssertHeld()
  //
  // Require that the mutex be held exclusively (write mode) by this thread.
  //
  // If the mutex is not currently held by this thread, this function may report
  // an error (typically by crashing with a diagnostic) or it may do nothing.
  // This function is intended only as a tool to assist debugging; it doesn't
  // guarantee correctness.
  void AssertHeld() const Y_ABSL_ASSERT_EXCLUSIVE_LOCK();

  // ---------------------------------------------------------------------------
  // Reader-Writer Locking
  // ---------------------------------------------------------------------------

  // A Mutex can also be used as a starvation-free reader-writer lock.
  // Neither read-locks nor write-locks are reentrant/recursive to avoid
  // potential client programming errors.
  //
  // The Mutex API provides `Writer*()` aliases for the existing `Lock()`,
  // `Unlock()` and `TryLock()` methods for use within applications mixing
  // reader/writer locks. Using `Reader*()` and `Writer*()` operations in this
  // manner can make locking behavior clearer when mixing read and write modes.
  //
  // Introducing reader locks necessarily complicates the `Mutex` state
  // machine somewhat. The table below illustrates the allowed state transitions
  // of a mutex in such cases. Note that ReaderLock() may block even if the lock
  // is held in shared mode; this occurs when another thread is blocked on a
  // call to WriterLock().
  //
  // ---------------------------------------------------------------------------
  //     Operation: WriterLock() Unlock()  ReaderLock()           ReaderUnlock()
  // ---------------------------------------------------------------------------
  // State
  // ---------------------------------------------------------------------------
  // Free           Exclusive    invalid   Shared(1)              invalid
  // Shared(1)      blocks       invalid   Shared(2) or blocks    Free
  // Shared(n) n>1  blocks       invalid   Shared(n+1) or blocks  Shared(n-1)
  // Exclusive      blocks       Free      blocks                 invalid
  // ---------------------------------------------------------------------------
  //
  // In comments below, "shared" refers to a state of Shared(n) for any n > 0.

  // Mutex::ReaderLock()
  //
  // Blocks the calling thread, if necessary, until this `Mutex` is either free,
  // or in shared mode, and then acquires a share of it. Note that
  // `ReaderLock()` will block if some other thread has an exclusive/writer lock
  // on the mutex.

  void ReaderLock() Y_ABSL_SHARED_LOCK_FUNCTION();

  // Mutex::ReaderUnlock()
  //
  // Releases a read share of this `Mutex`. `ReaderUnlock` may return a mutex to
  // the free state if this thread holds the last reader lock on the mutex. Note
  // that you cannot call `ReaderUnlock()` on a mutex held in write mode.
  void ReaderUnlock() Y_ABSL_UNLOCK_FUNCTION();

  // Mutex::ReaderTryLock()
  //
  // If the mutex can be acquired without blocking, acquires this mutex for
  // shared access and returns `true`. Otherwise, returns `false`. Returns
  // `true` with high probability if the `Mutex` was free or shared.
  bool ReaderTryLock() Y_ABSL_SHARED_TRYLOCK_FUNCTION(true);

  // Mutex::AssertReaderHeld()
  //
  // Require that the mutex be held at least in shared mode (read mode) by this
  // thread.
  //
  // If the mutex is not currently held by this thread, this function may report
  // an error (typically by crashing with a diagnostic) or it may do nothing.
  // This function is intended only as a tool to assist debugging; it doesn't
  // guarantee correctness.
  void AssertReaderHeld() const Y_ABSL_ASSERT_SHARED_LOCK();

  // Mutex::WriterLock()
  // Mutex::WriterUnlock()
  // Mutex::WriterTryLock()
  //
  // Aliases for `Mutex::Lock()`, `Mutex::Unlock()`, and `Mutex::TryLock()`.
  //
  // These methods may be used (along with the complementary `Reader*()`
  // methods) to distinguish simple exclusive `Mutex` usage (`Lock()`,
  // etc.) from reader/writer lock usage.
  void WriterLock() Y_ABSL_EXCLUSIVE_LOCK_FUNCTION() { this->Lock(); }

  void WriterUnlock() Y_ABSL_UNLOCK_FUNCTION() { this->Unlock(); }

  bool WriterTryLock() Y_ABSL_EXCLUSIVE_TRYLOCK_FUNCTION(true) {
    return this->TryLock();
  }

  // ---------------------------------------------------------------------------
  // Conditional Critical Regions
  // ---------------------------------------------------------------------------

  // Conditional usage of a `Mutex` can occur using two distinct paradigms:
  //
  //   * Use of `Mutex` member functions with `Condition` objects.
  //   * Use of the separate `CondVar` abstraction.
  //
  // In general, prefer use of `Condition` and the `Mutex` member functions
  // listed below over `CondVar`. When there are multiple threads waiting on
  // distinctly different conditions, however, a battery of `CondVar`s may be
  // more efficient. This section discusses use of `Condition` objects.
  //
  // `Mutex` contains member functions for performing lock operations only under
  // certain conditions, of class `Condition`. For correctness, the `Condition`
  // must return a boolean that is a pure function, only of state protected by
  // the `Mutex`. The condition must be invariant w.r.t. environmental state
  // such as thread, cpu id, or time, and must be `noexcept`. The condition will
  // always be invoked with the mutex held in at least read mode, so you should
  // not block it for long periods or sleep it on a timer.
  //
  // Since a condition must not depend directly on the current time, use
  // `*WithTimeout()` member function variants to make your condition
  // effectively true after a given duration, or `*WithDeadline()` variants to
  // make your condition effectively true after a given time.
  //
  // The condition function should have no side-effects aside from debug
  // logging; as a special exception, the function may acquire other mutexes
  // provided it releases all those that it acquires.  (This exception was
  // required to allow logging.)

  // Mutex::Await()
  //
  // Unlocks this `Mutex` and blocks until simultaneously both `cond` is `true`
  // and this `Mutex` can be reacquired, then reacquires this `Mutex` in the
  // same mode in which it was previously held. If the condition is initially
  // `true`, `Await()` *may* skip the release/re-acquire step.
  //
  // `Await()` requires that this thread holds this `Mutex` in some mode.
  void Await(const Condition& cond) {
    AwaitCommon(cond, synchronization_internal::KernelTimeout::Never());
  }

  // Mutex::LockWhen()
  // Mutex::ReaderLockWhen()
  // Mutex::WriterLockWhen()
  //
  // Blocks until simultaneously both `cond` is `true` and this `Mutex` can
  // be acquired, then atomically acquires this `Mutex`. `LockWhen()` is
  // logically equivalent to `*Lock(); Await();` though they may have different
  // performance characteristics.
  void LockWhen(const Condition& cond) Y_ABSL_EXCLUSIVE_LOCK_FUNCTION() {
    LockWhenCommon(cond, synchronization_internal::KernelTimeout::Never(),
                   true);
  }

  void ReaderLockWhen(const Condition& cond) Y_ABSL_SHARED_LOCK_FUNCTION() {
    LockWhenCommon(cond, synchronization_internal::KernelTimeout::Never(),
                   false);
  }

  void WriterLockWhen(const Condition& cond) Y_ABSL_EXCLUSIVE_LOCK_FUNCTION() {
    this->LockWhen(cond);
  }

  // ---------------------------------------------------------------------------
  // Mutex Variants with Timeouts/Deadlines
  // ---------------------------------------------------------------------------

  // Mutex::AwaitWithTimeout()
  // Mutex::AwaitWithDeadline()
  //
  // Unlocks this `Mutex` and blocks until simultaneously:
  //   - either `cond` is true or the {timeout has expired, deadline has passed}
  //     and
  //   - this `Mutex` can be reacquired,
  // then reacquire this `Mutex` in the same mode in which it was previously
  // held, returning `true` iff `cond` is `true` on return.
  //
  // If the condition is initially `true`, the implementation *may* skip the
  // release/re-acquire step and return immediately.
  //
  // Deadlines in the past are equivalent to an immediate deadline.
  // Negative timeouts are equivalent to a zero timeout.
  //
  // This method requires that this thread holds this `Mutex` in some mode.
  bool AwaitWithTimeout(const Condition& cond, y_absl::Duration timeout) {
    return AwaitCommon(cond, synchronization_internal::KernelTimeout{timeout});
  }

  bool AwaitWithDeadline(const Condition& cond, y_absl::Time deadline) {
    return AwaitCommon(cond, synchronization_internal::KernelTimeout{deadline});
  }

  // Mutex::LockWhenWithTimeout()
  // Mutex::ReaderLockWhenWithTimeout()
  // Mutex::WriterLockWhenWithTimeout()
  //
  // Blocks until simultaneously both:
  //   - either `cond` is `true` or the timeout has expired, and
  //   - this `Mutex` can be acquired,
  // then atomically acquires this `Mutex`, returning `true` iff `cond` is
  // `true` on return.
  //
  // Negative timeouts are equivalent to a zero timeout.
  bool LockWhenWithTimeout(const Condition& cond, y_absl::Duration timeout)
      Y_ABSL_EXCLUSIVE_LOCK_FUNCTION() {
    return LockWhenCommon(
        cond, synchronization_internal::KernelTimeout{timeout}, true);
  }
  bool ReaderLockWhenWithTimeout(const Condition& cond, y_absl::Duration timeout)
      Y_ABSL_SHARED_LOCK_FUNCTION() {
    return LockWhenCommon(
        cond, synchronization_internal::KernelTimeout{timeout}, false);
  }
  bool WriterLockWhenWithTimeout(const Condition& cond, y_absl::Duration timeout)
      Y_ABSL_EXCLUSIVE_LOCK_FUNCTION() {
    return this->LockWhenWithTimeout(cond, timeout);
  }

  // Mutex::LockWhenWithDeadline()
  // Mutex::ReaderLockWhenWithDeadline()
  // Mutex::WriterLockWhenWithDeadline()
  //
  // Blocks until simultaneously both:
  //   - either `cond` is `true` or the deadline has been passed, and
  //   - this `Mutex` can be acquired,
  // then atomically acquires this Mutex, returning `true` iff `cond` is `true`
  // on return.
  //
  // Deadlines in the past are equivalent to an immediate deadline.
  bool LockWhenWithDeadline(const Condition& cond, y_absl::Time deadline)
      Y_ABSL_EXCLUSIVE_LOCK_FUNCTION() {
    return LockWhenCommon(
        cond, synchronization_internal::KernelTimeout{deadline}, true);
  }
  bool ReaderLockWhenWithDeadline(const Condition& cond, y_absl::Time deadline)
      Y_ABSL_SHARED_LOCK_FUNCTION() {
    return LockWhenCommon(
        cond, synchronization_internal::KernelTimeout{deadline}, false);
  }
  bool WriterLockWhenWithDeadline(const Condition& cond, y_absl::Time deadline)
      Y_ABSL_EXCLUSIVE_LOCK_FUNCTION() {
    return this->LockWhenWithDeadline(cond, deadline);
  }

  // ---------------------------------------------------------------------------
  // Debug Support: Invariant Checking, Deadlock Detection, Logging.
  // ---------------------------------------------------------------------------

  // Mutex::EnableInvariantDebugging()
  //
  // If `invariant`!=null and if invariant debugging has been enabled globally,
  // cause `(*invariant)(arg)` to be called at moments when the invariant for
  // this `Mutex` should hold (for example: just after acquire, just before
  // release).
  //
  // The routine `invariant` should have no side-effects since it is not
  // guaranteed how many times it will be called; it should check the invariant
  // and crash if it does not hold. Enabling global invariant debugging may
  // substantially reduce `Mutex` performance; it should be set only for
  // non-production runs.  Optimization options may also disable invariant
  // checks.
  void EnableInvariantDebugging(void (*invariant)(void*), void* arg);

  // Mutex::EnableDebugLog()
  //
  // Cause all subsequent uses of this `Mutex` to be logged via
  // `Y_ABSL_RAW_LOG(INFO)`. Log entries are tagged with `name` if no previous
  // call to `EnableInvariantDebugging()` or `EnableDebugLog()` has been made.
  //
  // Note: This method substantially reduces `Mutex` performance.
  void EnableDebugLog(const char* name);

  // Deadlock detection

  // Mutex::ForgetDeadlockInfo()
  //
  // Forget any deadlock-detection information previously gathered
  // about this `Mutex`. Call this method in debug mode when the lock ordering
  // of a `Mutex` changes.
  void ForgetDeadlockInfo();

  // Mutex::AssertNotHeld()
  //
  // Return immediately if this thread does not hold this `Mutex` in any
  // mode; otherwise, may report an error (typically by crashing with a
  // diagnostic), or may return immediately.
  //
  // Currently this check is performed only if all of:
  //    - in debug mode
  //    - SetMutexDeadlockDetectionMode() has been set to kReport or kAbort
  //    - number of locks concurrently held by this thread is not large.
  // are true.
  void AssertNotHeld() const;

  // Special cases.

  // A `MuHow` is a constant that indicates how a lock should be acquired.
  // Internal implementation detail.  Clients should ignore.
  typedef const struct MuHowS* MuHow;

  // Mutex::InternalAttemptToUseMutexInFatalSignalHandler()
  //
  // Causes the `Mutex` implementation to prepare itself for re-entry caused by
  // future use of `Mutex` within a fatal signal handler. This method is
  // intended for use only for last-ditch attempts to log crash information.
  // It does not guarantee that attempts to use Mutexes within the handler will
  // not deadlock; it merely makes other faults less likely.
  //
  // WARNING:  This routine must be invoked from a signal handler, and the
  // signal handler must either loop forever or terminate the process.
  // Attempts to return from (or `longjmp` out of) the signal handler once this
  // call has been made may cause arbitrary program behaviour including
  // crashes and deadlocks.
  static void InternalAttemptToUseMutexInFatalSignalHandler();

 private:
  std::atomic<intptr_t> mu_;  // The Mutex state.

  // Post()/Wait() versus associated PerThreadSem; in class for required
  // friendship with PerThreadSem.
  static void IncrementSynchSem(Mutex* mu, base_internal::PerThreadSynch* w);
  static bool DecrementSynchSem(Mutex* mu, base_internal::PerThreadSynch* w,
                                synchronization_internal::KernelTimeout t);

  // slow path acquire
  void LockSlowLoop(SynchWaitParams* waitp, int flags);
  // wrappers around LockSlowLoop()
  bool LockSlowWithDeadline(MuHow how, const Condition* cond,
                            synchronization_internal::KernelTimeout t,
                            int flags);
  void LockSlow(MuHow how, const Condition* cond,
                int flags) Y_ABSL_ATTRIBUTE_COLD;
  // slow path release
  void UnlockSlow(SynchWaitParams* waitp) Y_ABSL_ATTRIBUTE_COLD;
  // TryLock slow path.
  bool TryLockSlow();
  // ReaderTryLock slow path.
  bool ReaderTryLockSlow();
  // Common code between Await() and AwaitWithTimeout/Deadline()
  bool AwaitCommon(const Condition& cond,
                   synchronization_internal::KernelTimeout t);
  bool LockWhenCommon(const Condition& cond,
                      synchronization_internal::KernelTimeout t, bool write);
  // Attempt to remove thread s from queue.
  void TryRemove(base_internal::PerThreadSynch* s);
  // Block a thread on mutex.
  void Block(base_internal::PerThreadSynch* s);
  // Wake a thread; return successor.
  base_internal::PerThreadSynch* Wakeup(base_internal::PerThreadSynch* w);
  void Dtor();

  friend class CondVar;   // for access to Trans()/Fer().
  void Trans(MuHow how);  // used for CondVar->Mutex transfer
  void Fer(
      base_internal::PerThreadSynch* w);  // used for CondVar->Mutex transfer

  // Catch the error of writing Mutex when intending MutexLock.
  explicit Mutex(const volatile Mutex* /*ignored*/) {}

  Mutex(const Mutex&) = delete;
  Mutex& operator=(const Mutex&) = delete;
};

// -----------------------------------------------------------------------------
// Mutex RAII Wrappers
// -----------------------------------------------------------------------------

// MutexLock
//
// `MutexLock` is a helper class, which acquires and releases a `Mutex` via
// RAII.
//
// Example:
//
// Class Foo {
//  public:
//   Foo::Bar* Baz() {
//     MutexLock lock(&mu_);
//     ...
//     return bar;
//   }
//
// private:
//   Mutex mu_;
// };
class Y_ABSL_SCOPED_LOCKABLE MutexLock {
 public:
  // Constructors

  // Calls `mu->Lock()` and returns when that call returns. That is, `*mu` is
  // guaranteed to be locked when this object is constructed. Requires that
  // `mu` be dereferenceable.
  explicit MutexLock(Mutex* mu) Y_ABSL_EXCLUSIVE_LOCK_FUNCTION(mu) : mu_(mu) {
    this->mu_->Lock();
  }

  // Like above, but calls `mu->LockWhen(cond)` instead. That is, in addition to
  // the above, the condition given by `cond` is also guaranteed to hold when
  // this object is constructed.
  explicit MutexLock(Mutex* mu, const Condition& cond)
      Y_ABSL_EXCLUSIVE_LOCK_FUNCTION(mu)
      : mu_(mu) {
    this->mu_->LockWhen(cond);
  }

  MutexLock(const MutexLock&) = delete;  // NOLINT(runtime/mutex)
  MutexLock(MutexLock&&) = delete;       // NOLINT(runtime/mutex)
  MutexLock& operator=(const MutexLock&) = delete;
  MutexLock& operator=(MutexLock&&) = delete;

  ~MutexLock() Y_ABSL_UNLOCK_FUNCTION() { this->mu_->Unlock(); }

 private:
  Mutex* const mu_;
};

// ReaderMutexLock
//
// The `ReaderMutexLock` is a helper class, like `MutexLock`, which acquires and
// releases a shared lock on a `Mutex` via RAII.
class Y_ABSL_SCOPED_LOCKABLE ReaderMutexLock {
 public:
  explicit ReaderMutexLock(Mutex* mu) Y_ABSL_SHARED_LOCK_FUNCTION(mu) : mu_(mu) {
    mu->ReaderLock();
  }

  explicit ReaderMutexLock(Mutex* mu, const Condition& cond)
      Y_ABSL_SHARED_LOCK_FUNCTION(mu)
      : mu_(mu) {
    mu->ReaderLockWhen(cond);
  }

  ReaderMutexLock(const ReaderMutexLock&) = delete;
  ReaderMutexLock(ReaderMutexLock&&) = delete;
  ReaderMutexLock& operator=(const ReaderMutexLock&) = delete;
  ReaderMutexLock& operator=(ReaderMutexLock&&) = delete;

  ~ReaderMutexLock() Y_ABSL_UNLOCK_FUNCTION() { this->mu_->ReaderUnlock(); }

 private:
  Mutex* const mu_;
};

// WriterMutexLock
//
// The `WriterMutexLock` is a helper class, like `MutexLock`, which acquires and
// releases a write (exclusive) lock on a `Mutex` via RAII.
class Y_ABSL_SCOPED_LOCKABLE WriterMutexLock {
 public:
  explicit WriterMutexLock(Mutex* mu) Y_ABSL_EXCLUSIVE_LOCK_FUNCTION(mu)
      : mu_(mu) {
    mu->WriterLock();
  }

  explicit WriterMutexLock(Mutex* mu, const Condition& cond)
      Y_ABSL_EXCLUSIVE_LOCK_FUNCTION(mu)
      : mu_(mu) {
    mu->WriterLockWhen(cond);
  }

  WriterMutexLock(const WriterMutexLock&) = delete;
  WriterMutexLock(WriterMutexLock&&) = delete;
  WriterMutexLock& operator=(const WriterMutexLock&) = delete;
  WriterMutexLock& operator=(WriterMutexLock&&) = delete;

  ~WriterMutexLock() Y_ABSL_UNLOCK_FUNCTION() { this->mu_->WriterUnlock(); }

 private:
  Mutex* const mu_;
};

// -----------------------------------------------------------------------------
// Condition
// -----------------------------------------------------------------------------
//
// `Mutex` contains a number of member functions which take a `Condition` as an
// argument; clients can wait for conditions to become `true` before attempting
// to acquire the mutex. These sections are known as "condition critical"
// sections. To use a `Condition`, you simply need to construct it, and use
// within an appropriate `Mutex` member function; everything else in the
// `Condition` class is an implementation detail.
//
// A `Condition` is specified as a function pointer which returns a boolean.
// `Condition` functions should be pure functions -- their results should depend
// only on passed arguments, should not consult any external state (such as
// clocks), and should have no side-effects, aside from debug logging. Any
// objects that the function may access should be limited to those which are
// constant while the mutex is blocked on the condition (e.g. a stack variable),
// or objects of state protected explicitly by the mutex.
//
// No matter which construction is used for `Condition`, the underlying
// function pointer / functor / callable must not throw any
// exceptions. Correctness of `Mutex` / `Condition` is not guaranteed in
// the face of a throwing `Condition`. (When Abseil is allowed to depend
// on C++17, these function pointers will be explicitly marked
// `noexcept`; until then this requirement cannot be enforced in the
// type system.)
//
// Note: to use a `Condition`, you need only construct it and pass it to a
// suitable `Mutex' member function, such as `Mutex::Await()`, or to the
// constructor of one of the scope guard classes.
//
// Example using LockWhen/Unlock:
//
//   // assume count_ is not internal reference count
//   int count_ Y_ABSL_GUARDED_BY(mu_);
//   Condition count_is_zero(+[](int *count) { return *count == 0; }, &count_);
//
//   mu_.LockWhen(count_is_zero);
//   // ...
//   mu_.Unlock();
//
// Example using a scope guard:
//
//   {
//     MutexLock lock(&mu_, count_is_zero);
//     // ...
//   }
//
// When multiple threads are waiting on exactly the same condition, make sure
// that they are constructed with the same parameters (same pointer to function
// + arg, or same pointer to object + method), so that the mutex implementation
// can avoid redundantly evaluating the same condition for each thread.
class Condition {
 public:
  // A Condition that returns the result of "(*func)(arg)"
  Condition(bool (*func)(void*), void* arg);

  // Templated version for people who are averse to casts.
  //
  // To use a lambda, prepend it with unary plus, which converts the lambda
  // into a function pointer:
  //     Condition(+[](T* t) { return ...; }, arg).
  //
  // Note: lambdas in this case must contain no bound variables.
  //
  // See class comment for performance advice.
  template <typename T>
  Condition(bool (*func)(T*), T* arg);

  // Same as above, but allows for cases where `arg` comes from a pointer that
  // is convertible to the function parameter type `T*` but not an exact match.
  //
  // For example, the argument might be `X*` but the function takes `const X*`,
  // or the argument might be `Derived*` while the function takes `Base*`, and
  // so on for cases where the argument pointer can be implicitly converted.
  //
  // Implementation notes: This constructor overload is required in addition to
  // the one above to allow deduction of `T` from `arg` for cases such as where
  // a function template is passed as `func`. Also, the dummy `typename = void`
  // template parameter exists just to work around a MSVC mangling bug.
  template <typename T, typename = void>
  Condition(bool (*func)(T*),
            typename y_absl::internal::type_identity<T>::type* arg);

  // Templated version for invoking a method that returns a `bool`.
  //
  // `Condition(object, &Class::Method)` constructs a `Condition` that evaluates
  // `object->Method()`.
  //
  // Implementation Note: `y_absl::internal::type_identity` is used to allow
  // methods to come from base classes. A simpler signature like
  // `Condition(T*, bool (T::*)())` does not suffice.
  template <typename T>
  Condition(T* object,
            bool (y_absl::internal::type_identity<T>::type::*method)());

  // Same as above, for const members
  template <typename T>
  Condition(const T* object,
            bool (y_absl::internal::type_identity<T>::type::*method)() const);

  // A Condition that returns the value of `*cond`
  explicit Condition(const bool* cond);

  // Templated version for invoking a functor that returns a `bool`.
  // This approach accepts pointers to non-mutable lambdas, `std::function`,
  // the result of` std::bind` and user-defined functors that define
  // `bool F::operator()() const`.
  //
  // Example:
  //
  //   auto reached = [this, current]() {
  //     mu_.AssertReaderHeld();                // For annotalysis.
  //     return processed_ >= current;
  //   };
  //   mu_.Await(Condition(&reached));
  //
  // NOTE: never use "mu_.AssertHeld()" instead of "mu_.AssertReaderHeld()" in
  // the lambda as it may be called when the mutex is being unlocked from a
  // scope holding only a reader lock, which will make the assertion not
  // fulfilled and crash the binary.

  // See class comment for performance advice. In particular, if there
  // might be more than one waiter for the same condition, make sure
  // that all waiters construct the condition with the same pointers.

  // Implementation note: The second template parameter ensures that this
  // constructor doesn't participate in overload resolution if T doesn't have
  // `bool operator() const`.
  template <typename T, typename E = decltype(static_cast<bool (T::*)() const>(
                            &T::operator()))>
  explicit Condition(const T* obj)
      : Condition(obj, static_cast<bool (T::*)() const>(&T::operator())) {}

  // A Condition that always returns `true`.
  // kTrue is only useful in a narrow set of circumstances, mostly when
  // it's passed conditionally. For example:
  //
  //   mu.LockWhen(some_flag ? kTrue : SomeOtherCondition);
  //
  // Note: {LockWhen,Await}With{Deadline,Timeout} methods with kTrue condition
  // don't return immediately when the timeout happens, they still block until
  // the Mutex becomes available. The return value of these methods does
  // not indicate if the timeout was reached; rather it indicates whether or
  // not the condition is true.
  Y_ABSL_CONST_INIT static const Condition kTrue;

  // Evaluates the condition.
  bool Eval() const;

  // Returns `true` if the two conditions are guaranteed to return the same
  // value if evaluated at the same time, `false` if the evaluation *may* return
  // different results.
  //
  // Two `Condition` values are guaranteed equal if both their `func` and `arg`
  // components are the same. A null pointer is equivalent to a `true`
  // condition.
  static bool GuaranteedEqual(const Condition* a, const Condition* b);

 private:
  // Sizing an allocation for a method pointer can be subtle. In the Itanium
  // specifications, a method pointer has a predictable, uniform size. On the
  // other hand, MSVC ABI, method pointer sizes vary based on the
  // inheritance of the class. Specifically, method pointers from classes with
  // multiple inheritance are bigger than those of classes with single
  // inheritance. Other variations also exist.

#ifndef _MSC_VER
  // Allocation for a function pointer or method pointer.
  // The {0} initializer ensures that all unused bytes of this buffer are
  // always zeroed out.  This is necessary, because GuaranteedEqual() compares
  // all of the bytes, unaware of which bytes are relevant to a given `eval_`.
  using MethodPtr = bool (Condition::*)();
  char callback_[sizeof(MethodPtr)] = {0};
#else
  // It is well known that the larget MSVC pointer-to-member is 24 bytes. This
  // may be the largest known pointer-to-member of any platform. For this
  // reason we will allocate 24 bytes for MSVC platform toolchains.
  char callback_[24] = {0};
#endif

  // Function with which to evaluate callbacks and/or arguments.
  bool (*eval_)(const Condition*) = nullptr;

  // Either an argument for a function call or an object for a method call.
  void* arg_ = nullptr;

  // Various functions eval_ can point to:
  static bool CallVoidPtrFunction(const Condition*);
  template <typename T>
  static bool CastAndCallFunction(const Condition* c);
  template <typename T, typename ConditionMethodPtr>
  static bool CastAndCallMethod(const Condition* c);

  // Helper methods for storing, validating, and reading callback arguments.
  template <typename T>
  inline void StoreCallback(T callback) {
    static_assert(
        sizeof(callback) <= sizeof(callback_),
        "An overlarge pointer was passed as a callback to Condition.");
    std::memcpy(callback_, &callback, sizeof(callback));
  }

  template <typename T>
  inline void ReadCallback(T* callback) const {
    std::memcpy(callback, callback_, sizeof(*callback));
  }

  static bool AlwaysTrue(const Condition*) { return true; }

  // Used only to create kTrue.
  constexpr Condition() : eval_(AlwaysTrue), arg_(nullptr) {}
};

// -----------------------------------------------------------------------------
// CondVar
// -----------------------------------------------------------------------------
//
// A condition variable, reflecting state evaluated separately outside of the
// `Mutex` object, which can be signaled to wake callers.
// This class is not normally needed; use `Mutex` member functions such as
// `Mutex::Await()` and intrinsic `Condition` abstractions. In rare cases
// with many threads and many conditions, `CondVar` may be faster.
//
// The implementation may deliver signals to any condition variable at
// any time, even when no call to `Signal()` or `SignalAll()` is made; as a
// result, upon being awoken, you must check the logical condition you have
// been waiting upon.
//
// Examples:
//
// Usage for a thread waiting for some condition C protected by mutex mu:
//       mu.Lock();
//       while (!C) { cv->Wait(&mu); }        // releases and reacquires mu
//       //  C holds; process data
//       mu.Unlock();
//
// Usage to wake T is:
//       mu.Lock();
//       // process data, possibly establishing C
//       if (C) { cv->Signal(); }
//       mu.Unlock();
//
// If C may be useful to more than one waiter, use `SignalAll()` instead of
// `Signal()`.
//
// With this implementation it is efficient to use `Signal()/SignalAll()` inside
// the locked region; this usage can make reasoning about your program easier.
//
class CondVar {
 public:
  // A `CondVar` allocated on the heap or on the stack can use the this
  // constructor.
  CondVar();

  // CondVar::Wait()
  //
  // Atomically releases a `Mutex` and blocks on this condition variable.
  // Waits until awakened by a call to `Signal()` or `SignalAll()` (or a
  // spurious wakeup), then reacquires the `Mutex` and returns.
  //
  // Requires and ensures that the current thread holds the `Mutex`.
  void Wait(Mutex* mu) {
    WaitCommon(mu, synchronization_internal::KernelTimeout::Never());
  }

  // CondVar::WaitWithTimeout()
  //
  // Atomically releases a `Mutex` and blocks on this condition variable.
  // Waits until awakened by a call to `Signal()` or `SignalAll()` (or a
  // spurious wakeup), or until the timeout has expired, then reacquires
  // the `Mutex` and returns.
  //
  // Returns true if the timeout has expired without this `CondVar`
  // being signalled in any manner. If both the timeout has expired
  // and this `CondVar` has been signalled, the implementation is free
  // to return `true` or `false`.
  //
  // Requires and ensures that the current thread holds the `Mutex`.
  bool WaitWithTimeout(Mutex* mu, y_absl::Duration timeout) {
    return WaitCommon(mu, synchronization_internal::KernelTimeout(timeout));
  }

  // CondVar::WaitWithDeadline()
  //
  // Atomically releases a `Mutex` and blocks on this condition variable.
  // Waits until awakened by a call to `Signal()` or `SignalAll()` (or a
  // spurious wakeup), or until the deadline has passed, then reacquires
  // the `Mutex` and returns.
  //
  // Deadlines in the past are equivalent to an immediate deadline.
  //
  // Returns true if the deadline has passed without this `CondVar`
  // being signalled in any manner. If both the deadline has passed
  // and this `CondVar` has been signalled, the implementation is free
  // to return `true` or `false`.
  //
  // Requires and ensures that the current thread holds the `Mutex`.
  bool WaitWithDeadline(Mutex* mu, y_absl::Time deadline) {
    return WaitCommon(mu, synchronization_internal::KernelTimeout(deadline));
  }

  // CondVar::Signal()
  //
  // Signal this `CondVar`; wake at least one waiter if one exists.
  void Signal();

  // CondVar::SignalAll()
  //
  // Signal this `CondVar`; wake all waiters.
  void SignalAll();

  // CondVar::EnableDebugLog()
  //
  // Causes all subsequent uses of this `CondVar` to be logged via
  // `Y_ABSL_RAW_LOG(INFO)`. Log entries are tagged with `name` if `name != 0`.
  // Note: this method substantially reduces `CondVar` performance.
  void EnableDebugLog(const char* name);

 private:
  bool WaitCommon(Mutex* mutex, synchronization_internal::KernelTimeout t);
  void Remove(base_internal::PerThreadSynch* s);
  std::atomic<intptr_t> cv_;  // Condition variable state.
  CondVar(const CondVar&) = delete;
  CondVar& operator=(const CondVar&) = delete;
};

// Variants of MutexLock.
//
// If you find yourself using one of these, consider instead using
// Mutex::Unlock() and/or if-statements for clarity.

// MutexLockMaybe
//
// MutexLockMaybe is like MutexLock, but is a no-op when mu is null.
class Y_ABSL_SCOPED_LOCKABLE MutexLockMaybe {
 public:
  explicit MutexLockMaybe(Mutex* mu) Y_ABSL_EXCLUSIVE_LOCK_FUNCTION(mu)
      : mu_(mu) {
    if (this->mu_ != nullptr) {
      this->mu_->Lock();
    }
  }

  explicit MutexLockMaybe(Mutex* mu, const Condition& cond)
      Y_ABSL_EXCLUSIVE_LOCK_FUNCTION(mu)
      : mu_(mu) {
    if (this->mu_ != nullptr) {
      this->mu_->LockWhen(cond);
    }
  }

  ~MutexLockMaybe() Y_ABSL_UNLOCK_FUNCTION() {
    if (this->mu_ != nullptr) {
      this->mu_->Unlock();
    }
  }

 private:
  Mutex* const mu_;
  MutexLockMaybe(const MutexLockMaybe&) = delete;
  MutexLockMaybe(MutexLockMaybe&&) = delete;
  MutexLockMaybe& operator=(const MutexLockMaybe&) = delete;
  MutexLockMaybe& operator=(MutexLockMaybe&&) = delete;
};

// ReleasableMutexLock
//
// ReleasableMutexLock is like MutexLock, but permits `Release()` of its
// mutex before destruction. `Release()` may be called at most once.
class Y_ABSL_SCOPED_LOCKABLE ReleasableMutexLock {
 public:
  explicit ReleasableMutexLock(Mutex* mu) Y_ABSL_EXCLUSIVE_LOCK_FUNCTION(mu)
      : mu_(mu) {
    this->mu_->Lock();
  }

  explicit ReleasableMutexLock(Mutex* mu, const Condition& cond)
      Y_ABSL_EXCLUSIVE_LOCK_FUNCTION(mu)
      : mu_(mu) {
    this->mu_->LockWhen(cond);
  }

  ~ReleasableMutexLock() Y_ABSL_UNLOCK_FUNCTION() {
    if (this->mu_ != nullptr) {
      this->mu_->Unlock();
    }
  }

  void Release() Y_ABSL_UNLOCK_FUNCTION();

 private:
  Mutex* mu_;
  ReleasableMutexLock(const ReleasableMutexLock&) = delete;
  ReleasableMutexLock(ReleasableMutexLock&&) = delete;
  ReleasableMutexLock& operator=(const ReleasableMutexLock&) = delete;
  ReleasableMutexLock& operator=(ReleasableMutexLock&&) = delete;
};

inline Mutex::Mutex() : mu_(0) {
  Y_ABSL_TSAN_MUTEX_CREATE(this, __tsan_mutex_not_static);
}

inline constexpr Mutex::Mutex(y_absl::ConstInitType) : mu_(0) {}

#if !defined(__APPLE__) && !defined(Y_ABSL_BUILD_DLL)
Y_ABSL_ATTRIBUTE_ALWAYS_INLINE
inline Mutex::~Mutex() { Dtor(); }
#endif

#if defined(NDEBUG) && !defined(Y_ABSL_HAVE_THREAD_SANITIZER)
// Use default (empty) destructor in release build for performance reasons.
// We need to mark both Dtor and ~Mutex as always inline for inconsistent
// builds that use both NDEBUG and !NDEBUG with dynamic libraries. In these
// cases we want the empty functions to dissolve entirely rather than being
// exported from dynamic libraries and potentially override the non-empty ones.
Y_ABSL_ATTRIBUTE_ALWAYS_INLINE
inline void Mutex::Dtor() {}
#endif

inline CondVar::CondVar() : cv_(0) {}

// static
template <typename T, typename ConditionMethodPtr>
bool Condition::CastAndCallMethod(const Condition* c) {
  T* object = static_cast<T*>(c->arg_);
  ConditionMethodPtr condition_method_pointer;
  c->ReadCallback(&condition_method_pointer);
  return (object->*condition_method_pointer)();
}

// static
template <typename T>
bool Condition::CastAndCallFunction(const Condition* c) {
  bool (*function)(T*);
  c->ReadCallback(&function);
  T* argument = static_cast<T*>(c->arg_);
  return (*function)(argument);
}

template <typename T>
inline Condition::Condition(bool (*func)(T*), T* arg)
    : eval_(&CastAndCallFunction<T>),
      arg_(const_cast<void*>(static_cast<const void*>(arg))) {
  static_assert(sizeof(&func) <= sizeof(callback_),
                "An overlarge function pointer was passed to Condition.");
  StoreCallback(func);
}

template <typename T, typename>
inline Condition::Condition(
    bool (*func)(T*), typename y_absl::internal::type_identity<T>::type* arg)
    // Just delegate to the overload above.
    : Condition(func, arg) {}

template <typename T>
inline Condition::Condition(
    T* object, bool (y_absl::internal::type_identity<T>::type::*method)())
    : eval_(&CastAndCallMethod<T, decltype(method)>), arg_(object) {
  static_assert(sizeof(&method) <= sizeof(callback_),
                "An overlarge method pointer was passed to Condition.");
  StoreCallback(method);
}

template <typename T>
inline Condition::Condition(
    const T* object,
    bool (y_absl::internal::type_identity<T>::type::*method)() const)
    : eval_(&CastAndCallMethod<const T, decltype(method)>),
      arg_(reinterpret_cast<void*>(const_cast<T*>(object))) {
  StoreCallback(method);
}

// Register hooks for profiling support.
//
// The function pointer registered here will be called whenever a mutex is
// contended.  The callback is given the cycles for which waiting happened (as
// measured by //y_absl/base/internal/cycleclock.h, and which may not
// be real "cycle" counts.)
//
// There is no ordering guarantee between when the hook is registered and when
// callbacks will begin.  Only a single profiler can be installed in a running
// binary; if this function is called a second time with a different function
// pointer, the value is ignored (and will cause an assertion failure in debug
// mode.)
void RegisterMutexProfiler(void (*fn)(int64_t wait_cycles));

// Register a hook for Mutex tracing.
//
// The function pointer registered here will be called whenever a mutex is
// contended.  The callback is given an opaque handle to the contended mutex,
// an event name, and the number of wait cycles (as measured by
// //y_absl/base/internal/cycleclock.h, and which may not be real
// "cycle" counts.)
//
// The only event name currently sent is "slow release".
//
// This has the same ordering and single-use limitations as
// RegisterMutexProfiler() above.
void RegisterMutexTracer(void (*fn)(const char* msg, const void* obj,
                                    int64_t wait_cycles));

// Register a hook for CondVar tracing.
//
// The function pointer registered here will be called here on various CondVar
// events.  The callback is given an opaque handle to the CondVar object and
// a string identifying the event.  This is thread-safe, but only a single
// tracer can be registered.
//
// Events that can be sent are "Wait", "Unwait", "Signal wakeup", and
// "SignalAll wakeup".
//
// This has the same ordering and single-use limitations as
// RegisterMutexProfiler() above.
void RegisterCondVarTracer(void (*fn)(const char* msg, const void* cv));

void ResetDeadlockGraphMu();

// EnableMutexInvariantDebugging()
//
// Enable or disable global support for Mutex invariant debugging.  If enabled,
// then invariant predicates can be registered per-Mutex for debug checking.
// See Mutex::EnableInvariantDebugging().
void EnableMutexInvariantDebugging(bool enabled);

// When in debug mode, and when the feature has been enabled globally, the
// implementation will keep track of lock ordering and complain (or optionally
// crash) if a cycle is detected in the acquired-before graph.

// Possible modes of operation for the deadlock detector in debug mode.
enum class OnDeadlockCycle {
  kIgnore,  // Neither report on nor attempt to track cycles in lock ordering
  kReport,  // Report lock cycles to stderr when detected
  kAbort,   // Report lock cycles to stderr when detected, then abort
};

// SetMutexDeadlockDetectionMode()
//
// Enable or disable global support for detection of potential deadlocks
// due to Mutex lock ordering inversions.  When set to 'kIgnore', tracking of
// lock ordering is disabled.  Otherwise, in debug builds, a lock ordering graph
// will be maintained internally, and detected cycles will be reported in
// the manner chosen here.
void SetMutexDeadlockDetectionMode(OnDeadlockCycle mode);

Y_ABSL_NAMESPACE_END
}  // namespace y_absl

// In some build configurations we pass --detect-odr-violations to the
// gold linker.  This causes it to flag weak symbol overrides as ODR
// violations.  Because ODR only applies to C++ and not C,
// --detect-odr-violations ignores symbols not mangled with C++ names.
// By changing our extension points to be extern "C", we dodge this
// check.
extern "C" {
void Y_ABSL_INTERNAL_C_SYMBOL(AbslInternalMutexYield)();
}  // extern "C"

#endif  // Y_ABSL_SYNCHRONIZATION_MUTEX_H_