1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
|
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "y_absl/strings/str_cat.h"
#include <assert.h>
#include <cstddef>
#include <cstdint>
#include <cstring>
#include <initializer_list>
#include <util/generic/string.h>
#include <type_traits>
#include "y_absl/base/config.h"
#include "y_absl/base/nullability.h"
#include "y_absl/strings/internal/resize_uninitialized.h"
#include "y_absl/strings/numbers.h"
#include "y_absl/strings/string_view.h"
namespace y_absl {
Y_ABSL_NAMESPACE_BEGIN
// ----------------------------------------------------------------------
// StrCat()
// This merges the given strings or integers, with no delimiter. This
// is designed to be the fastest possible way to construct a string out
// of a mix of raw C strings, string_views, strings, and integer values.
// ----------------------------------------------------------------------
namespace {
// Append is merely a version of memcpy that returns the address of the byte
// after the area just overwritten.
y_absl::Nonnull<char*> Append(y_absl::Nonnull<char*> out, const AlphaNum& x) {
// memcpy is allowed to overwrite arbitrary memory, so doing this after the
// call would force an extra fetch of x.size().
char* after = out + x.size();
if (x.size() != 0) {
memcpy(out, x.data(), x.size());
}
return after;
}
} // namespace
TString StrCat(const AlphaNum& a, const AlphaNum& b) {
TString result;
y_absl::strings_internal::STLStringResizeUninitialized(&result,
a.size() + b.size());
char* const begin = &result[0];
char* out = begin;
out = Append(out, a);
out = Append(out, b);
assert(out == begin + result.size());
return result;
}
TString StrCat(const AlphaNum& a, const AlphaNum& b, const AlphaNum& c) {
TString result;
strings_internal::STLStringResizeUninitialized(
&result, a.size() + b.size() + c.size());
char* const begin = &result[0];
char* out = begin;
out = Append(out, a);
out = Append(out, b);
out = Append(out, c);
assert(out == begin + result.size());
return result;
}
TString StrCat(const AlphaNum& a, const AlphaNum& b, const AlphaNum& c,
const AlphaNum& d) {
TString result;
strings_internal::STLStringResizeUninitialized(
&result, a.size() + b.size() + c.size() + d.size());
char* const begin = &result[0];
char* out = begin;
out = Append(out, a);
out = Append(out, b);
out = Append(out, c);
out = Append(out, d);
assert(out == begin + result.size());
return result;
}
namespace strings_internal {
// Do not call directly - these are not part of the public API.
void STLStringAppendUninitializedAmortized(TString* dest,
size_t to_append) {
strings_internal::AppendUninitializedTraits<TString>::Append(dest,
to_append);
}
template <typename Integer>
std::enable_if_t<std::is_integral<Integer>::value, TString> IntegerToString(
Integer i) {
TString str;
const auto /* either bool or std::false_type */ is_negative =
y_absl::numbers_internal::IsNegative(i);
const uint32_t digits = y_absl::numbers_internal::Base10Digits(
y_absl::numbers_internal::UnsignedAbsoluteValue(i));
y_absl::strings_internal::STLStringResizeUninitialized(
&str, digits + static_cast<uint32_t>(is_negative));
y_absl::numbers_internal::FastIntToBufferBackward(i, &str[str.size()], digits);
return str;
}
template <>
TString IntegerToString(long i) { // NOLINT
if (sizeof(i) <= sizeof(int)) {
return IntegerToString(static_cast<int>(i));
} else {
return IntegerToString(static_cast<long long>(i)); // NOLINT
}
}
template <>
TString IntegerToString(unsigned long i) { // NOLINT
if (sizeof(i) <= sizeof(unsigned int)) {
return IntegerToString(static_cast<unsigned int>(i));
} else {
return IntegerToString(static_cast<unsigned long long>(i)); // NOLINT
}
}
template <typename Float>
std::enable_if_t<std::is_floating_point<Float>::value, TString>
FloatToString(Float f) {
TString result;
strings_internal::STLStringResizeUninitialized(
&result, numbers_internal::kSixDigitsToBufferSize);
char* start = &result[0];
result.erase(numbers_internal::SixDigitsToBuffer(f, start));
return result;
}
TString SingleArgStrCat(int x) { return IntegerToString(x); }
TString SingleArgStrCat(unsigned int x) { return IntegerToString(x); }
// NOLINTNEXTLINE
TString SingleArgStrCat(long x) { return IntegerToString(x); }
// NOLINTNEXTLINE
TString SingleArgStrCat(unsigned long x) { return IntegerToString(x); }
// NOLINTNEXTLINE
TString SingleArgStrCat(long long x) { return IntegerToString(x); }
// NOLINTNEXTLINE
TString SingleArgStrCat(unsigned long long x) { return IntegerToString(x); }
TString SingleArgStrCat(float x) { return FloatToString(x); }
TString SingleArgStrCat(double x) { return FloatToString(x); }
template <class Integer>
std::enable_if_t<std::is_integral<Integer>::value, void> AppendIntegerToString(
TString& str, Integer i) {
const auto /* either bool or std::false_type */ is_negative =
y_absl::numbers_internal::IsNegative(i);
const uint32_t digits = y_absl::numbers_internal::Base10Digits(
y_absl::numbers_internal::UnsignedAbsoluteValue(i));
y_absl::strings_internal::STLStringAppendUninitializedAmortized(
&str, digits + static_cast<uint32_t>(is_negative));
y_absl::numbers_internal::FastIntToBufferBackward(i, &str[str.size()], digits);
}
template <>
void AppendIntegerToString(TString& str, long i) { // NOLINT
if (sizeof(i) <= sizeof(int)) {
return AppendIntegerToString(str, static_cast<int>(i));
} else {
return AppendIntegerToString(str, static_cast<long long>(i)); // NOLINT
}
}
template <>
void AppendIntegerToString(TString& str,
unsigned long i) { // NOLINT
if (sizeof(i) <= sizeof(unsigned int)) {
return AppendIntegerToString(str, static_cast<unsigned int>(i));
} else {
return AppendIntegerToString(str,
static_cast<unsigned long long>(i)); // NOLINT
}
}
// `SingleArgStrAppend` overloads are defined here for the same reasons as with
// `SingleArgStrCat` above.
void SingleArgStrAppend(TString& str, int x) {
return AppendIntegerToString(str, x);
}
void SingleArgStrAppend(TString& str, unsigned int x) {
return AppendIntegerToString(str, x);
}
// NOLINTNEXTLINE
void SingleArgStrAppend(TString& str, long x) {
return AppendIntegerToString(str, x);
}
// NOLINTNEXTLINE
void SingleArgStrAppend(TString& str, unsigned long x) {
return AppendIntegerToString(str, x);
}
// NOLINTNEXTLINE
void SingleArgStrAppend(TString& str, long long x) {
return AppendIntegerToString(str, x);
}
// NOLINTNEXTLINE
void SingleArgStrAppend(TString& str, unsigned long long x) {
return AppendIntegerToString(str, x);
}
TString CatPieces(std::initializer_list<y_absl::string_view> pieces) {
TString result;
size_t total_size = 0;
for (y_absl::string_view piece : pieces) total_size += piece.size();
strings_internal::STLStringResizeUninitialized(&result, total_size);
char* const begin = &result[0];
char* out = begin;
for (y_absl::string_view piece : pieces) {
const size_t this_size = piece.size();
if (this_size != 0) {
memcpy(out, piece.data(), this_size);
out += this_size;
}
}
assert(out == begin + result.size());
return result;
}
// It's possible to call StrAppend with an y_absl::string_view that is itself a
// fragment of the string we're appending to. However the results of this are
// random. Therefore, check for this in debug mode. Use unsigned math so we
// only have to do one comparison. Note, there's an exception case: appending an
// empty string is always allowed.
#define ASSERT_NO_OVERLAP(dest, src) \
assert(((src).size() == 0) || \
(uintptr_t((src).data() - (dest).data()) > uintptr_t((dest).size())))
void AppendPieces(y_absl::Nonnull<TString*> dest,
std::initializer_list<y_absl::string_view> pieces) {
size_t old_size = dest->size();
size_t to_append = 0;
for (y_absl::string_view piece : pieces) {
ASSERT_NO_OVERLAP(*dest, piece);
to_append += piece.size();
}
strings_internal::STLStringAppendUninitializedAmortized(dest, to_append);
char* const begin = &(*dest)[0];
char* out = begin + old_size;
for (y_absl::string_view piece : pieces) {
const size_t this_size = piece.size();
if (this_size != 0) {
memcpy(out, piece.data(), this_size);
out += this_size;
}
}
assert(out == begin + dest->size());
}
} // namespace strings_internal
void StrAppend(y_absl::Nonnull<TString*> dest, const AlphaNum& a) {
ASSERT_NO_OVERLAP(*dest, a);
TString::size_type old_size = dest->size();
strings_internal::STLStringAppendUninitializedAmortized(dest, a.size());
char* const begin = &(*dest)[0];
char* out = begin + old_size;
out = Append(out, a);
assert(out == begin + dest->size());
}
void StrAppend(y_absl::Nonnull<TString*> dest, const AlphaNum& a,
const AlphaNum& b) {
ASSERT_NO_OVERLAP(*dest, a);
ASSERT_NO_OVERLAP(*dest, b);
TString::size_type old_size = dest->size();
strings_internal::STLStringAppendUninitializedAmortized(dest,
a.size() + b.size());
char* const begin = &(*dest)[0];
char* out = begin + old_size;
out = Append(out, a);
out = Append(out, b);
assert(out == begin + dest->size());
}
void StrAppend(y_absl::Nonnull<TString*> dest, const AlphaNum& a,
const AlphaNum& b, const AlphaNum& c) {
ASSERT_NO_OVERLAP(*dest, a);
ASSERT_NO_OVERLAP(*dest, b);
ASSERT_NO_OVERLAP(*dest, c);
TString::size_type old_size = dest->size();
strings_internal::STLStringAppendUninitializedAmortized(
dest, a.size() + b.size() + c.size());
char* const begin = &(*dest)[0];
char* out = begin + old_size;
out = Append(out, a);
out = Append(out, b);
out = Append(out, c);
assert(out == begin + dest->size());
}
void StrAppend(y_absl::Nonnull<TString*> dest, const AlphaNum& a,
const AlphaNum& b, const AlphaNum& c, const AlphaNum& d) {
ASSERT_NO_OVERLAP(*dest, a);
ASSERT_NO_OVERLAP(*dest, b);
ASSERT_NO_OVERLAP(*dest, c);
ASSERT_NO_OVERLAP(*dest, d);
TString::size_type old_size = dest->size();
strings_internal::STLStringAppendUninitializedAmortized(
dest, a.size() + b.size() + c.size() + d.size());
char* const begin = &(*dest)[0];
char* out = begin + old_size;
out = Append(out, a);
out = Append(out, b);
out = Append(out, c);
out = Append(out, d);
assert(out == begin + dest->size());
}
Y_ABSL_NAMESPACE_END
} // namespace y_absl
|