1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
|
// Copyright 2020 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef Y_ABSL_STATUS_INTERNAL_STATUSOR_INTERNAL_H_
#define Y_ABSL_STATUS_INTERNAL_STATUSOR_INTERNAL_H_
#include <type_traits>
#include <utility>
#include "y_absl/base/attributes.h"
#include "y_absl/meta/type_traits.h"
#include "y_absl/status/status.h"
#include "y_absl/utility/utility.h"
namespace y_absl {
Y_ABSL_NAMESPACE_BEGIN
template <typename T>
class Y_ABSL_MUST_USE_RESULT StatusOr;
namespace internal_statusor {
// Detects whether `U` has conversion operator to `StatusOr<T>`, i.e. `operator
// StatusOr<T>()`.
template <typename T, typename U, typename = void>
struct HasConversionOperatorToStatusOr : std::false_type {};
template <typename T, typename U>
void test(char (*)[sizeof(std::declval<U>().operator y_absl::StatusOr<T>())]);
template <typename T, typename U>
struct HasConversionOperatorToStatusOr<T, U, decltype(test<T, U>(0))>
: std::true_type {};
// Detects whether `T` is constructible or convertible from `StatusOr<U>`.
template <typename T, typename U>
using IsConstructibleOrConvertibleFromStatusOr =
y_absl::disjunction<std::is_constructible<T, StatusOr<U>&>,
std::is_constructible<T, const StatusOr<U>&>,
std::is_constructible<T, StatusOr<U>&&>,
std::is_constructible<T, const StatusOr<U>&&>,
std::is_convertible<StatusOr<U>&, T>,
std::is_convertible<const StatusOr<U>&, T>,
std::is_convertible<StatusOr<U>&&, T>,
std::is_convertible<const StatusOr<U>&&, T>>;
// Detects whether `T` is constructible or convertible or assignable from
// `StatusOr<U>`.
template <typename T, typename U>
using IsConstructibleOrConvertibleOrAssignableFromStatusOr =
y_absl::disjunction<IsConstructibleOrConvertibleFromStatusOr<T, U>,
std::is_assignable<T&, StatusOr<U>&>,
std::is_assignable<T&, const StatusOr<U>&>,
std::is_assignable<T&, StatusOr<U>&&>,
std::is_assignable<T&, const StatusOr<U>&&>>;
// Detects whether direct initializing `StatusOr<T>` from `U` is ambiguous, i.e.
// when `U` is `StatusOr<V>` and `T` is constructible or convertible from `V`.
template <typename T, typename U>
struct IsDirectInitializationAmbiguous
: public y_absl::conditional_t<
std::is_same<y_absl::remove_cvref_t<U>, U>::value, std::false_type,
IsDirectInitializationAmbiguous<T, y_absl::remove_cvref_t<U>>> {};
template <typename T, typename V>
struct IsDirectInitializationAmbiguous<T, y_absl::StatusOr<V>>
: public IsConstructibleOrConvertibleFromStatusOr<T, V> {};
// Checks against the constraints of the direction initialization, i.e. when
// `StatusOr<T>::StatusOr(U&&)` should participate in overload resolution.
template <typename T, typename U>
using IsDirectInitializationValid = y_absl::disjunction<
// Short circuits if T is basically U.
std::is_same<T, y_absl::remove_cvref_t<U>>,
y_absl::negation<y_absl::disjunction<
std::is_same<y_absl::StatusOr<T>, y_absl::remove_cvref_t<U>>,
std::is_same<y_absl::Status, y_absl::remove_cvref_t<U>>,
std::is_same<y_absl::in_place_t, y_absl::remove_cvref_t<U>>,
IsDirectInitializationAmbiguous<T, U>>>>;
// This trait detects whether `StatusOr<T>::operator=(U&&)` is ambiguous, which
// is equivalent to whether all the following conditions are met:
// 1. `U` is `StatusOr<V>`.
// 2. `T` is constructible and assignable from `V`.
// 3. `T` is constructible and assignable from `U` (i.e. `StatusOr<V>`).
// For example, the following code is considered ambiguous:
// (`T` is `bool`, `U` is `StatusOr<bool>`, `V` is `bool`)
// StatusOr<bool> s1 = true; // s1.ok() && s1.ValueOrDie() == true
// StatusOr<bool> s2 = false; // s2.ok() && s2.ValueOrDie() == false
// s1 = s2; // ambiguous, `s1 = s2.ValueOrDie()` or `s1 = bool(s2)`?
template <typename T, typename U>
struct IsForwardingAssignmentAmbiguous
: public y_absl::conditional_t<
std::is_same<y_absl::remove_cvref_t<U>, U>::value, std::false_type,
IsForwardingAssignmentAmbiguous<T, y_absl::remove_cvref_t<U>>> {};
template <typename T, typename U>
struct IsForwardingAssignmentAmbiguous<T, y_absl::StatusOr<U>>
: public IsConstructibleOrConvertibleOrAssignableFromStatusOr<T, U> {};
// Checks against the constraints of the forwarding assignment, i.e. whether
// `StatusOr<T>::operator(U&&)` should participate in overload resolution.
template <typename T, typename U>
using IsForwardingAssignmentValid = y_absl::disjunction<
// Short circuits if T is basically U.
std::is_same<T, y_absl::remove_cvref_t<U>>,
y_absl::negation<y_absl::disjunction<
std::is_same<y_absl::StatusOr<T>, y_absl::remove_cvref_t<U>>,
std::is_same<y_absl::Status, y_absl::remove_cvref_t<U>>,
std::is_same<y_absl::in_place_t, y_absl::remove_cvref_t<U>>,
IsForwardingAssignmentAmbiguous<T, U>>>>;
class Helper {
public:
// Move type-agnostic error handling to the .cc.
static void HandleInvalidStatusCtorArg(Status*);
Y_ABSL_ATTRIBUTE_NORETURN static void Crash(const y_absl::Status& status);
};
// Construct an instance of T in `p` through placement new, passing Args... to
// the constructor.
// This abstraction is here mostly for the gcc performance fix.
template <typename T, typename... Args>
Y_ABSL_ATTRIBUTE_NONNULL(1) void PlacementNew(void* p, Args&&... args) {
new (p) T(std::forward<Args>(args)...);
}
// Helper base class to hold the data and all operations.
// We move all this to a base class to allow mixing with the appropriate
// TraitsBase specialization.
template <typename T>
class StatusOrData {
template <typename U>
friend class StatusOrData;
public:
StatusOrData() = delete;
StatusOrData(const StatusOrData& other) {
if (other.ok()) {
MakeValue(other.data_);
MakeStatus();
} else {
MakeStatus(other.status_);
}
}
StatusOrData(StatusOrData&& other) noexcept {
if (other.ok()) {
MakeValue(std::move(other.data_));
MakeStatus();
} else {
MakeStatus(std::move(other.status_));
}
}
template <typename U>
explicit StatusOrData(const StatusOrData<U>& other) {
if (other.ok()) {
MakeValue(other.data_);
MakeStatus();
} else {
MakeStatus(other.status_);
}
}
template <typename U>
explicit StatusOrData(StatusOrData<U>&& other) {
if (other.ok()) {
MakeValue(std::move(other.data_));
MakeStatus();
} else {
MakeStatus(std::move(other.status_));
}
}
template <typename... Args>
explicit StatusOrData(y_absl::in_place_t, Args&&... args)
: data_(std::forward<Args>(args)...) {
MakeStatus();
}
explicit StatusOrData(const T& value) : data_(value) {
MakeStatus();
}
explicit StatusOrData(T&& value) : data_(std::move(value)) {
MakeStatus();
}
template <typename U,
y_absl::enable_if_t<std::is_constructible<y_absl::Status, U&&>::value,
int> = 0>
explicit StatusOrData(U&& v) : status_(std::forward<U>(v)) {
EnsureNotOk();
}
StatusOrData& operator=(const StatusOrData& other) {
if (this == &other) return *this;
if (other.ok())
Assign(other.data_);
else
AssignStatus(other.status_);
return *this;
}
StatusOrData& operator=(StatusOrData&& other) {
if (this == &other) return *this;
if (other.ok())
Assign(std::move(other.data_));
else
AssignStatus(std::move(other.status_));
return *this;
}
~StatusOrData() {
if (ok()) {
status_.~Status();
data_.~T();
} else {
status_.~Status();
}
}
template <typename U>
void Assign(U&& value) {
if (ok()) {
data_ = std::forward<U>(value);
} else {
MakeValue(std::forward<U>(value));
status_ = OkStatus();
}
}
template <typename U>
void AssignStatus(U&& v) {
Clear();
status_ = static_cast<y_absl::Status>(std::forward<U>(v));
EnsureNotOk();
}
bool ok() const { return status_.ok(); }
protected:
// status_ will always be active after the constructor.
// We make it a union to be able to initialize exactly how we need without
// waste.
// Eg. in the copy constructor we use the default constructor of Status in
// the ok() path to avoid an extra Ref call.
union {
Status status_;
};
// data_ is active iff status_.ok()==true
struct Dummy {};
union {
// When T is const, we need some non-const object we can cast to void* for
// the placement new. dummy_ is that object.
Dummy dummy_;
T data_;
};
void Clear() {
if (ok()) data_.~T();
}
void EnsureOk() const {
if (Y_ABSL_PREDICT_FALSE(!ok())) Helper::Crash(status_);
}
void EnsureNotOk() {
if (Y_ABSL_PREDICT_FALSE(ok())) Helper::HandleInvalidStatusCtorArg(&status_);
}
// Construct the value (ie. data_) through placement new with the passed
// argument.
template <typename... Arg>
void MakeValue(Arg&&... arg) {
internal_statusor::PlacementNew<T>(&dummy_, std::forward<Arg>(arg)...);
}
// Construct the status (ie. status_) through placement new with the passed
// argument.
template <typename... Args>
void MakeStatus(Args&&... args) {
internal_statusor::PlacementNew<Status>(&status_,
std::forward<Args>(args)...);
}
};
// Helper base classes to allow implicitly deleted constructors and assignment
// operators in `StatusOr`. For example, `CopyCtorBase` will explicitly delete
// the copy constructor when T is not copy constructible and `StatusOr` will
// inherit that behavior implicitly.
template <typename T, bool = std::is_copy_constructible<T>::value>
struct CopyCtorBase {
CopyCtorBase() = default;
CopyCtorBase(const CopyCtorBase&) = default;
CopyCtorBase(CopyCtorBase&&) = default;
CopyCtorBase& operator=(const CopyCtorBase&) = default;
CopyCtorBase& operator=(CopyCtorBase&&) = default;
};
template <typename T>
struct CopyCtorBase<T, false> {
CopyCtorBase() = default;
CopyCtorBase(const CopyCtorBase&) = delete;
CopyCtorBase(CopyCtorBase&&) = default;
CopyCtorBase& operator=(const CopyCtorBase&) = default;
CopyCtorBase& operator=(CopyCtorBase&&) = default;
};
template <typename T, bool = std::is_move_constructible<T>::value>
struct MoveCtorBase {
MoveCtorBase() = default;
MoveCtorBase(const MoveCtorBase&) = default;
MoveCtorBase(MoveCtorBase&&) = default;
MoveCtorBase& operator=(const MoveCtorBase&) = default;
MoveCtorBase& operator=(MoveCtorBase&&) = default;
};
template <typename T>
struct MoveCtorBase<T, false> {
MoveCtorBase() = default;
MoveCtorBase(const MoveCtorBase&) = default;
MoveCtorBase(MoveCtorBase&&) = delete;
MoveCtorBase& operator=(const MoveCtorBase&) = default;
MoveCtorBase& operator=(MoveCtorBase&&) = default;
};
template <typename T, bool = std::is_copy_constructible<T>::value&&
std::is_copy_assignable<T>::value>
struct CopyAssignBase {
CopyAssignBase() = default;
CopyAssignBase(const CopyAssignBase&) = default;
CopyAssignBase(CopyAssignBase&&) = default;
CopyAssignBase& operator=(const CopyAssignBase&) = default;
CopyAssignBase& operator=(CopyAssignBase&&) = default;
};
template <typename T>
struct CopyAssignBase<T, false> {
CopyAssignBase() = default;
CopyAssignBase(const CopyAssignBase&) = default;
CopyAssignBase(CopyAssignBase&&) = default;
CopyAssignBase& operator=(const CopyAssignBase&) = delete;
CopyAssignBase& operator=(CopyAssignBase&&) = default;
};
template <typename T, bool = std::is_move_constructible<T>::value&&
std::is_move_assignable<T>::value>
struct MoveAssignBase {
MoveAssignBase() = default;
MoveAssignBase(const MoveAssignBase&) = default;
MoveAssignBase(MoveAssignBase&&) = default;
MoveAssignBase& operator=(const MoveAssignBase&) = default;
MoveAssignBase& operator=(MoveAssignBase&&) = default;
};
template <typename T>
struct MoveAssignBase<T, false> {
MoveAssignBase() = default;
MoveAssignBase(const MoveAssignBase&) = default;
MoveAssignBase(MoveAssignBase&&) = default;
MoveAssignBase& operator=(const MoveAssignBase&) = default;
MoveAssignBase& operator=(MoveAssignBase&&) = delete;
};
Y_ABSL_ATTRIBUTE_NORETURN void ThrowBadStatusOrAccess(y_absl::Status status);
} // namespace internal_statusor
Y_ABSL_NAMESPACE_END
} // namespace y_absl
#endif // Y_ABSL_STATUS_INTERNAL_STATUSOR_INTERNAL_H_
|