aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/restricted/abseil-cpp-tstring/y_absl/flags/internal/flag.cc
blob: a0078232211f9dc8222f10dbece3877819f9e300 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
//
// Copyright 2019 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//      https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "y_absl/flags/internal/flag.h"

#include <assert.h>
#include <stddef.h>
#include <stdint.h>
#include <string.h>

#include <array>
#include <atomic>
#include <cstring>
#include <memory>
#include <util/generic/string.h>
#include <typeinfo>
#include <vector>

#include "y_absl/base/attributes.h"
#include "y_absl/base/call_once.h"
#include "y_absl/base/casts.h"
#include "y_absl/base/config.h"
#include "y_absl/base/const_init.h"
#include "y_absl/base/dynamic_annotations.h"
#include "y_absl/base/optimization.h"
#include "y_absl/flags/config.h"
#include "y_absl/flags/internal/commandlineflag.h"
#include "y_absl/flags/usage_config.h"
#include "y_absl/memory/memory.h"
#include "y_absl/strings/str_cat.h"
#include "y_absl/strings/string_view.h"
#include "y_absl/synchronization/mutex.h"

namespace y_absl {
Y_ABSL_NAMESPACE_BEGIN
namespace flags_internal {

// The help message indicating that the commandline flag has been stripped. It
// will not show up when doing "-help" and its variants. The flag is stripped
// if Y_ABSL_FLAGS_STRIP_HELP is set to 1 before including y_absl/flags/flag.h
const char kStrippedFlagHelp[] = "\001\002\003\004 (unknown) \004\003\002\001";

namespace {

// Currently we only validate flag values for user-defined flag types.
bool ShouldValidateFlagValue(FlagFastTypeId flag_type_id) {
#define DONT_VALIDATE(T, _) \
  if (flag_type_id == base_internal::FastTypeId<T>()) return false;
  Y_ABSL_FLAGS_INTERNAL_SUPPORTED_TYPES(DONT_VALIDATE)
#undef DONT_VALIDATE

  return true;
}

// RAII helper used to temporarily unlock and relock `y_absl::Mutex`.
// This is used when we need to ensure that locks are released while
// invoking user supplied callbacks and then reacquired, since callbacks may
// need to acquire these locks themselves.
class MutexRelock {
 public:
  explicit MutexRelock(y_absl::Mutex& mu) : mu_(mu) { mu_.Unlock(); }
  ~MutexRelock() { mu_.Lock(); }

  MutexRelock(const MutexRelock&) = delete;
  MutexRelock& operator=(const MutexRelock&) = delete;

 private:
  y_absl::Mutex& mu_;
};

// This is a freelist of leaked flag values and guard for its access.
// When we can't guarantee it is safe to reuse the memory for flag values,
// we move the memory to the freelist where it lives indefinitely, so it can
// still be safely accessed. This also prevents leak checkers from complaining
// about the leaked memory that can no longer be accessed through any pointer.
Y_ABSL_CONST_INIT y_absl::Mutex s_freelist_guard(y_absl::kConstInit);
Y_ABSL_CONST_INIT std::vector<void*>* s_freelist = nullptr;

void AddToFreelist(void* p) {
  y_absl::MutexLock l(&s_freelist_guard);
  if (!s_freelist) {
    s_freelist = new std::vector<void*>;
  }
  s_freelist->push_back(p);
}

}  // namespace

///////////////////////////////////////////////////////////////////////////////

uint64_t NumLeakedFlagValues() {
  y_absl::MutexLock l(&s_freelist_guard);
  return s_freelist == nullptr ? 0u : s_freelist->size();
}

///////////////////////////////////////////////////////////////////////////////
// Persistent state of the flag data.

class FlagImpl;

class FlagState : public flags_internal::FlagStateInterface {
 public:
  template <typename V>
  FlagState(FlagImpl& flag_impl, const V& v, bool modified,
            bool on_command_line, int64_t counter)
      : flag_impl_(flag_impl),
        value_(v),
        modified_(modified),
        on_command_line_(on_command_line),
        counter_(counter) {}

  ~FlagState() override {
    if (flag_impl_.ValueStorageKind() != FlagValueStorageKind::kHeapAllocated &&
        flag_impl_.ValueStorageKind() != FlagValueStorageKind::kSequenceLocked)
      return;
    flags_internal::Delete(flag_impl_.op_, value_.heap_allocated);
  }

 private:
  friend class FlagImpl;

  // Restores the flag to the saved state.
  void Restore() const override {
    if (!flag_impl_.RestoreState(*this)) return;

    Y_ABSL_INTERNAL_LOG(INFO,
                      y_absl::StrCat("Restore saved value of ", flag_impl_.Name(),
                                   " to: ", flag_impl_.CurrentValue()));
  }

  // Flag and saved flag data.
  FlagImpl& flag_impl_;
  union SavedValue {
    explicit SavedValue(void* v) : heap_allocated(v) {}
    explicit SavedValue(int64_t v) : one_word(v) {}

    void* heap_allocated;
    int64_t one_word;
  } value_;
  bool modified_;
  bool on_command_line_;
  int64_t counter_;
};

///////////////////////////////////////////////////////////////////////////////
// Flag implementation, which does not depend on flag value type.

DynValueDeleter::DynValueDeleter(FlagOpFn op_arg) : op(op_arg) {}

void DynValueDeleter::operator()(void* ptr) const {
  if (op == nullptr) return;

  Delete(op, ptr);
}

MaskedPointer::MaskedPointer(ptr_t rhs, bool is_candidate) : ptr_(rhs) {
  if (is_candidate) {
    ApplyMask(kUnprotectedReadCandidate);
  }
}

bool MaskedPointer::IsUnprotectedReadCandidate() const {
  return CheckMask(kUnprotectedReadCandidate);
}

bool MaskedPointer::HasBeenRead() const { return CheckMask(kHasBeenRead); }

void MaskedPointer::Set(FlagOpFn op, const void* src, bool is_candidate) {
  flags_internal::Copy(op, src, Ptr());
  if (is_candidate) {
    ApplyMask(kUnprotectedReadCandidate);
  }
}
void MaskedPointer::MarkAsRead() { ApplyMask(kHasBeenRead); }

void MaskedPointer::ApplyMask(mask_t mask) {
  ptr_ = reinterpret_cast<ptr_t>(reinterpret_cast<mask_t>(ptr_) | mask);
}
bool MaskedPointer::CheckMask(mask_t mask) const {
  return (reinterpret_cast<mask_t>(ptr_) & mask) != 0;
}

void FlagImpl::Init() {
  new (&data_guard_) y_absl::Mutex;

  auto def_kind = static_cast<FlagDefaultKind>(def_kind_);

  switch (ValueStorageKind()) {
    case FlagValueStorageKind::kValueAndInitBit:
    case FlagValueStorageKind::kOneWordAtomic: {
      alignas(int64_t) std::array<char, sizeof(int64_t)> buf{};
      if (def_kind == FlagDefaultKind::kGenFunc) {
        (*default_value_.gen_func)(buf.data());
      } else {
        assert(def_kind != FlagDefaultKind::kDynamicValue);
        std::memcpy(buf.data(), &default_value_, Sizeof(op_));
      }
      if (ValueStorageKind() == FlagValueStorageKind::kValueAndInitBit) {
        // We presume here the memory layout of FlagValueAndInitBit struct.
        uint8_t initialized = 1;
        std::memcpy(buf.data() + Sizeof(op_), &initialized,
                    sizeof(initialized));
      }
      // Type can contain valid uninitialized bits, e.g. padding.
      Y_ABSL_ANNOTATE_MEMORY_IS_INITIALIZED(buf.data(), buf.size());
      OneWordValue().store(y_absl::bit_cast<int64_t>(buf),
                           std::memory_order_release);
      break;
    }
    case FlagValueStorageKind::kSequenceLocked: {
      // For this storage kind the default_value_ always points to gen_func
      // during initialization.
      assert(def_kind == FlagDefaultKind::kGenFunc);
      (*default_value_.gen_func)(AtomicBufferValue());
      break;
    }
    case FlagValueStorageKind::kHeapAllocated:
      // For this storage kind the default_value_ always points to gen_func
      // during initialization.
      assert(def_kind == FlagDefaultKind::kGenFunc);
      // Flag value initially points to the internal buffer.
      MaskedPointer ptr_value = PtrStorage().load(std::memory_order_acquire);
      (*default_value_.gen_func)(ptr_value.Ptr());
      // Default value is a candidate for an unprotected read.
      PtrStorage().store(MaskedPointer(ptr_value.Ptr(), true),
                         std::memory_order_release);
      break;
  }
  seq_lock_.MarkInitialized();
}

y_absl::Mutex* FlagImpl::DataGuard() const {
  y_absl::call_once(const_cast<FlagImpl*>(this)->init_control_, &FlagImpl::Init,
                  const_cast<FlagImpl*>(this));

  // data_guard_ is initialized inside Init.
  return reinterpret_cast<y_absl::Mutex*>(&data_guard_);
}

void FlagImpl::AssertValidType(FlagFastTypeId rhs_type_id,
                               const std::type_info* (*gen_rtti)()) const {
  FlagFastTypeId lhs_type_id = flags_internal::FastTypeId(op_);

  // `rhs_type_id` is the fast type id corresponding to the declaration
  // visible at the call site. `lhs_type_id` is the fast type id
  // corresponding to the type specified in flag definition. They must match
  //  for this operation to be well-defined.
  if (Y_ABSL_PREDICT_TRUE(lhs_type_id == rhs_type_id)) return;

  const std::type_info* lhs_runtime_type_id =
      flags_internal::RuntimeTypeId(op_);
  const std::type_info* rhs_runtime_type_id = (*gen_rtti)();

  if (lhs_runtime_type_id == rhs_runtime_type_id) return;

#ifdef Y_ABSL_INTERNAL_HAS_RTTI
  if (*lhs_runtime_type_id == *rhs_runtime_type_id) return;
#endif

  Y_ABSL_INTERNAL_LOG(
      FATAL, y_absl::StrCat("Flag '", Name(),
                          "' is defined as one type and declared as another"));
}

std::unique_ptr<void, DynValueDeleter> FlagImpl::MakeInitValue() const {
  void* res = nullptr;
  switch (DefaultKind()) {
    case FlagDefaultKind::kDynamicValue:
      res = flags_internal::Clone(op_, default_value_.dynamic_value);
      break;
    case FlagDefaultKind::kGenFunc:
      res = flags_internal::Alloc(op_);
      (*default_value_.gen_func)(res);
      break;
    default:
      res = flags_internal::Clone(op_, &default_value_);
      break;
  }
  return {res, DynValueDeleter{op_}};
}

void FlagImpl::StoreValue(const void* src, ValueSource source) {
  switch (ValueStorageKind()) {
    case FlagValueStorageKind::kValueAndInitBit:
    case FlagValueStorageKind::kOneWordAtomic: {
      // Load the current value to avoid setting 'init' bit manually.
      int64_t one_word_val = OneWordValue().load(std::memory_order_acquire);
      std::memcpy(&one_word_val, src, Sizeof(op_));
      OneWordValue().store(one_word_val, std::memory_order_release);
      seq_lock_.IncrementModificationCount();
      break;
    }
    case FlagValueStorageKind::kSequenceLocked: {
      seq_lock_.Write(AtomicBufferValue(), src, Sizeof(op_));
      break;
    }
    case FlagValueStorageKind::kHeapAllocated:
      MaskedPointer ptr_value = PtrStorage().load(std::memory_order_acquire);

      if (ptr_value.IsUnprotectedReadCandidate() && ptr_value.HasBeenRead()) {
        // If current value is a candidate for an unprotected read and if it was
        // already read at least once, follow up reads (if any) are done without
        // mutex protection. We can't guarantee it is safe to reuse this memory
        // since it may have been accessed by another thread concurrently, so
        // instead we move the memory to a freelist so it can still be safely
        // accessed, and allocate a new one for the new value.
        AddToFreelist(ptr_value.Ptr());
        ptr_value = MaskedPointer(Clone(op_, src), source == kCommandLine);
      } else {
        // Current value either was set programmatically or was never read.
        // We can reuse the memory since all accesses to this value (if any)
        // were protected by mutex. That said, if a new value comes from command
        // line it now becomes a candidate for an unprotected read.
        ptr_value.Set(op_, src, source == kCommandLine);
      }

      PtrStorage().store(ptr_value, std::memory_order_release);
      seq_lock_.IncrementModificationCount();
      break;
  }
  modified_ = true;
  InvokeCallback();
}

y_absl::string_view FlagImpl::Name() const { return name_; }

TString FlagImpl::Filename() const {
  return flags_internal::GetUsageConfig().normalize_filename(filename_);
}

TString FlagImpl::Help() const {
  return HelpSourceKind() == FlagHelpKind::kLiteral ? help_.literal
                                                    : help_.gen_func();
}

FlagFastTypeId FlagImpl::TypeId() const {
  return flags_internal::FastTypeId(op_);
}

int64_t FlagImpl::ModificationCount() const {
  return seq_lock_.ModificationCount();
}

bool FlagImpl::IsSpecifiedOnCommandLine() const {
  y_absl::MutexLock l(DataGuard());
  return on_command_line_;
}

TString FlagImpl::DefaultValue() const {
  y_absl::MutexLock l(DataGuard());

  auto obj = MakeInitValue();
  return flags_internal::Unparse(op_, obj.get());
}

TString FlagImpl::CurrentValue() const {
  auto* guard = DataGuard();  // Make sure flag initialized
  switch (ValueStorageKind()) {
    case FlagValueStorageKind::kValueAndInitBit:
    case FlagValueStorageKind::kOneWordAtomic: {
      const auto one_word_val =
          y_absl::bit_cast<std::array<char, sizeof(int64_t)>>(
              OneWordValue().load(std::memory_order_acquire));
      return flags_internal::Unparse(op_, one_word_val.data());
    }
    case FlagValueStorageKind::kSequenceLocked: {
      std::unique_ptr<void, DynValueDeleter> cloned(flags_internal::Alloc(op_),
                                                    DynValueDeleter{op_});
      ReadSequenceLockedData(cloned.get());
      return flags_internal::Unparse(op_, cloned.get());
    }
    case FlagValueStorageKind::kHeapAllocated: {
      y_absl::MutexLock l(guard);
      return flags_internal::Unparse(
          op_, PtrStorage().load(std::memory_order_acquire).Ptr());
    }
  }

  return "";
}

void FlagImpl::SetCallback(const FlagCallbackFunc mutation_callback) {
  y_absl::MutexLock l(DataGuard());

  if (callback_ == nullptr) {
    callback_ = new FlagCallback;
  }
  callback_->func = mutation_callback;

  InvokeCallback();
}

void FlagImpl::InvokeCallback() const {
  if (!callback_) return;

  // Make a copy of the C-style function pointer that we are about to invoke
  // before we release the lock guarding it.
  FlagCallbackFunc cb = callback_->func;

  // If the flag has a mutation callback this function invokes it. While the
  // callback is being invoked the primary flag's mutex is unlocked and it is
  // re-locked back after call to callback is completed. Callback invocation is
  // guarded by flag's secondary mutex instead which prevents concurrent
  // callback invocation. Note that it is possible for other thread to grab the
  // primary lock and update flag's value at any time during the callback
  // invocation. This is by design. Callback can get a value of the flag if
  // necessary, but it might be different from the value initiated the callback
  // and it also can be different by the time the callback invocation is
  // completed. Requires that *primary_lock be held in exclusive mode; it may be
  // released and reacquired by the implementation.
  MutexRelock relock(*DataGuard());
  y_absl::MutexLock lock(&callback_->guard);
  cb();
}

std::unique_ptr<FlagStateInterface> FlagImpl::SaveState() {
  y_absl::MutexLock l(DataGuard());

  bool modified = modified_;
  bool on_command_line = on_command_line_;
  switch (ValueStorageKind()) {
    case FlagValueStorageKind::kValueAndInitBit:
    case FlagValueStorageKind::kOneWordAtomic: {
      return y_absl::make_unique<FlagState>(
          *this, OneWordValue().load(std::memory_order_acquire), modified,
          on_command_line, ModificationCount());
    }
    case FlagValueStorageKind::kSequenceLocked: {
      void* cloned = flags_internal::Alloc(op_);
      // Read is guaranteed to be successful because we hold the lock.
      bool success =
          seq_lock_.TryRead(cloned, AtomicBufferValue(), Sizeof(op_));
      assert(success);
      static_cast<void>(success);
      return y_absl::make_unique<FlagState>(*this, cloned, modified,
                                          on_command_line, ModificationCount());
    }
    case FlagValueStorageKind::kHeapAllocated: {
      return y_absl::make_unique<FlagState>(
          *this,
          flags_internal::Clone(
              op_, PtrStorage().load(std::memory_order_acquire).Ptr()),
          modified, on_command_line, ModificationCount());
    }
  }
  return nullptr;
}

bool FlagImpl::RestoreState(const FlagState& flag_state) {
  y_absl::MutexLock l(DataGuard());
  if (flag_state.counter_ == ModificationCount()) {
    return false;
  }

  switch (ValueStorageKind()) {
    case FlagValueStorageKind::kValueAndInitBit:
    case FlagValueStorageKind::kOneWordAtomic:
      StoreValue(&flag_state.value_.one_word, kProgrammaticChange);
      break;
    case FlagValueStorageKind::kSequenceLocked:
    case FlagValueStorageKind::kHeapAllocated:
      StoreValue(flag_state.value_.heap_allocated, kProgrammaticChange);
      break;
  }

  modified_ = flag_state.modified_;
  on_command_line_ = flag_state.on_command_line_;

  return true;
}

template <typename StorageT>
StorageT* FlagImpl::OffsetValue() const {
  char* p = reinterpret_cast<char*>(const_cast<FlagImpl*>(this));
  // The offset is deduced via Flag value type specific op_.
  ptrdiff_t offset = flags_internal::ValueOffset(op_);

  return reinterpret_cast<StorageT*>(p + offset);
}

std::atomic<uint64_t>* FlagImpl::AtomicBufferValue() const {
  assert(ValueStorageKind() == FlagValueStorageKind::kSequenceLocked);
  return OffsetValue<std::atomic<uint64_t>>();
}

std::atomic<int64_t>& FlagImpl::OneWordValue() const {
  assert(ValueStorageKind() == FlagValueStorageKind::kOneWordAtomic ||
         ValueStorageKind() == FlagValueStorageKind::kValueAndInitBit);
  return OffsetValue<FlagOneWordValue>()->value;
}

std::atomic<MaskedPointer>& FlagImpl::PtrStorage() const {
  assert(ValueStorageKind() == FlagValueStorageKind::kHeapAllocated);
  return OffsetValue<FlagMaskedPointerValue>()->value;
}

// Attempts to parse supplied `value` string using parsing routine in the `flag`
// argument. If parsing successful, this function replaces the dst with newly
// parsed value. In case if any error is encountered in either step, the error
// message is stored in 'err'
std::unique_ptr<void, DynValueDeleter> FlagImpl::TryParse(
    y_absl::string_view value, TString& err) const {
  std::unique_ptr<void, DynValueDeleter> tentative_value = MakeInitValue();

  TString parse_err;
  if (!flags_internal::Parse(op_, value, tentative_value.get(), &parse_err)) {
    y_absl::string_view err_sep = parse_err.empty() ? "" : "; ";
    err = y_absl::StrCat("Illegal value '", value, "' specified for flag '",
                       Name(), "'", err_sep, parse_err);
    return nullptr;
  }

  return tentative_value;
}

void FlagImpl::Read(void* dst) const {
  auto* guard = DataGuard();  // Make sure flag initialized
  switch (ValueStorageKind()) {
    case FlagValueStorageKind::kValueAndInitBit:
    case FlagValueStorageKind::kOneWordAtomic: {
      const int64_t one_word_val =
          OneWordValue().load(std::memory_order_acquire);
      std::memcpy(dst, &one_word_val, Sizeof(op_));
      break;
    }
    case FlagValueStorageKind::kSequenceLocked: {
      ReadSequenceLockedData(dst);
      break;
    }
    case FlagValueStorageKind::kHeapAllocated: {
      y_absl::MutexLock l(guard);
      MaskedPointer ptr_value = PtrStorage().load(std::memory_order_acquire);

      flags_internal::CopyConstruct(op_, ptr_value.Ptr(), dst);

      // For unprotected read candidates, mark that the value as has been read.
      if (ptr_value.IsUnprotectedReadCandidate() && !ptr_value.HasBeenRead()) {
        ptr_value.MarkAsRead();
        PtrStorage().store(ptr_value, std::memory_order_release);
      }
      break;
    }
  }
}

int64_t FlagImpl::ReadOneWord() const {
  assert(ValueStorageKind() == FlagValueStorageKind::kOneWordAtomic ||
         ValueStorageKind() == FlagValueStorageKind::kValueAndInitBit);
  auto* guard = DataGuard();  // Make sure flag initialized
  (void)guard;
  return OneWordValue().load(std::memory_order_acquire);
}

bool FlagImpl::ReadOneBool() const {
  assert(ValueStorageKind() == FlagValueStorageKind::kValueAndInitBit);
  auto* guard = DataGuard();  // Make sure flag initialized
  (void)guard;
  return y_absl::bit_cast<FlagValueAndInitBit<bool>>(
             OneWordValue().load(std::memory_order_acquire))
      .value;
}

void FlagImpl::ReadSequenceLockedData(void* dst) const {
  size_t size = Sizeof(op_);
  // Attempt to read using the sequence lock.
  if (Y_ABSL_PREDICT_TRUE(seq_lock_.TryRead(dst, AtomicBufferValue(), size))) {
    return;
  }
  // We failed due to contention. Acquire the lock to prevent contention
  // and try again.
  y_absl::ReaderMutexLock l(DataGuard());
  bool success = seq_lock_.TryRead(dst, AtomicBufferValue(), size);
  assert(success);
  static_cast<void>(success);
}

void FlagImpl::Write(const void* src) {
  y_absl::MutexLock l(DataGuard());

  if (ShouldValidateFlagValue(flags_internal::FastTypeId(op_))) {
    std::unique_ptr<void, DynValueDeleter> obj{flags_internal::Clone(op_, src),
                                               DynValueDeleter{op_}};
    TString ignored_error;
    TString src_as_str = flags_internal::Unparse(op_, src);
    if (!flags_internal::Parse(op_, src_as_str, obj.get(), &ignored_error)) {
      Y_ABSL_INTERNAL_LOG(ERROR, y_absl::StrCat("Attempt to set flag '", Name(),
                                            "' to invalid value ", src_as_str));
    }
  }

  StoreValue(src, kProgrammaticChange);
}

// Sets the value of the flag based on specified string `value`. If the flag
// was successfully set to new value, it returns true. Otherwise, sets `err`
// to indicate the error, leaves the flag unchanged, and returns false. There
// are three ways to set the flag's value:
//  * Update the current flag value
//  * Update the flag's default value
//  * Update the current flag value if it was never set before
// The mode is selected based on 'set_mode' parameter.
bool FlagImpl::ParseFrom(y_absl::string_view value, FlagSettingMode set_mode,
                         ValueSource source, TString& err) {
  y_absl::MutexLock l(DataGuard());

  switch (set_mode) {
    case SET_FLAGS_VALUE: {
      // set or modify the flag's value
      auto tentative_value = TryParse(value, err);
      if (!tentative_value) return false;

      StoreValue(tentative_value.get(), source);

      if (source == kCommandLine) {
        on_command_line_ = true;
      }
      break;
    }
    case SET_FLAG_IF_DEFAULT: {
      // set the flag's value, but only if it hasn't been set by someone else
      if (modified_) {
        // TODO(rogeeff): review and fix this semantic. Currently we do not fail
        // in this case if flag is modified. This is misleading since the flag's
        // value is not updated even though we return true.
        // *err = y_absl::StrCat(Name(), " is already set to ",
        //                     CurrentValue(), "\n");
        // return false;
        return true;
      }
      auto tentative_value = TryParse(value, err);
      if (!tentative_value) return false;

      StoreValue(tentative_value.get(), source);
      break;
    }
    case SET_FLAGS_DEFAULT: {
      auto tentative_value = TryParse(value, err);
      if (!tentative_value) return false;

      if (DefaultKind() == FlagDefaultKind::kDynamicValue) {
        void* old_value = default_value_.dynamic_value;
        default_value_.dynamic_value = tentative_value.release();
        tentative_value.reset(old_value);
      } else {
        default_value_.dynamic_value = tentative_value.release();
        def_kind_ = static_cast<uint8_t>(FlagDefaultKind::kDynamicValue);
      }

      if (!modified_) {
        // Need to set both default value *and* current, in this case.
        StoreValue(default_value_.dynamic_value, source);
        modified_ = false;
      }
      break;
    }
  }

  return true;
}

void FlagImpl::CheckDefaultValueParsingRoundtrip() const {
  TString v = DefaultValue();

  y_absl::MutexLock lock(DataGuard());

  auto dst = MakeInitValue();
  TString error;
  if (!flags_internal::Parse(op_, v, dst.get(), &error)) {
    Y_ABSL_INTERNAL_LOG(
        FATAL,
        y_absl::StrCat("Flag ", Name(), " (from ", Filename(),
                     "): string form of default value '", v,
                     "' could not be parsed; error=", error));
  }

  // We do not compare dst to def since parsing/unparsing may make
  // small changes, e.g., precision loss for floating point types.
}

bool FlagImpl::ValidateInputValue(y_absl::string_view value) const {
  y_absl::MutexLock l(DataGuard());

  auto obj = MakeInitValue();
  TString ignored_error;
  return flags_internal::Parse(op_, value, obj.get(), &ignored_error);
}

}  // namespace flags_internal
Y_ABSL_NAMESPACE_END
}  // namespace y_absl