1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
|
// Copyright 2018 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// Define the default Hash and Eq functions for SwissTable containers.
//
// std::hash<T> and std::equal_to<T> are not appropriate hash and equal
// functions for SwissTable containers. There are two reasons for this.
//
// SwissTable containers are power of 2 sized containers:
//
// This means they use the lower bits of the hash value to find the slot for
// each entry. The typical hash function for integral types is the identity.
// This is a very weak hash function for SwissTable and any power of 2 sized
// hashtable implementation which will lead to excessive collisions. For
// SwissTable we use murmur3 style mixing to reduce collisions to a minimum.
//
// SwissTable containers support heterogeneous lookup:
//
// In order to make heterogeneous lookup work, hash and equal functions must be
// polymorphic. At the same time they have to satisfy the same requirements the
// C++ standard imposes on hash functions and equality operators. That is:
//
// if hash_default_eq<T>(a, b) returns true for any a and b of type T, then
// hash_default_hash<T>(a) must equal hash_default_hash<T>(b)
//
// For SwissTable containers this requirement is relaxed to allow a and b of
// any and possibly different types. Note that like the standard the hash and
// equal functions are still bound to T. This is important because some type U
// can be hashed by/tested for equality differently depending on T. A notable
// example is `const char*`. `const char*` is treated as a c-style string when
// the hash function is hash<TString> but as a pointer when the hash
// function is hash<void*>.
//
#ifndef Y_ABSL_CONTAINER_INTERNAL_HASH_FUNCTION_DEFAULTS_H_
#define Y_ABSL_CONTAINER_INTERNAL_HASH_FUNCTION_DEFAULTS_H_
#include <cstddef>
#include <functional>
#include <memory>
#include <util/generic/string.h>
#include <type_traits>
#include "y_absl/base/config.h"
#include "y_absl/container/internal/common.h"
#include "y_absl/hash/hash.h"
#include "y_absl/meta/type_traits.h"
#include "y_absl/strings/cord.h"
#include "y_absl/strings/string_view.h"
#ifdef Y_ABSL_HAVE_STD_STRING_VIEW
#include <string_view>
#endif
namespace y_absl {
Y_ABSL_NAMESPACE_BEGIN
namespace container_internal {
// The hash of an object of type T is computed by using y_absl::Hash.
template <class T, class E = void>
struct HashEq {
using Hash = y_absl::Hash<T>;
using Eq = std::equal_to<T>;
};
struct StringHash {
using is_transparent = void;
size_t operator()(y_absl::string_view v) const {
return y_absl::Hash<y_absl::string_view>{}(v);
}
size_t operator()(const y_absl::Cord& v) const {
return y_absl::Hash<y_absl::Cord>{}(v);
}
};
struct StringEq {
using is_transparent = void;
bool operator()(y_absl::string_view lhs, y_absl::string_view rhs) const {
return lhs == rhs;
}
bool operator()(const y_absl::Cord& lhs, const y_absl::Cord& rhs) const {
return lhs == rhs;
}
bool operator()(const y_absl::Cord& lhs, y_absl::string_view rhs) const {
return lhs == rhs;
}
bool operator()(y_absl::string_view lhs, const y_absl::Cord& rhs) const {
return lhs == rhs;
}
};
// Supports heterogeneous lookup for string-like elements.
struct StringHashEq {
using Hash = StringHash;
using Eq = StringEq;
};
template <>
struct HashEq<TString> : StringHashEq {};
template <>
struct HashEq<y_absl::string_view> : StringHashEq {};
template <>
struct HashEq<y_absl::Cord> : StringHashEq {};
#ifdef Y_ABSL_HAVE_STD_STRING_VIEW
template <typename TChar>
struct BasicStringHash {
using is_transparent = void;
size_t operator()(std::basic_string_view<TChar> v) const {
return y_absl::Hash<std::basic_string_view<TChar>>{}(v);
}
};
template <typename TChar>
struct BasicStringEq {
using is_transparent = void;
bool operator()(std::basic_string_view<TChar> lhs,
std::basic_string_view<TChar> rhs) const {
return lhs == rhs;
}
};
// Supports heterogeneous lookup for w/u16/u32 string + string_view + char*.
template <typename TChar>
struct BasicStringHashEq {
using Hash = BasicStringHash<TChar>;
using Eq = BasicStringEq<TChar>;
};
template <>
struct HashEq<std::wstring> : BasicStringHashEq<wchar_t> {};
template <>
struct HashEq<std::wstring_view> : BasicStringHashEq<wchar_t> {};
template <>
struct HashEq<std::u16string> : BasicStringHashEq<char16_t> {};
template <>
struct HashEq<std::u16string_view> : BasicStringHashEq<char16_t> {};
template <>
struct HashEq<std::u32string> : BasicStringHashEq<char32_t> {};
template <>
struct HashEq<std::u32string_view> : BasicStringHashEq<char32_t> {};
#endif // Y_ABSL_HAVE_STD_STRING_VIEW
// Supports heterogeneous lookup for pointers and smart pointers.
template <class T>
struct HashEq<T*> {
struct Hash {
using is_transparent = void;
template <class U>
size_t operator()(const U& ptr) const {
return y_absl::Hash<const T*>{}(HashEq::ToPtr(ptr));
}
};
struct Eq {
using is_transparent = void;
template <class A, class B>
bool operator()(const A& a, const B& b) const {
return HashEq::ToPtr(a) == HashEq::ToPtr(b);
}
};
private:
static const T* ToPtr(const T* ptr) { return ptr; }
template <class U, class D>
static const T* ToPtr(const std::unique_ptr<U, D>& ptr) {
return ptr.get();
}
template <class U>
static const T* ToPtr(const std::shared_ptr<U>& ptr) {
return ptr.get();
}
};
template <class T, class D>
struct HashEq<std::unique_ptr<T, D>> : HashEq<T*> {};
template <class T>
struct HashEq<std::shared_ptr<T>> : HashEq<T*> {};
template <typename T, typename E = void>
struct HasAbslContainerHash : std::false_type {};
template <typename T>
struct HasAbslContainerHash<T, y_absl::void_t<typename T::absl_container_hash>>
: std::true_type {};
template <typename T, typename E = void>
struct HasAbslContainerEq : std::false_type {};
template <typename T>
struct HasAbslContainerEq<T, y_absl::void_t<typename T::absl_container_eq>>
: std::true_type {};
template <typename T, typename E = void>
struct AbslContainerEq {
using type = std::equal_to<>;
};
template <typename T>
struct AbslContainerEq<
T, typename std::enable_if_t<HasAbslContainerEq<T>::value>> {
using type = typename T::absl_container_eq;
};
template <typename T, typename E = void>
struct AbslContainerHash {
using type = void;
};
template <typename T>
struct AbslContainerHash<
T, typename std::enable_if_t<HasAbslContainerHash<T>::value>> {
using type = typename T::absl_container_hash;
};
// HashEq specialization for user types that provide `absl_container_hash` and
// (optionally) `absl_container_eq`. This specialization allows user types to
// provide heterogeneous lookup without requiring to explicitly specify Hash/Eq
// type arguments in unordered Abseil containers.
//
// Both `absl_container_hash` and `absl_container_eq` should be transparent
// (have inner is_transparent type). While there is no technical reason to
// restrict to transparent-only types, there is also no feasible use case when
// it shouldn't be transparent - it is easier to relax the requirement later if
// such a case arises rather than restricting it.
//
// If type provides only `absl_container_hash` then `eq` part will be
// `std::equal_to<void>`.
//
// User types are not allowed to provide only a `Eq` part as there is no
// feasible use case for this behavior - if Hash should be a default one then Eq
// should be an equivalent to the `std::equal_to<T>`.
template <typename T>
struct HashEq<T, typename std::enable_if_t<HasAbslContainerHash<T>::value>> {
using Hash = typename AbslContainerHash<T>::type;
using Eq = typename AbslContainerEq<T>::type;
static_assert(IsTransparent<Hash>::value,
"absl_container_hash must be transparent. To achieve it add a "
"`using is_transparent = void;` clause to this type.");
static_assert(IsTransparent<Eq>::value,
"absl_container_eq must be transparent. To achieve it add a "
"`using is_transparent = void;` clause to this type.");
};
// This header's visibility is restricted. If you need to access the default
// hasher please use the container's ::hasher alias instead.
//
// Example: typename Hash = typename y_absl::flat_hash_map<K, V>::hasher
template <class T>
using hash_default_hash = typename container_internal::HashEq<T>::Hash;
// This header's visibility is restricted. If you need to access the default
// key equal please use the container's ::key_equal alias instead.
//
// Example: typename Eq = typename y_absl::flat_hash_map<K, V, Hash>::key_equal
template <class T>
using hash_default_eq = typename container_internal::HashEq<T>::Eq;
} // namespace container_internal
Y_ABSL_NAMESPACE_END
} // namespace y_absl
#endif // Y_ABSL_CONTAINER_INTERNAL_HASH_FUNCTION_DEFAULTS_H_
|