1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
|
// Copyright 2018 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// Helper class to perform the Empty Base Optimization.
// Ts can contain classes and non-classes, empty or not. For the ones that
// are empty classes, we perform the optimization. If all types in Ts are empty
// classes, then CompressedTuple<Ts...> is itself an empty class.
//
// To access the members, use member get<N>() function.
//
// Eg:
// y_absl::container_internal::CompressedTuple<int, T1, T2, T3> value(7, t1, t2,
// t3);
// assert(value.get<0>() == 7);
// T1& t1 = value.get<1>();
// const T2& t2 = value.get<2>();
// ...
//
// https://en.cppreference.com/w/cpp/language/ebo
#ifndef Y_ABSL_CONTAINER_INTERNAL_COMPRESSED_TUPLE_H_
#define Y_ABSL_CONTAINER_INTERNAL_COMPRESSED_TUPLE_H_
#include <initializer_list>
#include <tuple>
#include <type_traits>
#include <utility>
#include "y_absl/utility/utility.h"
#if defined(_MSC_VER) && !defined(__NVCC__)
// We need to mark these classes with this declspec to ensure that
// CompressedTuple happens.
#define Y_ABSL_INTERNAL_COMPRESSED_TUPLE_DECLSPEC __declspec(empty_bases)
#else
#define Y_ABSL_INTERNAL_COMPRESSED_TUPLE_DECLSPEC
#endif
namespace y_absl {
Y_ABSL_NAMESPACE_BEGIN
namespace container_internal {
template <typename... Ts>
class CompressedTuple;
namespace internal_compressed_tuple {
template <typename D, size_t I>
struct Elem;
template <typename... B, size_t I>
struct Elem<CompressedTuple<B...>, I>
: std::tuple_element<I, std::tuple<B...>> {};
template <typename D, size_t I>
using ElemT = typename Elem<D, I>::type;
// Use the __is_final intrinsic if available. Where it's not available, classes
// declared with the 'final' specifier cannot be used as CompressedTuple
// elements.
// TODO(sbenza): Replace this with std::is_final in C++14.
template <typename T>
constexpr bool IsFinal() {
#if defined(__clang__) || defined(__GNUC__)
return __is_final(T);
#else
return false;
#endif
}
// We can't use EBCO on other CompressedTuples because that would mean that we
// derive from multiple Storage<> instantiations with the same I parameter,
// and potentially from multiple identical Storage<> instantiations. So anytime
// we use type inheritance rather than encapsulation, we mark
// CompressedTupleImpl, to make this easy to detect.
struct uses_inheritance {};
template <typename T>
constexpr bool ShouldUseBase() {
return std::is_class<T>::value && std::is_empty<T>::value && !IsFinal<T>() &&
!std::is_base_of<uses_inheritance, T>::value;
}
// The storage class provides two specializations:
// - For empty classes, it stores T as a base class.
// - For everything else, it stores T as a member.
template <typename T, size_t I,
#if defined(_MSC_VER)
bool UseBase =
ShouldUseBase<typename std::enable_if<true, T>::type>()>
#else
bool UseBase = ShouldUseBase<T>()>
#endif
struct Storage {
T value;
constexpr Storage() = default;
template <typename V>
explicit constexpr Storage(y_absl::in_place_t, V&& v)
: value(y_absl::forward<V>(v)) {}
constexpr const T& get() const& { return value; }
T& get() & { return value; }
constexpr const T&& get() const&& { return y_absl::move(*this).value; }
T&& get() && { return std::move(*this).value; }
};
template <typename T, size_t I>
struct Y_ABSL_INTERNAL_COMPRESSED_TUPLE_DECLSPEC Storage<T, I, true> : T {
constexpr Storage() = default;
template <typename V>
explicit constexpr Storage(y_absl::in_place_t, V&& v)
: T(y_absl::forward<V>(v)) {}
constexpr const T& get() const& { return *this; }
T& get() & { return *this; }
constexpr const T&& get() const&& { return y_absl::move(*this); }
T&& get() && { return std::move(*this); }
};
template <typename D, typename I, bool ShouldAnyUseBase>
struct Y_ABSL_INTERNAL_COMPRESSED_TUPLE_DECLSPEC CompressedTupleImpl;
template <typename... Ts, size_t... I, bool ShouldAnyUseBase>
struct Y_ABSL_INTERNAL_COMPRESSED_TUPLE_DECLSPEC CompressedTupleImpl<
CompressedTuple<Ts...>, y_absl::index_sequence<I...>, ShouldAnyUseBase>
// We use the dummy identity function through std::integral_constant to
// convince MSVC of accepting and expanding I in that context. Without it
// you would get:
// error C3548: 'I': parameter pack cannot be used in this context
: uses_inheritance,
Storage<Ts, std::integral_constant<size_t, I>::value>... {
constexpr CompressedTupleImpl() = default;
template <typename... Vs>
explicit constexpr CompressedTupleImpl(y_absl::in_place_t, Vs&&... args)
: Storage<Ts, I>(y_absl::in_place, y_absl::forward<Vs>(args))... {}
friend CompressedTuple<Ts...>;
};
template <typename... Ts, size_t... I>
struct Y_ABSL_INTERNAL_COMPRESSED_TUPLE_DECLSPEC CompressedTupleImpl<
CompressedTuple<Ts...>, y_absl::index_sequence<I...>, false>
// We use the dummy identity function as above...
: Storage<Ts, std::integral_constant<size_t, I>::value, false>... {
constexpr CompressedTupleImpl() = default;
template <typename... Vs>
explicit constexpr CompressedTupleImpl(y_absl::in_place_t, Vs&&... args)
: Storage<Ts, I, false>(y_absl::in_place, y_absl::forward<Vs>(args))... {}
friend CompressedTuple<Ts...>;
};
std::false_type Or(std::initializer_list<std::false_type>);
std::true_type Or(std::initializer_list<bool>);
// MSVC requires this to be done separately rather than within the declaration
// of CompressedTuple below.
template <typename... Ts>
constexpr bool ShouldAnyUseBase() {
return decltype(
Or({std::integral_constant<bool, ShouldUseBase<Ts>()>()...})){};
}
template <typename T, typename V>
using TupleElementMoveConstructible =
typename std::conditional<std::is_reference<T>::value,
std::is_convertible<V, T>,
std::is_constructible<T, V&&>>::type;
template <bool SizeMatches, class T, class... Vs>
struct TupleMoveConstructible : std::false_type {};
template <class... Ts, class... Vs>
struct TupleMoveConstructible<true, CompressedTuple<Ts...>, Vs...>
: std::integral_constant<
bool, y_absl::conjunction<
TupleElementMoveConstructible<Ts, Vs&&>...>::value> {};
template <typename T>
struct compressed_tuple_size;
template <typename... Es>
struct compressed_tuple_size<CompressedTuple<Es...>>
: public std::integral_constant<std::size_t, sizeof...(Es)> {};
template <class T, class... Vs>
struct TupleItemsMoveConstructible
: std::integral_constant<
bool, TupleMoveConstructible<compressed_tuple_size<T>::value ==
sizeof...(Vs),
T, Vs...>::value> {};
} // namespace internal_compressed_tuple
// Helper class to perform the Empty Base Class Optimization.
// Ts can contain classes and non-classes, empty or not. For the ones that
// are empty classes, we perform the CompressedTuple. If all types in Ts are
// empty classes, then CompressedTuple<Ts...> is itself an empty class. (This
// does not apply when one or more of those empty classes is itself an empty
// CompressedTuple.)
//
// To access the members, use member .get<N>() function.
//
// Eg:
// y_absl::container_internal::CompressedTuple<int, T1, T2, T3> value(7, t1, t2,
// t3);
// assert(value.get<0>() == 7);
// T1& t1 = value.get<1>();
// const T2& t2 = value.get<2>();
// ...
//
// https://en.cppreference.com/w/cpp/language/ebo
template <typename... Ts>
class Y_ABSL_INTERNAL_COMPRESSED_TUPLE_DECLSPEC CompressedTuple
: private internal_compressed_tuple::CompressedTupleImpl<
CompressedTuple<Ts...>, y_absl::index_sequence_for<Ts...>,
internal_compressed_tuple::ShouldAnyUseBase<Ts...>()> {
private:
template <int I>
using ElemT = internal_compressed_tuple::ElemT<CompressedTuple, I>;
template <int I>
using StorageT = internal_compressed_tuple::Storage<ElemT<I>, I>;
public:
// There seems to be a bug in MSVC dealing in which using '=default' here will
// cause the compiler to ignore the body of other constructors. The work-
// around is to explicitly implement the default constructor.
#if defined(_MSC_VER)
constexpr CompressedTuple() : CompressedTuple::CompressedTupleImpl() {}
#else
constexpr CompressedTuple() = default;
#endif
explicit constexpr CompressedTuple(const Ts&... base)
: CompressedTuple::CompressedTupleImpl(y_absl::in_place, base...) {}
template <typename First, typename... Vs,
y_absl::enable_if_t<
y_absl::conjunction<
// Ensure we are not hiding default copy/move constructors.
y_absl::negation<std::is_same<void(CompressedTuple),
void(y_absl::decay_t<First>)>>,
internal_compressed_tuple::TupleItemsMoveConstructible<
CompressedTuple<Ts...>, First, Vs...>>::value,
bool> = true>
explicit constexpr CompressedTuple(First&& first, Vs&&... base)
: CompressedTuple::CompressedTupleImpl(y_absl::in_place,
y_absl::forward<First>(first),
y_absl::forward<Vs>(base)...) {}
template <int I>
ElemT<I>& get() & {
return StorageT<I>::get();
}
template <int I>
constexpr const ElemT<I>& get() const& {
return StorageT<I>::get();
}
template <int I>
ElemT<I>&& get() && {
return std::move(*this).StorageT<I>::get();
}
template <int I>
constexpr const ElemT<I>&& get() const&& {
return y_absl::move(*this).StorageT<I>::get();
}
};
// Explicit specialization for a zero-element tuple
// (needed to avoid ambiguous overloads for the default constructor).
template <>
class Y_ABSL_INTERNAL_COMPRESSED_TUPLE_DECLSPEC CompressedTuple<> {};
} // namespace container_internal
Y_ABSL_NAMESPACE_END
} // namespace y_absl
#undef Y_ABSL_INTERNAL_COMPRESSED_TUPLE_DECLSPEC
#endif // Y_ABSL_CONTAINER_INTERNAL_COMPRESSED_TUPLE_H_
|