1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
|
//
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// -----------------------------------------------------------------------------
// File: optimization.h
// -----------------------------------------------------------------------------
//
// This header file defines portable macros for performance optimization.
#ifndef Y_ABSL_BASE_OPTIMIZATION_H_
#define Y_ABSL_BASE_OPTIMIZATION_H_
#include <assert.h>
#include "y_absl/base/config.h"
#include "y_absl/base/options.h"
// Y_ABSL_BLOCK_TAIL_CALL_OPTIMIZATION
//
// Instructs the compiler to avoid optimizing tail-call recursion. This macro is
// useful when you wish to preserve the existing function order within a stack
// trace for logging, debugging, or profiling purposes.
//
// Example:
//
// int f() {
// int result = g();
// Y_ABSL_BLOCK_TAIL_CALL_OPTIMIZATION();
// return result;
// }
#if defined(__pnacl__)
#define Y_ABSL_BLOCK_TAIL_CALL_OPTIMIZATION() if (volatile int x = 0) { (void)x; }
#elif defined(__clang__)
// Clang will not tail call given inline volatile assembly.
#define Y_ABSL_BLOCK_TAIL_CALL_OPTIMIZATION() __asm__ __volatile__("")
#elif defined(__GNUC__)
// GCC will not tail call given inline volatile assembly.
#define Y_ABSL_BLOCK_TAIL_CALL_OPTIMIZATION() __asm__ __volatile__("")
#elif defined(_MSC_VER)
#include <intrin.h>
// The __nop() intrinsic blocks the optimisation.
#define Y_ABSL_BLOCK_TAIL_CALL_OPTIMIZATION() __nop()
#else
#define Y_ABSL_BLOCK_TAIL_CALL_OPTIMIZATION() if (volatile int x = 0) { (void)x; }
#endif
// Y_ABSL_CACHELINE_SIZE
//
// Explicitly defines the size of the L1 cache for purposes of alignment.
// Setting the cacheline size allows you to specify that certain objects be
// aligned on a cacheline boundary with `Y_ABSL_CACHELINE_ALIGNED` declarations.
// (See below.)
//
// NOTE: this macro should be replaced with the following C++17 features, when
// those are generally available:
//
// * `std::hardware_constructive_interference_size`
// * `std::hardware_destructive_interference_size`
//
// See http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0154r1.html
// for more information.
#if defined(__GNUC__)
// Cache line alignment
#if defined(__i386__) || defined(__x86_64__)
#define Y_ABSL_CACHELINE_SIZE 64
#elif defined(__powerpc64__)
#define Y_ABSL_CACHELINE_SIZE 128
#elif defined(__aarch64__)
// We would need to read special register ctr_el0 to find out L1 dcache size.
// This value is a good estimate based on a real aarch64 machine.
#define Y_ABSL_CACHELINE_SIZE 64
#elif defined(__arm__)
// Cache line sizes for ARM: These values are not strictly correct since
// cache line sizes depend on implementations, not architectures. There
// are even implementations with cache line sizes configurable at boot
// time.
#if defined(__ARM_ARCH_5T__)
#define Y_ABSL_CACHELINE_SIZE 32
#elif defined(__ARM_ARCH_7A__)
#define Y_ABSL_CACHELINE_SIZE 64
#endif
#endif
#endif
#ifndef Y_ABSL_CACHELINE_SIZE
// A reasonable default guess. Note that overestimates tend to waste more
// space, while underestimates tend to waste more time.
#define Y_ABSL_CACHELINE_SIZE 64
#endif
// Y_ABSL_CACHELINE_ALIGNED
//
// Indicates that the declared object be cache aligned using
// `Y_ABSL_CACHELINE_SIZE` (see above). Cacheline aligning objects allows you to
// load a set of related objects in the L1 cache for performance improvements.
// Cacheline aligning objects properly allows constructive memory sharing and
// prevents destructive (or "false") memory sharing.
//
// NOTE: callers should replace uses of this macro with `alignas()` using
// `std::hardware_constructive_interference_size` and/or
// `std::hardware_destructive_interference_size` when C++17 becomes available to
// them.
//
// See http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0154r1.html
// for more information.
//
// On some compilers, `Y_ABSL_CACHELINE_ALIGNED` expands to an `__attribute__`
// or `__declspec` attribute. For compilers where this is not known to work,
// the macro expands to nothing.
//
// No further guarantees are made here. The result of applying the macro
// to variables and types is always implementation-defined.
//
// WARNING: It is easy to use this attribute incorrectly, even to the point
// of causing bugs that are difficult to diagnose, crash, etc. It does not
// of itself guarantee that objects are aligned to a cache line.
//
// NOTE: Some compilers are picky about the locations of annotations such as
// this attribute, so prefer to put it at the beginning of your declaration.
// For example,
//
// Y_ABSL_CACHELINE_ALIGNED static Foo* foo = ...
//
// class Y_ABSL_CACHELINE_ALIGNED Bar { ...
//
// Recommendations:
//
// 1) Consult compiler documentation; this comment is not kept in sync as
// toolchains evolve.
// 2) Verify your use has the intended effect. This often requires inspecting
// the generated machine code.
// 3) Prefer applying this attribute to individual variables. Avoid
// applying it to types. This tends to localize the effect.
#if defined(__clang__) || defined(__GNUC__)
#define Y_ABSL_CACHELINE_ALIGNED __attribute__((aligned(Y_ABSL_CACHELINE_SIZE)))
#elif defined(_MSC_VER)
#define Y_ABSL_CACHELINE_ALIGNED __declspec(align(Y_ABSL_CACHELINE_SIZE))
#else
#define Y_ABSL_CACHELINE_ALIGNED
#endif
// Y_ABSL_PREDICT_TRUE, Y_ABSL_PREDICT_FALSE
//
// Enables the compiler to prioritize compilation using static analysis for
// likely paths within a boolean branch.
//
// Example:
//
// if (Y_ABSL_PREDICT_TRUE(expression)) {
// return result; // Faster if more likely
// } else {
// return 0;
// }
//
// Compilers can use the information that a certain branch is not likely to be
// taken (for instance, a CHECK failure) to optimize for the common case in
// the absence of better information (ie. compiling gcc with `-fprofile-arcs`).
//
// Recommendation: Modern CPUs dynamically predict branch execution paths,
// typically with accuracy greater than 97%. As a result, annotating every
// branch in a codebase is likely counterproductive; however, annotating
// specific branches that are both hot and consistently mispredicted is likely
// to yield performance improvements.
#if Y_ABSL_HAVE_BUILTIN(__builtin_expect) || \
(defined(__GNUC__) && !defined(__clang__))
#define Y_ABSL_PREDICT_FALSE(x) (__builtin_expect(false || (x), false))
#define Y_ABSL_PREDICT_TRUE(x) (__builtin_expect(false || (x), true))
#else
#define Y_ABSL_PREDICT_FALSE(x) (x)
#define Y_ABSL_PREDICT_TRUE(x) (x)
#endif
// `Y_ABSL_INTERNAL_IMMEDIATE_ABORT_IMPL()` aborts the program in the fastest
// possible way, with no attempt at logging. One use is to implement hardening
// aborts with Y_ABSL_OPTION_HARDENED. Since this is an internal symbol, it
// should not be used directly outside of Abseil.
#if Y_ABSL_HAVE_BUILTIN(__builtin_trap) || \
(defined(__GNUC__) && !defined(__clang__))
#define Y_ABSL_INTERNAL_IMMEDIATE_ABORT_IMPL() __builtin_trap()
#else
#define Y_ABSL_INTERNAL_IMMEDIATE_ABORT_IMPL() abort()
#endif
// `Y_ABSL_INTERNAL_UNREACHABLE_IMPL()` is the platform specific directive to
// indicate that a statement is unreachable, and to allow the compiler to
// optimize accordingly. Clients should use `Y_ABSL_UNREACHABLE()`, which is
// defined below.
#if defined(__cpp_lib_unreachable) && __cpp_lib_unreachable >= 202202L
#define Y_ABSL_INTERNAL_UNREACHABLE_IMPL() std::unreachable()
#elif defined(__GNUC__) || Y_ABSL_HAVE_BUILTIN(__builtin_unreachable)
#define Y_ABSL_INTERNAL_UNREACHABLE_IMPL() __builtin_unreachable()
#elif Y_ABSL_HAVE_BUILTIN(__builtin_assume)
#define Y_ABSL_INTERNAL_UNREACHABLE_IMPL() __builtin_assume(false)
#elif defined(_MSC_VER)
#define Y_ABSL_INTERNAL_UNREACHABLE_IMPL() __assume(false)
#else
#define Y_ABSL_INTERNAL_UNREACHABLE_IMPL()
#endif
// `Y_ABSL_UNREACHABLE()` is an unreachable statement. A program which reaches
// one has undefined behavior, and the compiler may optimize accordingly.
#if Y_ABSL_OPTION_HARDENED == 1 && defined(NDEBUG)
// Abort in hardened mode to avoid dangerous undefined behavior.
#define Y_ABSL_UNREACHABLE() \
do { \
Y_ABSL_INTERNAL_IMMEDIATE_ABORT_IMPL(); \
Y_ABSL_INTERNAL_UNREACHABLE_IMPL(); \
} while (false)
#else
// The assert only fires in debug mode to aid in debugging.
// When NDEBUG is defined, reaching Y_ABSL_UNREACHABLE() is undefined behavior.
#define Y_ABSL_UNREACHABLE() \
do { \
/* NOLINTNEXTLINE: misc-static-assert */ \
assert(false && "Y_ABSL_UNREACHABLE reached"); \
Y_ABSL_INTERNAL_UNREACHABLE_IMPL(); \
} while (false)
#endif
// Y_ABSL_ASSUME(cond)
//
// Informs the compiler that a condition is always true and that it can assume
// it to be true for optimization purposes.
//
// WARNING: If the condition is false, the program can produce undefined and
// potentially dangerous behavior.
//
// In !NDEBUG mode, the condition is checked with an assert().
//
// NOTE: The expression must not have side effects, as it may only be evaluated
// in some compilation modes and not others. Some compilers may issue a warning
// if the compiler cannot prove the expression has no side effects. For example,
// the expression should not use a function call since the compiler cannot prove
// that a function call does not have side effects.
//
// Example:
//
// int x = ...;
// Y_ABSL_ASSUME(x >= 0);
// // The compiler can optimize the division to a simple right shift using the
// // assumption specified above.
// int y = x / 16;
//
#if !defined(NDEBUG)
#define Y_ABSL_ASSUME(cond) assert(cond)
#elif Y_ABSL_HAVE_BUILTIN(__builtin_assume)
#define Y_ABSL_ASSUME(cond) __builtin_assume(cond)
#elif defined(_MSC_VER)
#define Y_ABSL_ASSUME(cond) __assume(cond)
#elif defined(__cpp_lib_unreachable) && __cpp_lib_unreachable >= 202202L
#define Y_ABSL_ASSUME(cond) \
do { \
if (!(cond)) std::unreachable(); \
} while (false)
#elif defined(__GNUC__) || Y_ABSL_HAVE_BUILTIN(__builtin_unreachable)
#define Y_ABSL_ASSUME(cond) \
do { \
if (!(cond)) __builtin_unreachable(); \
} while (false)
#else
#define Y_ABSL_ASSUME(cond) \
do { \
static_cast<void>(false && (cond)); \
} while (false)
#endif
// Y_ABSL_INTERNAL_UNIQUE_SMALL_NAME(cond)
// This macro forces small unique name on a static file level symbols like
// static local variables or static functions. This is intended to be used in
// macro definitions to optimize the cost of generated code. Do NOT use it on
// symbols exported from translation unit since it may cause a link time
// conflict.
//
// Example:
//
// #define MY_MACRO(txt)
// namespace {
// char VeryVeryLongVarName[] Y_ABSL_INTERNAL_UNIQUE_SMALL_NAME() = txt;
// const char* VeryVeryLongFuncName() Y_ABSL_INTERNAL_UNIQUE_SMALL_NAME();
// const char* VeryVeryLongFuncName() { return txt; }
// }
//
#if defined(__GNUC__)
#define Y_ABSL_INTERNAL_UNIQUE_SMALL_NAME2(x) #x
#define Y_ABSL_INTERNAL_UNIQUE_SMALL_NAME1(x) Y_ABSL_INTERNAL_UNIQUE_SMALL_NAME2(x)
#define Y_ABSL_INTERNAL_UNIQUE_SMALL_NAME() \
asm(Y_ABSL_INTERNAL_UNIQUE_SMALL_NAME1(.y_absl.__COUNTER__))
#else
#define Y_ABSL_INTERNAL_UNIQUE_SMALL_NAME()
#endif
#endif // Y_ABSL_BASE_OPTIMIZATION_H_
|