aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/python/typing-extensions/py3/typing_extensions.py
blob: 46084fa56f2e435f7feba99803024a8bd0b8f1a0 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
import abc
import collections
import collections.abc
import contextlib
import functools
import inspect
import operator
import sys
import types as _types
import typing
import warnings

__all__ = [
    # Super-special typing primitives.
    'Any',
    'ClassVar',
    'Concatenate',
    'Final',
    'LiteralString',
    'ParamSpec',
    'ParamSpecArgs',
    'ParamSpecKwargs',
    'Self',
    'Type',
    'TypeVar',
    'TypeVarTuple',
    'Unpack',

    # ABCs (from collections.abc).
    'Awaitable',
    'AsyncIterator',
    'AsyncIterable',
    'Coroutine',
    'AsyncGenerator',
    'AsyncContextManager',
    'Buffer',
    'ChainMap',

    # Concrete collection types.
    'ContextManager',
    'Counter',
    'Deque',
    'DefaultDict',
    'NamedTuple',
    'OrderedDict',
    'TypedDict',

    # Structural checks, a.k.a. protocols.
    'SupportsAbs',
    'SupportsBytes',
    'SupportsComplex',
    'SupportsFloat',
    'SupportsIndex',
    'SupportsInt',
    'SupportsRound',

    # One-off things.
    'Annotated',
    'assert_never',
    'assert_type',
    'clear_overloads',
    'dataclass_transform',
    'deprecated',
    'Doc',
    'get_overloads',
    'final',
    'get_args',
    'get_origin',
    'get_original_bases',
    'get_protocol_members',
    'get_type_hints',
    'IntVar',
    'is_protocol',
    'is_typeddict',
    'Literal',
    'NewType',
    'overload',
    'override',
    'Protocol',
    'reveal_type',
    'runtime',
    'runtime_checkable',
    'Text',
    'TypeAlias',
    'TypeAliasType',
    'TypeGuard',
    'TypeIs',
    'TYPE_CHECKING',
    'Never',
    'NoReturn',
    'ReadOnly',
    'Required',
    'NotRequired',

    # Pure aliases, have always been in typing
    'AbstractSet',
    'AnyStr',
    'BinaryIO',
    'Callable',
    'Collection',
    'Container',
    'Dict',
    'ForwardRef',
    'FrozenSet',
    'Generator',
    'Generic',
    'Hashable',
    'IO',
    'ItemsView',
    'Iterable',
    'Iterator',
    'KeysView',
    'List',
    'Mapping',
    'MappingView',
    'Match',
    'MutableMapping',
    'MutableSequence',
    'MutableSet',
    'NoDefault',
    'Optional',
    'Pattern',
    'Reversible',
    'Sequence',
    'Set',
    'Sized',
    'TextIO',
    'Tuple',
    'Union',
    'ValuesView',
    'cast',
    'no_type_check',
    'no_type_check_decorator',
]

# for backward compatibility
PEP_560 = True
GenericMeta = type
_PEP_696_IMPLEMENTED = sys.version_info >= (3, 13, 0, "beta")

# The functions below are modified copies of typing internal helpers.
# They are needed by _ProtocolMeta and they provide support for PEP 646.


class _Sentinel:
    def __repr__(self):
        return "<sentinel>"


_marker = _Sentinel()


if sys.version_info >= (3, 10):
    def _should_collect_from_parameters(t):
        return isinstance(
            t, (typing._GenericAlias, _types.GenericAlias, _types.UnionType)
        )
elif sys.version_info >= (3, 9):
    def _should_collect_from_parameters(t):
        return isinstance(t, (typing._GenericAlias, _types.GenericAlias))
else:
    def _should_collect_from_parameters(t):
        return isinstance(t, typing._GenericAlias) and not t._special


NoReturn = typing.NoReturn

# Some unconstrained type variables.  These are used by the container types.
# (These are not for export.)
T = typing.TypeVar('T')  # Any type.
KT = typing.TypeVar('KT')  # Key type.
VT = typing.TypeVar('VT')  # Value type.
T_co = typing.TypeVar('T_co', covariant=True)  # Any type covariant containers.
T_contra = typing.TypeVar('T_contra', contravariant=True)  # Ditto contravariant.


if sys.version_info >= (3, 11):
    from typing import Any
else:

    class _AnyMeta(type):
        def __instancecheck__(self, obj):
            if self is Any:
                raise TypeError("typing_extensions.Any cannot be used with isinstance()")
            return super().__instancecheck__(obj)

        def __repr__(self):
            if self is Any:
                return "typing_extensions.Any"
            return super().__repr__()

    class Any(metaclass=_AnyMeta):
        """Special type indicating an unconstrained type.
        - Any is compatible with every type.
        - Any assumed to have all methods.
        - All values assumed to be instances of Any.
        Note that all the above statements are true from the point of view of
        static type checkers. At runtime, Any should not be used with instance
        checks.
        """
        def __new__(cls, *args, **kwargs):
            if cls is Any:
                raise TypeError("Any cannot be instantiated")
            return super().__new__(cls, *args, **kwargs)


ClassVar = typing.ClassVar


class _ExtensionsSpecialForm(typing._SpecialForm, _root=True):
    def __repr__(self):
        return 'typing_extensions.' + self._name


Final = typing.Final

if sys.version_info >= (3, 11):
    final = typing.final
else:
    # @final exists in 3.8+, but we backport it for all versions
    # before 3.11 to keep support for the __final__ attribute.
    # See https://bugs.python.org/issue46342
    def final(f):
        """This decorator can be used to indicate to type checkers that
        the decorated method cannot be overridden, and decorated class
        cannot be subclassed. For example:

            class Base:
                @final
                def done(self) -> None:
                    ...
            class Sub(Base):
                def done(self) -> None:  # Error reported by type checker
                    ...
            @final
            class Leaf:
                ...
            class Other(Leaf):  # Error reported by type checker
                ...

        There is no runtime checking of these properties. The decorator
        sets the ``__final__`` attribute to ``True`` on the decorated object
        to allow runtime introspection.
        """
        try:
            f.__final__ = True
        except (AttributeError, TypeError):
            # Skip the attribute silently if it is not writable.
            # AttributeError happens if the object has __slots__ or a
            # read-only property, TypeError if it's a builtin class.
            pass
        return f


def IntVar(name):
    return typing.TypeVar(name)


# A Literal bug was fixed in 3.11.0, 3.10.1 and 3.9.8
if sys.version_info >= (3, 10, 1):
    Literal = typing.Literal
else:
    def _flatten_literal_params(parameters):
        """An internal helper for Literal creation: flatten Literals among parameters"""
        params = []
        for p in parameters:
            if isinstance(p, _LiteralGenericAlias):
                params.extend(p.__args__)
            else:
                params.append(p)
        return tuple(params)

    def _value_and_type_iter(params):
        for p in params:
            yield p, type(p)

    class _LiteralGenericAlias(typing._GenericAlias, _root=True):
        def __eq__(self, other):
            if not isinstance(other, _LiteralGenericAlias):
                return NotImplemented
            these_args_deduped = set(_value_and_type_iter(self.__args__))
            other_args_deduped = set(_value_and_type_iter(other.__args__))
            return these_args_deduped == other_args_deduped

        def __hash__(self):
            return hash(frozenset(_value_and_type_iter(self.__args__)))

    class _LiteralForm(_ExtensionsSpecialForm, _root=True):
        def __init__(self, doc: str):
            self._name = 'Literal'
            self._doc = self.__doc__ = doc

        def __getitem__(self, parameters):
            if not isinstance(parameters, tuple):
                parameters = (parameters,)

            parameters = _flatten_literal_params(parameters)

            val_type_pairs = list(_value_and_type_iter(parameters))
            try:
                deduped_pairs = set(val_type_pairs)
            except TypeError:
                # unhashable parameters
                pass
            else:
                # similar logic to typing._deduplicate on Python 3.9+
                if len(deduped_pairs) < len(val_type_pairs):
                    new_parameters = []
                    for pair in val_type_pairs:
                        if pair in deduped_pairs:
                            new_parameters.append(pair[0])
                            deduped_pairs.remove(pair)
                    assert not deduped_pairs, deduped_pairs
                    parameters = tuple(new_parameters)

            return _LiteralGenericAlias(self, parameters)

    Literal = _LiteralForm(doc="""\
                           A type that can be used to indicate to type checkers
                           that the corresponding value has a value literally equivalent
                           to the provided parameter. For example:

                               var: Literal[4] = 4

                           The type checker understands that 'var' is literally equal to
                           the value 4 and no other value.

                           Literal[...] cannot be subclassed. There is no runtime
                           checking verifying that the parameter is actually a value
                           instead of a type.""")


_overload_dummy = typing._overload_dummy


if hasattr(typing, "get_overloads"):  # 3.11+
    overload = typing.overload
    get_overloads = typing.get_overloads
    clear_overloads = typing.clear_overloads
else:
    # {module: {qualname: {firstlineno: func}}}
    _overload_registry = collections.defaultdict(
        functools.partial(collections.defaultdict, dict)
    )

    def overload(func):
        """Decorator for overloaded functions/methods.

        In a stub file, place two or more stub definitions for the same
        function in a row, each decorated with @overload.  For example:

        @overload
        def utf8(value: None) -> None: ...
        @overload
        def utf8(value: bytes) -> bytes: ...
        @overload
        def utf8(value: str) -> bytes: ...

        In a non-stub file (i.e. a regular .py file), do the same but
        follow it with an implementation.  The implementation should *not*
        be decorated with @overload.  For example:

        @overload
        def utf8(value: None) -> None: ...
        @overload
        def utf8(value: bytes) -> bytes: ...
        @overload
        def utf8(value: str) -> bytes: ...
        def utf8(value):
            # implementation goes here

        The overloads for a function can be retrieved at runtime using the
        get_overloads() function.
        """
        # classmethod and staticmethod
        f = getattr(func, "__func__", func)
        try:
            _overload_registry[f.__module__][f.__qualname__][
                f.__code__.co_firstlineno
            ] = func
        except AttributeError:
            # Not a normal function; ignore.
            pass
        return _overload_dummy

    def get_overloads(func):
        """Return all defined overloads for *func* as a sequence."""
        # classmethod and staticmethod
        f = getattr(func, "__func__", func)
        if f.__module__ not in _overload_registry:
            return []
        mod_dict = _overload_registry[f.__module__]
        if f.__qualname__ not in mod_dict:
            return []
        return list(mod_dict[f.__qualname__].values())

    def clear_overloads():
        """Clear all overloads in the registry."""
        _overload_registry.clear()


# This is not a real generic class.  Don't use outside annotations.
Type = typing.Type

# Various ABCs mimicking those in collections.abc.
# A few are simply re-exported for completeness.
Awaitable = typing.Awaitable
Coroutine = typing.Coroutine
AsyncIterable = typing.AsyncIterable
AsyncIterator = typing.AsyncIterator
Deque = typing.Deque
DefaultDict = typing.DefaultDict
OrderedDict = typing.OrderedDict
Counter = typing.Counter
ChainMap = typing.ChainMap
Text = typing.Text
TYPE_CHECKING = typing.TYPE_CHECKING


if sys.version_info >= (3, 13, 0, "beta"):
    from typing import AsyncContextManager, AsyncGenerator, ContextManager, Generator
else:
    def _is_dunder(attr):
        return attr.startswith('__') and attr.endswith('__')

    # Python <3.9 doesn't have typing._SpecialGenericAlias
    _special_generic_alias_base = getattr(
        typing, "_SpecialGenericAlias", typing._GenericAlias
    )

    class _SpecialGenericAlias(_special_generic_alias_base, _root=True):
        def __init__(self, origin, nparams, *, inst=True, name=None, defaults=()):
            if _special_generic_alias_base is typing._GenericAlias:
                # Python <3.9
                self.__origin__ = origin
                self._nparams = nparams
                super().__init__(origin, nparams, special=True, inst=inst, name=name)
            else:
                # Python >= 3.9
                super().__init__(origin, nparams, inst=inst, name=name)
            self._defaults = defaults

        def __setattr__(self, attr, val):
            allowed_attrs = {'_name', '_inst', '_nparams', '_defaults'}
            if _special_generic_alias_base is typing._GenericAlias:
                # Python <3.9
                allowed_attrs.add("__origin__")
            if _is_dunder(attr) or attr in allowed_attrs:
                object.__setattr__(self, attr, val)
            else:
                setattr(self.__origin__, attr, val)

        @typing._tp_cache
        def __getitem__(self, params):
            if not isinstance(params, tuple):
                params = (params,)
            msg = "Parameters to generic types must be types."
            params = tuple(typing._type_check(p, msg) for p in params)
            if (
                self._defaults
                and len(params) < self._nparams
                and len(params) + len(self._defaults) >= self._nparams
            ):
                params = (*params, *self._defaults[len(params) - self._nparams:])
            actual_len = len(params)

            if actual_len != self._nparams:
                if self._defaults:
                    expected = f"at least {self._nparams - len(self._defaults)}"
                else:
                    expected = str(self._nparams)
                if not self._nparams:
                    raise TypeError(f"{self} is not a generic class")
                raise TypeError(
                    f"Too {'many' if actual_len > self._nparams else 'few'}"
                    f" arguments for {self};"
                    f" actual {actual_len}, expected {expected}"
                )
            return self.copy_with(params)

    _NoneType = type(None)
    Generator = _SpecialGenericAlias(
        collections.abc.Generator, 3, defaults=(_NoneType, _NoneType)
    )
    AsyncGenerator = _SpecialGenericAlias(
        collections.abc.AsyncGenerator, 2, defaults=(_NoneType,)
    )
    ContextManager = _SpecialGenericAlias(
        contextlib.AbstractContextManager,
        2,
        name="ContextManager",
        defaults=(typing.Optional[bool],)
    )
    AsyncContextManager = _SpecialGenericAlias(
        contextlib.AbstractAsyncContextManager,
        2,
        name="AsyncContextManager",
        defaults=(typing.Optional[bool],)
    )


_PROTO_ALLOWLIST = {
    'collections.abc': [
        'Callable', 'Awaitable', 'Iterable', 'Iterator', 'AsyncIterable',
        'Hashable', 'Sized', 'Container', 'Collection', 'Reversible', 'Buffer',
    ],
    'contextlib': ['AbstractContextManager', 'AbstractAsyncContextManager'],
    'typing_extensions': ['Buffer'],
}


_EXCLUDED_ATTRS = frozenset(typing.EXCLUDED_ATTRIBUTES) | {
    "__match_args__", "__protocol_attrs__", "__non_callable_proto_members__",
    "__final__",
}


def _get_protocol_attrs(cls):
    attrs = set()
    for base in cls.__mro__[:-1]:  # without object
        if base.__name__ in {'Protocol', 'Generic'}:
            continue
        annotations = getattr(base, '__annotations__', {})
        for attr in (*base.__dict__, *annotations):
            if (not attr.startswith('_abc_') and attr not in _EXCLUDED_ATTRS):
                attrs.add(attr)
    return attrs


def _caller(depth=2):
    try:
        return sys._getframe(depth).f_globals.get('__name__', '__main__')
    except (AttributeError, ValueError):  # For platforms without _getframe()
        return None


# `__match_args__` attribute was removed from protocol members in 3.13,
# we want to backport this change to older Python versions.
if sys.version_info >= (3, 13):
    Protocol = typing.Protocol
else:
    def _allow_reckless_class_checks(depth=3):
        """Allow instance and class checks for special stdlib modules.
        The abc and functools modules indiscriminately call isinstance() and
        issubclass() on the whole MRO of a user class, which may contain protocols.
        """
        return _caller(depth) in {'abc', 'functools', None}

    def _no_init(self, *args, **kwargs):
        if type(self)._is_protocol:
            raise TypeError('Protocols cannot be instantiated')

    def _type_check_issubclass_arg_1(arg):
        """Raise TypeError if `arg` is not an instance of `type`
        in `issubclass(arg, <protocol>)`.

        In most cases, this is verified by type.__subclasscheck__.
        Checking it again unnecessarily would slow down issubclass() checks,
        so, we don't perform this check unless we absolutely have to.

        For various error paths, however,
        we want to ensure that *this* error message is shown to the user
        where relevant, rather than a typing.py-specific error message.
        """
        if not isinstance(arg, type):
            # Same error message as for issubclass(1, int).
            raise TypeError('issubclass() arg 1 must be a class')

    # Inheriting from typing._ProtocolMeta isn't actually desirable,
    # but is necessary to allow typing.Protocol and typing_extensions.Protocol
    # to mix without getting TypeErrors about "metaclass conflict"
    class _ProtocolMeta(type(typing.Protocol)):
        # This metaclass is somewhat unfortunate,
        # but is necessary for several reasons...
        #
        # NOTE: DO NOT call super() in any methods in this class
        # That would call the methods on typing._ProtocolMeta on Python 3.8-3.11
        # and those are slow
        def __new__(mcls, name, bases, namespace, **kwargs):
            if name == "Protocol" and len(bases) < 2:
                pass
            elif {Protocol, typing.Protocol} & set(bases):
                for base in bases:
                    if not (
                        base in {object, typing.Generic, Protocol, typing.Protocol}
                        or base.__name__ in _PROTO_ALLOWLIST.get(base.__module__, [])
                        or is_protocol(base)
                    ):
                        raise TypeError(
                            f"Protocols can only inherit from other protocols, "
                            f"got {base!r}"
                        )
            return abc.ABCMeta.__new__(mcls, name, bases, namespace, **kwargs)

        def __init__(cls, *args, **kwargs):
            abc.ABCMeta.__init__(cls, *args, **kwargs)
            if getattr(cls, "_is_protocol", False):
                cls.__protocol_attrs__ = _get_protocol_attrs(cls)

        def __subclasscheck__(cls, other):
            if cls is Protocol:
                return type.__subclasscheck__(cls, other)
            if (
                getattr(cls, '_is_protocol', False)
                and not _allow_reckless_class_checks()
            ):
                if not getattr(cls, '_is_runtime_protocol', False):
                    _type_check_issubclass_arg_1(other)
                    raise TypeError(
                        "Instance and class checks can only be used with "
                        "@runtime_checkable protocols"
                    )
                if (
                    # this attribute is set by @runtime_checkable:
                    cls.__non_callable_proto_members__
                    and cls.__dict__.get("__subclasshook__") is _proto_hook
                ):
                    _type_check_issubclass_arg_1(other)
                    non_method_attrs = sorted(cls.__non_callable_proto_members__)
                    raise TypeError(
                        "Protocols with non-method members don't support issubclass()."
                        f" Non-method members: {str(non_method_attrs)[1:-1]}."
                    )
            return abc.ABCMeta.__subclasscheck__(cls, other)

        def __instancecheck__(cls, instance):
            # We need this method for situations where attributes are
            # assigned in __init__.
            if cls is Protocol:
                return type.__instancecheck__(cls, instance)
            if not getattr(cls, "_is_protocol", False):
                # i.e., it's a concrete subclass of a protocol
                return abc.ABCMeta.__instancecheck__(cls, instance)

            if (
                not getattr(cls, '_is_runtime_protocol', False) and
                not _allow_reckless_class_checks()
            ):
                raise TypeError("Instance and class checks can only be used with"
                                " @runtime_checkable protocols")

            if abc.ABCMeta.__instancecheck__(cls, instance):
                return True

            for attr in cls.__protocol_attrs__:
                try:
                    val = inspect.getattr_static(instance, attr)
                except AttributeError:
                    break
                # this attribute is set by @runtime_checkable:
                if val is None and attr not in cls.__non_callable_proto_members__:
                    break
            else:
                return True

            return False

        def __eq__(cls, other):
            # Hack so that typing.Generic.__class_getitem__
            # treats typing_extensions.Protocol
            # as equivalent to typing.Protocol
            if abc.ABCMeta.__eq__(cls, other) is True:
                return True
            return cls is Protocol and other is typing.Protocol

        # This has to be defined, or the abc-module cache
        # complains about classes with this metaclass being unhashable,
        # if we define only __eq__!
        def __hash__(cls) -> int:
            return type.__hash__(cls)

    @classmethod
    def _proto_hook(cls, other):
        if not cls.__dict__.get('_is_protocol', False):
            return NotImplemented

        for attr in cls.__protocol_attrs__:
            for base in other.__mro__:
                # Check if the members appears in the class dictionary...
                if attr in base.__dict__:
                    if base.__dict__[attr] is None:
                        return NotImplemented
                    break

                # ...or in annotations, if it is a sub-protocol.
                annotations = getattr(base, '__annotations__', {})
                if (
                    isinstance(annotations, collections.abc.Mapping)
                    and attr in annotations
                    and is_protocol(other)
                ):
                    break
            else:
                return NotImplemented
        return True

    class Protocol(typing.Generic, metaclass=_ProtocolMeta):
        __doc__ = typing.Protocol.__doc__
        __slots__ = ()
        _is_protocol = True
        _is_runtime_protocol = False

        def __init_subclass__(cls, *args, **kwargs):
            super().__init_subclass__(*args, **kwargs)

            # Determine if this is a protocol or a concrete subclass.
            if not cls.__dict__.get('_is_protocol', False):
                cls._is_protocol = any(b is Protocol for b in cls.__bases__)

            # Set (or override) the protocol subclass hook.
            if '__subclasshook__' not in cls.__dict__:
                cls.__subclasshook__ = _proto_hook

            # Prohibit instantiation for protocol classes
            if cls._is_protocol and cls.__init__ is Protocol.__init__:
                cls.__init__ = _no_init


if sys.version_info >= (3, 13):
    runtime_checkable = typing.runtime_checkable
else:
    def runtime_checkable(cls):
        """Mark a protocol class as a runtime protocol.

        Such protocol can be used with isinstance() and issubclass().
        Raise TypeError if applied to a non-protocol class.
        This allows a simple-minded structural check very similar to
        one trick ponies in collections.abc such as Iterable.

        For example::

            @runtime_checkable
            class Closable(Protocol):
                def close(self): ...

            assert isinstance(open('/some/file'), Closable)

        Warning: this will check only the presence of the required methods,
        not their type signatures!
        """
        if not issubclass(cls, typing.Generic) or not getattr(cls, '_is_protocol', False):
            raise TypeError(f'@runtime_checkable can be only applied to protocol classes,'
                            f' got {cls!r}')
        cls._is_runtime_protocol = True

        # typing.Protocol classes on <=3.11 break if we execute this block,
        # because typing.Protocol classes on <=3.11 don't have a
        # `__protocol_attrs__` attribute, and this block relies on the
        # `__protocol_attrs__` attribute. Meanwhile, typing.Protocol classes on 3.12.2+
        # break if we *don't* execute this block, because *they* assume that all
        # protocol classes have a `__non_callable_proto_members__` attribute
        # (which this block sets)
        if isinstance(cls, _ProtocolMeta) or sys.version_info >= (3, 12, 2):
            # PEP 544 prohibits using issubclass()
            # with protocols that have non-method members.
            # See gh-113320 for why we compute this attribute here,
            # rather than in `_ProtocolMeta.__init__`
            cls.__non_callable_proto_members__ = set()
            for attr in cls.__protocol_attrs__:
                try:
                    is_callable = callable(getattr(cls, attr, None))
                except Exception as e:
                    raise TypeError(
                        f"Failed to determine whether protocol member {attr!r} "
                        "is a method member"
                    ) from e
                else:
                    if not is_callable:
                        cls.__non_callable_proto_members__.add(attr)

        return cls


# The "runtime" alias exists for backwards compatibility.
runtime = runtime_checkable


# Our version of runtime-checkable protocols is faster on Python 3.8-3.11
if sys.version_info >= (3, 12):
    SupportsInt = typing.SupportsInt
    SupportsFloat = typing.SupportsFloat
    SupportsComplex = typing.SupportsComplex
    SupportsBytes = typing.SupportsBytes
    SupportsIndex = typing.SupportsIndex
    SupportsAbs = typing.SupportsAbs
    SupportsRound = typing.SupportsRound
else:
    @runtime_checkable
    class SupportsInt(Protocol):
        """An ABC with one abstract method __int__."""
        __slots__ = ()

        @abc.abstractmethod
        def __int__(self) -> int:
            pass

    @runtime_checkable
    class SupportsFloat(Protocol):
        """An ABC with one abstract method __float__."""
        __slots__ = ()

        @abc.abstractmethod
        def __float__(self) -> float:
            pass

    @runtime_checkable
    class SupportsComplex(Protocol):
        """An ABC with one abstract method __complex__."""
        __slots__ = ()

        @abc.abstractmethod
        def __complex__(self) -> complex:
            pass

    @runtime_checkable
    class SupportsBytes(Protocol):
        """An ABC with one abstract method __bytes__."""
        __slots__ = ()

        @abc.abstractmethod
        def __bytes__(self) -> bytes:
            pass

    @runtime_checkable
    class SupportsIndex(Protocol):
        __slots__ = ()

        @abc.abstractmethod
        def __index__(self) -> int:
            pass

    @runtime_checkable
    class SupportsAbs(Protocol[T_co]):
        """
        An ABC with one abstract method __abs__ that is covariant in its return type.
        """
        __slots__ = ()

        @abc.abstractmethod
        def __abs__(self) -> T_co:
            pass

    @runtime_checkable
    class SupportsRound(Protocol[T_co]):
        """
        An ABC with one abstract method __round__ that is covariant in its return type.
        """
        __slots__ = ()

        @abc.abstractmethod
        def __round__(self, ndigits: int = 0) -> T_co:
            pass


def _ensure_subclassable(mro_entries):
    def inner(func):
        if sys.implementation.name == "pypy" and sys.version_info < (3, 9):
            cls_dict = {
                "__call__": staticmethod(func),
                "__mro_entries__": staticmethod(mro_entries)
            }
            t = type(func.__name__, (), cls_dict)
            return functools.update_wrapper(t(), func)
        else:
            func.__mro_entries__ = mro_entries
            return func
    return inner


# Update this to something like >=3.13.0b1 if and when
# PEP 728 is implemented in CPython
_PEP_728_IMPLEMENTED = False

if _PEP_728_IMPLEMENTED:
    # The standard library TypedDict in Python 3.8 does not store runtime information
    # about which (if any) keys are optional.  See https://bugs.python.org/issue38834
    # The standard library TypedDict in Python 3.9.0/1 does not honour the "total"
    # keyword with old-style TypedDict().  See https://bugs.python.org/issue42059
    # The standard library TypedDict below Python 3.11 does not store runtime
    # information about optional and required keys when using Required or NotRequired.
    # Generic TypedDicts are also impossible using typing.TypedDict on Python <3.11.
    # Aaaand on 3.12 we add __orig_bases__ to TypedDict
    # to enable better runtime introspection.
    # On 3.13 we deprecate some odd ways of creating TypedDicts.
    # Also on 3.13, PEP 705 adds the ReadOnly[] qualifier.
    # PEP 728 (still pending) makes more changes.
    TypedDict = typing.TypedDict
    _TypedDictMeta = typing._TypedDictMeta
    is_typeddict = typing.is_typeddict
else:
    # 3.10.0 and later
    _TAKES_MODULE = "module" in inspect.signature(typing._type_check).parameters

    def _get_typeddict_qualifiers(annotation_type):
        while True:
            annotation_origin = get_origin(annotation_type)
            if annotation_origin is Annotated:
                annotation_args = get_args(annotation_type)
                if annotation_args:
                    annotation_type = annotation_args[0]
                else:
                    break
            elif annotation_origin is Required:
                yield Required
                annotation_type, = get_args(annotation_type)
            elif annotation_origin is NotRequired:
                yield NotRequired
                annotation_type, = get_args(annotation_type)
            elif annotation_origin is ReadOnly:
                yield ReadOnly
                annotation_type, = get_args(annotation_type)
            else:
                break

    class _TypedDictMeta(type):
        def __new__(cls, name, bases, ns, *, total=True, closed=False):
            """Create new typed dict class object.

            This method is called when TypedDict is subclassed,
            or when TypedDict is instantiated. This way
            TypedDict supports all three syntax forms described in its docstring.
            Subclasses and instances of TypedDict return actual dictionaries.
            """
            for base in bases:
                if type(base) is not _TypedDictMeta and base is not typing.Generic:
                    raise TypeError('cannot inherit from both a TypedDict type '
                                    'and a non-TypedDict base class')

            if any(issubclass(b, typing.Generic) for b in bases):
                generic_base = (typing.Generic,)
            else:
                generic_base = ()

            # typing.py generally doesn't let you inherit from plain Generic, unless
            # the name of the class happens to be "Protocol"
            tp_dict = type.__new__(_TypedDictMeta, "Protocol", (*generic_base, dict), ns)
            tp_dict.__name__ = name
            if tp_dict.__qualname__ == "Protocol":
                tp_dict.__qualname__ = name

            if not hasattr(tp_dict, '__orig_bases__'):
                tp_dict.__orig_bases__ = bases

            annotations = {}
            if "__annotations__" in ns:
                own_annotations = ns["__annotations__"]
            elif "__annotate__" in ns:
                # TODO: Use inspect.VALUE here, and make the annotations lazily evaluated
                own_annotations = ns["__annotate__"](1)
            else:
                own_annotations = {}
            msg = "TypedDict('Name', {f0: t0, f1: t1, ...}); each t must be a type"
            if _TAKES_MODULE:
                own_annotations = {
                    n: typing._type_check(tp, msg, module=tp_dict.__module__)
                    for n, tp in own_annotations.items()
                }
            else:
                own_annotations = {
                    n: typing._type_check(tp, msg)
                    for n, tp in own_annotations.items()
                }
            required_keys = set()
            optional_keys = set()
            readonly_keys = set()
            mutable_keys = set()
            extra_items_type = None

            for base in bases:
                base_dict = base.__dict__

                annotations.update(base_dict.get('__annotations__', {}))
                required_keys.update(base_dict.get('__required_keys__', ()))
                optional_keys.update(base_dict.get('__optional_keys__', ()))
                readonly_keys.update(base_dict.get('__readonly_keys__', ()))
                mutable_keys.update(base_dict.get('__mutable_keys__', ()))
                base_extra_items_type = base_dict.get('__extra_items__', None)
                if base_extra_items_type is not None:
                    extra_items_type = base_extra_items_type

            if closed and extra_items_type is None:
                extra_items_type = Never
            if closed and "__extra_items__" in own_annotations:
                annotation_type = own_annotations.pop("__extra_items__")
                qualifiers = set(_get_typeddict_qualifiers(annotation_type))
                if Required in qualifiers:
                    raise TypeError(
                        "Special key __extra_items__ does not support "
                        "Required"
                    )
                if NotRequired in qualifiers:
                    raise TypeError(
                        "Special key __extra_items__ does not support "
                        "NotRequired"
                    )
                extra_items_type = annotation_type

            annotations.update(own_annotations)
            for annotation_key, annotation_type in own_annotations.items():
                qualifiers = set(_get_typeddict_qualifiers(annotation_type))

                if Required in qualifiers:
                    required_keys.add(annotation_key)
                elif NotRequired in qualifiers:
                    optional_keys.add(annotation_key)
                elif total:
                    required_keys.add(annotation_key)
                else:
                    optional_keys.add(annotation_key)
                if ReadOnly in qualifiers:
                    mutable_keys.discard(annotation_key)
                    readonly_keys.add(annotation_key)
                else:
                    mutable_keys.add(annotation_key)
                    readonly_keys.discard(annotation_key)

            tp_dict.__annotations__ = annotations
            tp_dict.__required_keys__ = frozenset(required_keys)
            tp_dict.__optional_keys__ = frozenset(optional_keys)
            tp_dict.__readonly_keys__ = frozenset(readonly_keys)
            tp_dict.__mutable_keys__ = frozenset(mutable_keys)
            if not hasattr(tp_dict, '__total__'):
                tp_dict.__total__ = total
            tp_dict.__closed__ = closed
            tp_dict.__extra_items__ = extra_items_type
            return tp_dict

        __call__ = dict  # static method

        def __subclasscheck__(cls, other):
            # Typed dicts are only for static structural subtyping.
            raise TypeError('TypedDict does not support instance and class checks')

        __instancecheck__ = __subclasscheck__

    _TypedDict = type.__new__(_TypedDictMeta, 'TypedDict', (), {})

    @_ensure_subclassable(lambda bases: (_TypedDict,))
    def TypedDict(typename, fields=_marker, /, *, total=True, closed=False, **kwargs):
        """A simple typed namespace. At runtime it is equivalent to a plain dict.

        TypedDict creates a dictionary type such that a type checker will expect all
        instances to have a certain set of keys, where each key is
        associated with a value of a consistent type. This expectation
        is not checked at runtime.

        Usage::

            class Point2D(TypedDict):
                x: int
                y: int
                label: str

            a: Point2D = {'x': 1, 'y': 2, 'label': 'good'}  # OK
            b: Point2D = {'z': 3, 'label': 'bad'}           # Fails type check

            assert Point2D(x=1, y=2, label='first') == dict(x=1, y=2, label='first')

        The type info can be accessed via the Point2D.__annotations__ dict, and
        the Point2D.__required_keys__ and Point2D.__optional_keys__ frozensets.
        TypedDict supports an additional equivalent form::

            Point2D = TypedDict('Point2D', {'x': int, 'y': int, 'label': str})

        By default, all keys must be present in a TypedDict. It is possible
        to override this by specifying totality::

            class Point2D(TypedDict, total=False):
                x: int
                y: int

        This means that a Point2D TypedDict can have any of the keys omitted. A type
        checker is only expected to support a literal False or True as the value of
        the total argument. True is the default, and makes all items defined in the
        class body be required.

        The Required and NotRequired special forms can also be used to mark
        individual keys as being required or not required::

            class Point2D(TypedDict):
                x: int  # the "x" key must always be present (Required is the default)
                y: NotRequired[int]  # the "y" key can be omitted

        See PEP 655 for more details on Required and NotRequired.
        """
        if fields is _marker or fields is None:
            if fields is _marker:
                deprecated_thing = "Failing to pass a value for the 'fields' parameter"
            else:
                deprecated_thing = "Passing `None` as the 'fields' parameter"

            example = f"`{typename} = TypedDict({typename!r}, {{}})`"
            deprecation_msg = (
                f"{deprecated_thing} is deprecated and will be disallowed in "
                "Python 3.15. To create a TypedDict class with 0 fields "
                "using the functional syntax, pass an empty dictionary, e.g. "
            ) + example + "."
            warnings.warn(deprecation_msg, DeprecationWarning, stacklevel=2)
            if closed is not False and closed is not True:
                kwargs["closed"] = closed
                closed = False
            fields = kwargs
        elif kwargs:
            raise TypeError("TypedDict takes either a dict or keyword arguments,"
                            " but not both")
        if kwargs:
            if sys.version_info >= (3, 13):
                raise TypeError("TypedDict takes no keyword arguments")
            warnings.warn(
                "The kwargs-based syntax for TypedDict definitions is deprecated "
                "in Python 3.11, will be removed in Python 3.13, and may not be "
                "understood by third-party type checkers.",
                DeprecationWarning,
                stacklevel=2,
            )

        ns = {'__annotations__': dict(fields)}
        module = _caller()
        if module is not None:
            # Setting correct module is necessary to make typed dict classes pickleable.
            ns['__module__'] = module

        td = _TypedDictMeta(typename, (), ns, total=total, closed=closed)
        td.__orig_bases__ = (TypedDict,)
        return td

    if hasattr(typing, "_TypedDictMeta"):
        _TYPEDDICT_TYPES = (typing._TypedDictMeta, _TypedDictMeta)
    else:
        _TYPEDDICT_TYPES = (_TypedDictMeta,)

    def is_typeddict(tp):
        """Check if an annotation is a TypedDict class

        For example::
            class Film(TypedDict):
                title: str
                year: int

            is_typeddict(Film)  # => True
            is_typeddict(Union[list, str])  # => False
        """
        # On 3.8, this would otherwise return True
        if hasattr(typing, "TypedDict") and tp is typing.TypedDict:
            return False
        return isinstance(tp, _TYPEDDICT_TYPES)


if hasattr(typing, "assert_type"):
    assert_type = typing.assert_type

else:
    def assert_type(val, typ, /):
        """Assert (to the type checker) that the value is of the given type.

        When the type checker encounters a call to assert_type(), it
        emits an error if the value is not of the specified type::

            def greet(name: str) -> None:
                assert_type(name, str)  # ok
                assert_type(name, int)  # type checker error

        At runtime this returns the first argument unchanged and otherwise
        does nothing.
        """
        return val


if hasattr(typing, "ReadOnly"):  # 3.13+
    get_type_hints = typing.get_type_hints
else:  # <=3.13
    # replaces _strip_annotations()
    def _strip_extras(t):
        """Strips Annotated, Required and NotRequired from a given type."""
        if isinstance(t, _AnnotatedAlias):
            return _strip_extras(t.__origin__)
        if hasattr(t, "__origin__") and t.__origin__ in (Required, NotRequired, ReadOnly):
            return _strip_extras(t.__args__[0])
        if isinstance(t, typing._GenericAlias):
            stripped_args = tuple(_strip_extras(a) for a in t.__args__)
            if stripped_args == t.__args__:
                return t
            return t.copy_with(stripped_args)
        if hasattr(_types, "GenericAlias") and isinstance(t, _types.GenericAlias):
            stripped_args = tuple(_strip_extras(a) for a in t.__args__)
            if stripped_args == t.__args__:
                return t
            return _types.GenericAlias(t.__origin__, stripped_args)
        if hasattr(_types, "UnionType") and isinstance(t, _types.UnionType):
            stripped_args = tuple(_strip_extras(a) for a in t.__args__)
            if stripped_args == t.__args__:
                return t
            return functools.reduce(operator.or_, stripped_args)

        return t

    def get_type_hints(obj, globalns=None, localns=None, include_extras=False):
        """Return type hints for an object.

        This is often the same as obj.__annotations__, but it handles
        forward references encoded as string literals, adds Optional[t] if a
        default value equal to None is set and recursively replaces all
        'Annotated[T, ...]', 'Required[T]' or 'NotRequired[T]' with 'T'
        (unless 'include_extras=True').

        The argument may be a module, class, method, or function. The annotations
        are returned as a dictionary. For classes, annotations include also
        inherited members.

        TypeError is raised if the argument is not of a type that can contain
        annotations, and an empty dictionary is returned if no annotations are
        present.

        BEWARE -- the behavior of globalns and localns is counterintuitive
        (unless you are familiar with how eval() and exec() work).  The
        search order is locals first, then globals.

        - If no dict arguments are passed, an attempt is made to use the
          globals from obj (or the respective module's globals for classes),
          and these are also used as the locals.  If the object does not appear
          to have globals, an empty dictionary is used.

        - If one dict argument is passed, it is used for both globals and
          locals.

        - If two dict arguments are passed, they specify globals and
          locals, respectively.
        """
        if hasattr(typing, "Annotated"):  # 3.9+
            hint = typing.get_type_hints(
                obj, globalns=globalns, localns=localns, include_extras=True
            )
        else:  # 3.8
            hint = typing.get_type_hints(obj, globalns=globalns, localns=localns)
        if include_extras:
            return hint
        return {k: _strip_extras(t) for k, t in hint.items()}


# Python 3.9+ has PEP 593 (Annotated)
if hasattr(typing, 'Annotated'):
    Annotated = typing.Annotated
    # Not exported and not a public API, but needed for get_origin() and get_args()
    # to work.
    _AnnotatedAlias = typing._AnnotatedAlias
# 3.8
else:
    class _AnnotatedAlias(typing._GenericAlias, _root=True):
        """Runtime representation of an annotated type.

        At its core 'Annotated[t, dec1, dec2, ...]' is an alias for the type 't'
        with extra annotations. The alias behaves like a normal typing alias,
        instantiating is the same as instantiating the underlying type, binding
        it to types is also the same.
        """
        def __init__(self, origin, metadata):
            if isinstance(origin, _AnnotatedAlias):
                metadata = origin.__metadata__ + metadata
                origin = origin.__origin__
            super().__init__(origin, origin)
            self.__metadata__ = metadata

        def copy_with(self, params):
            assert len(params) == 1
            new_type = params[0]
            return _AnnotatedAlias(new_type, self.__metadata__)

        def __repr__(self):
            return (f"typing_extensions.Annotated[{typing._type_repr(self.__origin__)}, "
                    f"{', '.join(repr(a) for a in self.__metadata__)}]")

        def __reduce__(self):
            return operator.getitem, (
                Annotated, (self.__origin__, *self.__metadata__)
            )

        def __eq__(self, other):
            if not isinstance(other, _AnnotatedAlias):
                return NotImplemented
            if self.__origin__ != other.__origin__:
                return False
            return self.__metadata__ == other.__metadata__

        def __hash__(self):
            return hash((self.__origin__, self.__metadata__))

    class Annotated:
        """Add context specific metadata to a type.

        Example: Annotated[int, runtime_check.Unsigned] indicates to the
        hypothetical runtime_check module that this type is an unsigned int.
        Every other consumer of this type can ignore this metadata and treat
        this type as int.

        The first argument to Annotated must be a valid type (and will be in
        the __origin__ field), the remaining arguments are kept as a tuple in
        the __extra__ field.

        Details:

        - It's an error to call `Annotated` with less than two arguments.
        - Nested Annotated are flattened::

            Annotated[Annotated[T, Ann1, Ann2], Ann3] == Annotated[T, Ann1, Ann2, Ann3]

        - Instantiating an annotated type is equivalent to instantiating the
        underlying type::

            Annotated[C, Ann1](5) == C(5)

        - Annotated can be used as a generic type alias::

            Optimized = Annotated[T, runtime.Optimize()]
            Optimized[int] == Annotated[int, runtime.Optimize()]

            OptimizedList = Annotated[List[T], runtime.Optimize()]
            OptimizedList[int] == Annotated[List[int], runtime.Optimize()]
        """

        __slots__ = ()

        def __new__(cls, *args, **kwargs):
            raise TypeError("Type Annotated cannot be instantiated.")

        @typing._tp_cache
        def __class_getitem__(cls, params):
            if not isinstance(params, tuple) or len(params) < 2:
                raise TypeError("Annotated[...] should be used "
                                "with at least two arguments (a type and an "
                                "annotation).")
            allowed_special_forms = (ClassVar, Final)
            if get_origin(params[0]) in allowed_special_forms:
                origin = params[0]
            else:
                msg = "Annotated[t, ...]: t must be a type."
                origin = typing._type_check(params[0], msg)
            metadata = tuple(params[1:])
            return _AnnotatedAlias(origin, metadata)

        def __init_subclass__(cls, *args, **kwargs):
            raise TypeError(
                f"Cannot subclass {cls.__module__}.Annotated"
            )

# Python 3.8 has get_origin() and get_args() but those implementations aren't
# Annotated-aware, so we can't use those. Python 3.9's versions don't support
# ParamSpecArgs and ParamSpecKwargs, so only Python 3.10's versions will do.
if sys.version_info[:2] >= (3, 10):
    get_origin = typing.get_origin
    get_args = typing.get_args
# 3.8-3.9
else:
    try:
        # 3.9+
        from typing import _BaseGenericAlias
    except ImportError:
        _BaseGenericAlias = typing._GenericAlias
    try:
        # 3.9+
        from typing import GenericAlias as _typing_GenericAlias
    except ImportError:
        _typing_GenericAlias = typing._GenericAlias

    def get_origin(tp):
        """Get the unsubscripted version of a type.

        This supports generic types, Callable, Tuple, Union, Literal, Final, ClassVar
        and Annotated. Return None for unsupported types. Examples::

            get_origin(Literal[42]) is Literal
            get_origin(int) is None
            get_origin(ClassVar[int]) is ClassVar
            get_origin(Generic) is Generic
            get_origin(Generic[T]) is Generic
            get_origin(Union[T, int]) is Union
            get_origin(List[Tuple[T, T]][int]) == list
            get_origin(P.args) is P
        """
        if isinstance(tp, _AnnotatedAlias):
            return Annotated
        if isinstance(tp, (typing._GenericAlias, _typing_GenericAlias, _BaseGenericAlias,
                           ParamSpecArgs, ParamSpecKwargs)):
            return tp.__origin__
        if tp is typing.Generic:
            return typing.Generic
        return None

    def get_args(tp):
        """Get type arguments with all substitutions performed.

        For unions, basic simplifications used by Union constructor are performed.
        Examples::
            get_args(Dict[str, int]) == (str, int)
            get_args(int) == ()
            get_args(Union[int, Union[T, int], str][int]) == (int, str)
            get_args(Union[int, Tuple[T, int]][str]) == (int, Tuple[str, int])
            get_args(Callable[[], T][int]) == ([], int)
        """
        if isinstance(tp, _AnnotatedAlias):
            return (tp.__origin__, *tp.__metadata__)
        if isinstance(tp, (typing._GenericAlias, _typing_GenericAlias)):
            if getattr(tp, "_special", False):
                return ()
            res = tp.__args__
            if get_origin(tp) is collections.abc.Callable and res[0] is not Ellipsis:
                res = (list(res[:-1]), res[-1])
            return res
        return ()


# 3.10+
if hasattr(typing, 'TypeAlias'):
    TypeAlias = typing.TypeAlias
# 3.9
elif sys.version_info[:2] >= (3, 9):
    @_ExtensionsSpecialForm
    def TypeAlias(self, parameters):
        """Special marker indicating that an assignment should
        be recognized as a proper type alias definition by type
        checkers.

        For example::

            Predicate: TypeAlias = Callable[..., bool]

        It's invalid when used anywhere except as in the example above.
        """
        raise TypeError(f"{self} is not subscriptable")
# 3.8
else:
    TypeAlias = _ExtensionsSpecialForm(
        'TypeAlias',
        doc="""Special marker indicating that an assignment should
        be recognized as a proper type alias definition by type
        checkers.

        For example::

            Predicate: TypeAlias = Callable[..., bool]

        It's invalid when used anywhere except as in the example
        above."""
    )


if hasattr(typing, "NoDefault"):
    NoDefault = typing.NoDefault
else:
    class NoDefaultTypeMeta(type):
        def __setattr__(cls, attr, value):
            # TypeError is consistent with the behavior of NoneType
            raise TypeError(
                f"cannot set {attr!r} attribute of immutable type {cls.__name__!r}"
            )

    class NoDefaultType(metaclass=NoDefaultTypeMeta):
        """The type of the NoDefault singleton."""

        __slots__ = ()

        def __new__(cls):
            return globals().get("NoDefault") or object.__new__(cls)

        def __repr__(self):
            return "typing_extensions.NoDefault"

        def __reduce__(self):
            return "NoDefault"

    NoDefault = NoDefaultType()
    del NoDefaultType, NoDefaultTypeMeta


def _set_default(type_param, default):
    type_param.has_default = lambda: default is not NoDefault
    type_param.__default__ = default


def _set_module(typevarlike):
    # for pickling:
    def_mod = _caller(depth=3)
    if def_mod != 'typing_extensions':
        typevarlike.__module__ = def_mod


class _DefaultMixin:
    """Mixin for TypeVarLike defaults."""

    __slots__ = ()
    __init__ = _set_default


# Classes using this metaclass must provide a _backported_typevarlike ClassVar
class _TypeVarLikeMeta(type):
    def __instancecheck__(cls, __instance: Any) -> bool:
        return isinstance(__instance, cls._backported_typevarlike)


if _PEP_696_IMPLEMENTED:
    from typing import TypeVar
else:
    # Add default and infer_variance parameters from PEP 696 and 695
    class TypeVar(metaclass=_TypeVarLikeMeta):
        """Type variable."""

        _backported_typevarlike = typing.TypeVar

        def __new__(cls, name, *constraints, bound=None,
                    covariant=False, contravariant=False,
                    default=NoDefault, infer_variance=False):
            if hasattr(typing, "TypeAliasType"):
                # PEP 695 implemented (3.12+), can pass infer_variance to typing.TypeVar
                typevar = typing.TypeVar(name, *constraints, bound=bound,
                                         covariant=covariant, contravariant=contravariant,
                                         infer_variance=infer_variance)
            else:
                typevar = typing.TypeVar(name, *constraints, bound=bound,
                                         covariant=covariant, contravariant=contravariant)
                if infer_variance and (covariant or contravariant):
                    raise ValueError("Variance cannot be specified with infer_variance.")
                typevar.__infer_variance__ = infer_variance

            _set_default(typevar, default)
            _set_module(typevar)

            def _tvar_prepare_subst(alias, args):
                if (
                    typevar.has_default()
                    and alias.__parameters__.index(typevar) == len(args)
                ):
                    args += (typevar.__default__,)
                return args

            typevar.__typing_prepare_subst__ = _tvar_prepare_subst
            return typevar

        def __init_subclass__(cls) -> None:
            raise TypeError(f"type '{__name__}.TypeVar' is not an acceptable base type")


# Python 3.10+ has PEP 612
if hasattr(typing, 'ParamSpecArgs'):
    ParamSpecArgs = typing.ParamSpecArgs
    ParamSpecKwargs = typing.ParamSpecKwargs
# 3.8-3.9
else:
    class _Immutable:
        """Mixin to indicate that object should not be copied."""
        __slots__ = ()

        def __copy__(self):
            return self

        def __deepcopy__(self, memo):
            return self

    class ParamSpecArgs(_Immutable):
        """The args for a ParamSpec object.

        Given a ParamSpec object P, P.args is an instance of ParamSpecArgs.

        ParamSpecArgs objects have a reference back to their ParamSpec:

        P.args.__origin__ is P

        This type is meant for runtime introspection and has no special meaning to
        static type checkers.
        """
        def __init__(self, origin):
            self.__origin__ = origin

        def __repr__(self):
            return f"{self.__origin__.__name__}.args"

        def __eq__(self, other):
            if not isinstance(other, ParamSpecArgs):
                return NotImplemented
            return self.__origin__ == other.__origin__

    class ParamSpecKwargs(_Immutable):
        """The kwargs for a ParamSpec object.

        Given a ParamSpec object P, P.kwargs is an instance of ParamSpecKwargs.

        ParamSpecKwargs objects have a reference back to their ParamSpec:

        P.kwargs.__origin__ is P

        This type is meant for runtime introspection and has no special meaning to
        static type checkers.
        """
        def __init__(self, origin):
            self.__origin__ = origin

        def __repr__(self):
            return f"{self.__origin__.__name__}.kwargs"

        def __eq__(self, other):
            if not isinstance(other, ParamSpecKwargs):
                return NotImplemented
            return self.__origin__ == other.__origin__


if _PEP_696_IMPLEMENTED:
    from typing import ParamSpec

# 3.10+
elif hasattr(typing, 'ParamSpec'):

    # Add default parameter - PEP 696
    class ParamSpec(metaclass=_TypeVarLikeMeta):
        """Parameter specification."""

        _backported_typevarlike = typing.ParamSpec

        def __new__(cls, name, *, bound=None,
                    covariant=False, contravariant=False,
                    infer_variance=False, default=NoDefault):
            if hasattr(typing, "TypeAliasType"):
                # PEP 695 implemented, can pass infer_variance to typing.TypeVar
                paramspec = typing.ParamSpec(name, bound=bound,
                                             covariant=covariant,
                                             contravariant=contravariant,
                                             infer_variance=infer_variance)
            else:
                paramspec = typing.ParamSpec(name, bound=bound,
                                             covariant=covariant,
                                             contravariant=contravariant)
                paramspec.__infer_variance__ = infer_variance

            _set_default(paramspec, default)
            _set_module(paramspec)

            def _paramspec_prepare_subst(alias, args):
                params = alias.__parameters__
                i = params.index(paramspec)
                if i == len(args) and paramspec.has_default():
                    args = [*args, paramspec.__default__]
                if i >= len(args):
                    raise TypeError(f"Too few arguments for {alias}")
                # Special case where Z[[int, str, bool]] == Z[int, str, bool] in PEP 612.
                if len(params) == 1 and not typing._is_param_expr(args[0]):
                    assert i == 0
                    args = (args,)
                # Convert lists to tuples to help other libraries cache the results.
                elif isinstance(args[i], list):
                    args = (*args[:i], tuple(args[i]), *args[i + 1:])
                return args

            paramspec.__typing_prepare_subst__ = _paramspec_prepare_subst
            return paramspec

        def __init_subclass__(cls) -> None:
            raise TypeError(f"type '{__name__}.ParamSpec' is not an acceptable base type")

# 3.8-3.9
else:

    # Inherits from list as a workaround for Callable checks in Python < 3.9.2.
    class ParamSpec(list, _DefaultMixin):
        """Parameter specification variable.

        Usage::

           P = ParamSpec('P')

        Parameter specification variables exist primarily for the benefit of static
        type checkers.  They are used to forward the parameter types of one
        callable to another callable, a pattern commonly found in higher order
        functions and decorators.  They are only valid when used in ``Concatenate``,
        or s the first argument to ``Callable``. In Python 3.10 and higher,
        they are also supported in user-defined Generics at runtime.
        See class Generic for more information on generic types.  An
        example for annotating a decorator::

           T = TypeVar('T')
           P = ParamSpec('P')

           def add_logging(f: Callable[P, T]) -> Callable[P, T]:
               '''A type-safe decorator to add logging to a function.'''
               def inner(*args: P.args, **kwargs: P.kwargs) -> T:
                   logging.info(f'{f.__name__} was called')
                   return f(*args, **kwargs)
               return inner

           @add_logging
           def add_two(x: float, y: float) -> float:
               '''Add two numbers together.'''
               return x + y

        Parameter specification variables defined with covariant=True or
        contravariant=True can be used to declare covariant or contravariant
        generic types.  These keyword arguments are valid, but their actual semantics
        are yet to be decided.  See PEP 612 for details.

        Parameter specification variables can be introspected. e.g.:

           P.__name__ == 'T'
           P.__bound__ == None
           P.__covariant__ == False
           P.__contravariant__ == False

        Note that only parameter specification variables defined in global scope can
        be pickled.
        """

        # Trick Generic __parameters__.
        __class__ = typing.TypeVar

        @property
        def args(self):
            return ParamSpecArgs(self)

        @property
        def kwargs(self):
            return ParamSpecKwargs(self)

        def __init__(self, name, *, bound=None, covariant=False, contravariant=False,
                     infer_variance=False, default=NoDefault):
            list.__init__(self, [self])
            self.__name__ = name
            self.__covariant__ = bool(covariant)
            self.__contravariant__ = bool(contravariant)
            self.__infer_variance__ = bool(infer_variance)
            if bound:
                self.__bound__ = typing._type_check(bound, 'Bound must be a type.')
            else:
                self.__bound__ = None
            _DefaultMixin.__init__(self, default)

            # for pickling:
            def_mod = _caller()
            if def_mod != 'typing_extensions':
                self.__module__ = def_mod

        def __repr__(self):
            if self.__infer_variance__:
                prefix = ''
            elif self.__covariant__:
                prefix = '+'
            elif self.__contravariant__:
                prefix = '-'
            else:
                prefix = '~'
            return prefix + self.__name__

        def __hash__(self):
            return object.__hash__(self)

        def __eq__(self, other):
            return self is other

        def __reduce__(self):
            return self.__name__

        # Hack to get typing._type_check to pass.
        def __call__(self, *args, **kwargs):
            pass


# 3.8-3.9
if not hasattr(typing, 'Concatenate'):
    # Inherits from list as a workaround for Callable checks in Python < 3.9.2.
    class _ConcatenateGenericAlias(list):

        # Trick Generic into looking into this for __parameters__.
        __class__ = typing._GenericAlias

        # Flag in 3.8.
        _special = False

        def __init__(self, origin, args):
            super().__init__(args)
            self.__origin__ = origin
            self.__args__ = args

        def __repr__(self):
            _type_repr = typing._type_repr
            return (f'{_type_repr(self.__origin__)}'
                    f'[{", ".join(_type_repr(arg) for arg in self.__args__)}]')

        def __hash__(self):
            return hash((self.__origin__, self.__args__))

        # Hack to get typing._type_check to pass in Generic.
        def __call__(self, *args, **kwargs):
            pass

        @property
        def __parameters__(self):
            return tuple(
                tp for tp in self.__args__ if isinstance(tp, (typing.TypeVar, ParamSpec))
            )


# 3.8-3.9
@typing._tp_cache
def _concatenate_getitem(self, parameters):
    if parameters == ():
        raise TypeError("Cannot take a Concatenate of no types.")
    if not isinstance(parameters, tuple):
        parameters = (parameters,)
    if not isinstance(parameters[-1], ParamSpec):
        raise TypeError("The last parameter to Concatenate should be a "
                        "ParamSpec variable.")
    msg = "Concatenate[arg, ...]: each arg must be a type."
    parameters = tuple(typing._type_check(p, msg) for p in parameters)
    return _ConcatenateGenericAlias(self, parameters)


# 3.10+
if hasattr(typing, 'Concatenate'):
    Concatenate = typing.Concatenate
    _ConcatenateGenericAlias = typing._ConcatenateGenericAlias
# 3.9
elif sys.version_info[:2] >= (3, 9):
    @_ExtensionsSpecialForm
    def Concatenate(self, parameters):
        """Used in conjunction with ``ParamSpec`` and ``Callable`` to represent a
        higher order function which adds, removes or transforms parameters of a
        callable.

        For example::

           Callable[Concatenate[int, P], int]

        See PEP 612 for detailed information.
        """
        return _concatenate_getitem(self, parameters)
# 3.8
else:
    class _ConcatenateForm(_ExtensionsSpecialForm, _root=True):
        def __getitem__(self, parameters):
            return _concatenate_getitem(self, parameters)

    Concatenate = _ConcatenateForm(
        'Concatenate',
        doc="""Used in conjunction with ``ParamSpec`` and ``Callable`` to represent a
        higher order function which adds, removes or transforms parameters of a
        callable.

        For example::

           Callable[Concatenate[int, P], int]

        See PEP 612 for detailed information.
        """)

# 3.10+
if hasattr(typing, 'TypeGuard'):
    TypeGuard = typing.TypeGuard
# 3.9
elif sys.version_info[:2] >= (3, 9):
    @_ExtensionsSpecialForm
    def TypeGuard(self, parameters):
        """Special typing form used to annotate the return type of a user-defined
        type guard function.  ``TypeGuard`` only accepts a single type argument.
        At runtime, functions marked this way should return a boolean.

        ``TypeGuard`` aims to benefit *type narrowing* -- a technique used by static
        type checkers to determine a more precise type of an expression within a
        program's code flow.  Usually type narrowing is done by analyzing
        conditional code flow and applying the narrowing to a block of code.  The
        conditional expression here is sometimes referred to as a "type guard".

        Sometimes it would be convenient to use a user-defined boolean function
        as a type guard.  Such a function should use ``TypeGuard[...]`` as its
        return type to alert static type checkers to this intention.

        Using  ``-> TypeGuard`` tells the static type checker that for a given
        function:

        1. The return value is a boolean.
        2. If the return value is ``True``, the type of its argument
        is the type inside ``TypeGuard``.

        For example::

            def is_str(val: Union[str, float]):
                # "isinstance" type guard
                if isinstance(val, str):
                    # Type of ``val`` is narrowed to ``str``
                    ...
                else:
                    # Else, type of ``val`` is narrowed to ``float``.
                    ...

        Strict type narrowing is not enforced -- ``TypeB`` need not be a narrower
        form of ``TypeA`` (it can even be a wider form) and this may lead to
        type-unsafe results.  The main reason is to allow for things like
        narrowing ``List[object]`` to ``List[str]`` even though the latter is not
        a subtype of the former, since ``List`` is invariant.  The responsibility of
        writing type-safe type guards is left to the user.

        ``TypeGuard`` also works with type variables.  For more information, see
        PEP 647 (User-Defined Type Guards).
        """
        item = typing._type_check(parameters, f'{self} accepts only a single type.')
        return typing._GenericAlias(self, (item,))
# 3.8
else:
    class _TypeGuardForm(_ExtensionsSpecialForm, _root=True):
        def __getitem__(self, parameters):
            item = typing._type_check(parameters,
                                      f'{self._name} accepts only a single type')
            return typing._GenericAlias(self, (item,))

    TypeGuard = _TypeGuardForm(
        'TypeGuard',
        doc="""Special typing form used to annotate the return type of a user-defined
        type guard function.  ``TypeGuard`` only accepts a single type argument.
        At runtime, functions marked this way should return a boolean.

        ``TypeGuard`` aims to benefit *type narrowing* -- a technique used by static
        type checkers to determine a more precise type of an expression within a
        program's code flow.  Usually type narrowing is done by analyzing
        conditional code flow and applying the narrowing to a block of code.  The
        conditional expression here is sometimes referred to as a "type guard".

        Sometimes it would be convenient to use a user-defined boolean function
        as a type guard.  Such a function should use ``TypeGuard[...]`` as its
        return type to alert static type checkers to this intention.

        Using  ``-> TypeGuard`` tells the static type checker that for a given
        function:

        1. The return value is a boolean.
        2. If the return value is ``True``, the type of its argument
        is the type inside ``TypeGuard``.

        For example::

            def is_str(val: Union[str, float]):
                # "isinstance" type guard
                if isinstance(val, str):
                    # Type of ``val`` is narrowed to ``str``
                    ...
                else:
                    # Else, type of ``val`` is narrowed to ``float``.
                    ...

        Strict type narrowing is not enforced -- ``TypeB`` need not be a narrower
        form of ``TypeA`` (it can even be a wider form) and this may lead to
        type-unsafe results.  The main reason is to allow for things like
        narrowing ``List[object]`` to ``List[str]`` even though the latter is not
        a subtype of the former, since ``List`` is invariant.  The responsibility of
        writing type-safe type guards is left to the user.

        ``TypeGuard`` also works with type variables.  For more information, see
        PEP 647 (User-Defined Type Guards).
        """)

# 3.13+
if hasattr(typing, 'TypeIs'):
    TypeIs = typing.TypeIs
# 3.9
elif sys.version_info[:2] >= (3, 9):
    @_ExtensionsSpecialForm
    def TypeIs(self, parameters):
        """Special typing form used to annotate the return type of a user-defined
        type narrower function.  ``TypeIs`` only accepts a single type argument.
        At runtime, functions marked this way should return a boolean.

        ``TypeIs`` aims to benefit *type narrowing* -- a technique used by static
        type checkers to determine a more precise type of an expression within a
        program's code flow.  Usually type narrowing is done by analyzing
        conditional code flow and applying the narrowing to a block of code.  The
        conditional expression here is sometimes referred to as a "type guard".

        Sometimes it would be convenient to use a user-defined boolean function
        as a type guard.  Such a function should use ``TypeIs[...]`` as its
        return type to alert static type checkers to this intention.

        Using  ``-> TypeIs`` tells the static type checker that for a given
        function:

        1. The return value is a boolean.
        2. If the return value is ``True``, the type of its argument
        is the intersection of the type inside ``TypeGuard`` and the argument's
        previously known type.

        For example::

            def is_awaitable(val: object) -> TypeIs[Awaitable[Any]]:
                return hasattr(val, '__await__')

            def f(val: Union[int, Awaitable[int]]) -> int:
                if is_awaitable(val):
                    assert_type(val, Awaitable[int])
                else:
                    assert_type(val, int)

        ``TypeIs`` also works with type variables.  For more information, see
        PEP 742 (Narrowing types with TypeIs).
        """
        item = typing._type_check(parameters, f'{self} accepts only a single type.')
        return typing._GenericAlias(self, (item,))
# 3.8
else:
    class _TypeIsForm(_ExtensionsSpecialForm, _root=True):
        def __getitem__(self, parameters):
            item = typing._type_check(parameters,
                                      f'{self._name} accepts only a single type')
            return typing._GenericAlias(self, (item,))

    TypeIs = _TypeIsForm(
        'TypeIs',
        doc="""Special typing form used to annotate the return type of a user-defined
        type narrower function.  ``TypeIs`` only accepts a single type argument.
        At runtime, functions marked this way should return a boolean.

        ``TypeIs`` aims to benefit *type narrowing* -- a technique used by static
        type checkers to determine a more precise type of an expression within a
        program's code flow.  Usually type narrowing is done by analyzing
        conditional code flow and applying the narrowing to a block of code.  The
        conditional expression here is sometimes referred to as a "type guard".

        Sometimes it would be convenient to use a user-defined boolean function
        as a type guard.  Such a function should use ``TypeIs[...]`` as its
        return type to alert static type checkers to this intention.

        Using  ``-> TypeIs`` tells the static type checker that for a given
        function:

        1. The return value is a boolean.
        2. If the return value is ``True``, the type of its argument
        is the intersection of the type inside ``TypeGuard`` and the argument's
        previously known type.

        For example::

            def is_awaitable(val: object) -> TypeIs[Awaitable[Any]]:
                return hasattr(val, '__await__')

            def f(val: Union[int, Awaitable[int]]) -> int:
                if is_awaitable(val):
                    assert_type(val, Awaitable[int])
                else:
                    assert_type(val, int)

        ``TypeIs`` also works with type variables.  For more information, see
        PEP 742 (Narrowing types with TypeIs).
        """)


# Vendored from cpython typing._SpecialFrom
class _SpecialForm(typing._Final, _root=True):
    __slots__ = ('_name', '__doc__', '_getitem')

    def __init__(self, getitem):
        self._getitem = getitem
        self._name = getitem.__name__
        self.__doc__ = getitem.__doc__

    def __getattr__(self, item):
        if item in {'__name__', '__qualname__'}:
            return self._name

        raise AttributeError(item)

    def __mro_entries__(self, bases):
        raise TypeError(f"Cannot subclass {self!r}")

    def __repr__(self):
        return f'typing_extensions.{self._name}'

    def __reduce__(self):
        return self._name

    def __call__(self, *args, **kwds):
        raise TypeError(f"Cannot instantiate {self!r}")

    def __or__(self, other):
        return typing.Union[self, other]

    def __ror__(self, other):
        return typing.Union[other, self]

    def __instancecheck__(self, obj):
        raise TypeError(f"{self} cannot be used with isinstance()")

    def __subclasscheck__(self, cls):
        raise TypeError(f"{self} cannot be used with issubclass()")

    @typing._tp_cache
    def __getitem__(self, parameters):
        return self._getitem(self, parameters)


if hasattr(typing, "LiteralString"):  # 3.11+
    LiteralString = typing.LiteralString
else:
    @_SpecialForm
    def LiteralString(self, params):
        """Represents an arbitrary literal string.

        Example::

          from typing_extensions import LiteralString

          def query(sql: LiteralString) -> ...:
              ...

          query("SELECT * FROM table")  # ok
          query(f"SELECT * FROM {input()}")  # not ok

        See PEP 675 for details.

        """
        raise TypeError(f"{self} is not subscriptable")


if hasattr(typing, "Self"):  # 3.11+
    Self = typing.Self
else:
    @_SpecialForm
    def Self(self, params):
        """Used to spell the type of "self" in classes.

        Example::

          from typing import Self

          class ReturnsSelf:
              def parse(self, data: bytes) -> Self:
                  ...
                  return self

        """

        raise TypeError(f"{self} is not subscriptable")


if hasattr(typing, "Never"):  # 3.11+
    Never = typing.Never
else:
    @_SpecialForm
    def Never(self, params):
        """The bottom type, a type that has no members.

        This can be used to define a function that should never be
        called, or a function that never returns::

            from typing_extensions import Never

            def never_call_me(arg: Never) -> None:
                pass

            def int_or_str(arg: int | str) -> None:
                never_call_me(arg)  # type checker error
                match arg:
                    case int():
                        print("It's an int")
                    case str():
                        print("It's a str")
                    case _:
                        never_call_me(arg)  # ok, arg is of type Never

        """

        raise TypeError(f"{self} is not subscriptable")


if hasattr(typing, 'Required'):  # 3.11+
    Required = typing.Required
    NotRequired = typing.NotRequired
elif sys.version_info[:2] >= (3, 9):  # 3.9-3.10
    @_ExtensionsSpecialForm
    def Required(self, parameters):
        """A special typing construct to mark a key of a total=False TypedDict
        as required. For example:

            class Movie(TypedDict, total=False):
                title: Required[str]
                year: int

            m = Movie(
                title='The Matrix',  # typechecker error if key is omitted
                year=1999,
            )

        There is no runtime checking that a required key is actually provided
        when instantiating a related TypedDict.
        """
        item = typing._type_check(parameters, f'{self._name} accepts only a single type.')
        return typing._GenericAlias(self, (item,))

    @_ExtensionsSpecialForm
    def NotRequired(self, parameters):
        """A special typing construct to mark a key of a TypedDict as
        potentially missing. For example:

            class Movie(TypedDict):
                title: str
                year: NotRequired[int]

            m = Movie(
                title='The Matrix',  # typechecker error if key is omitted
                year=1999,
            )
        """
        item = typing._type_check(parameters, f'{self._name} accepts only a single type.')
        return typing._GenericAlias(self, (item,))

else:  # 3.8
    class _RequiredForm(_ExtensionsSpecialForm, _root=True):
        def __getitem__(self, parameters):
            item = typing._type_check(parameters,
                                      f'{self._name} accepts only a single type.')
            return typing._GenericAlias(self, (item,))

    Required = _RequiredForm(
        'Required',
        doc="""A special typing construct to mark a key of a total=False TypedDict
        as required. For example:

            class Movie(TypedDict, total=False):
                title: Required[str]
                year: int

            m = Movie(
                title='The Matrix',  # typechecker error if key is omitted
                year=1999,
            )

        There is no runtime checking that a required key is actually provided
        when instantiating a related TypedDict.
        """)
    NotRequired = _RequiredForm(
        'NotRequired',
        doc="""A special typing construct to mark a key of a TypedDict as
        potentially missing. For example:

            class Movie(TypedDict):
                title: str
                year: NotRequired[int]

            m = Movie(
                title='The Matrix',  # typechecker error if key is omitted
                year=1999,
            )
        """)


if hasattr(typing, 'ReadOnly'):
    ReadOnly = typing.ReadOnly
elif sys.version_info[:2] >= (3, 9):  # 3.9-3.12
    @_ExtensionsSpecialForm
    def ReadOnly(self, parameters):
        """A special typing construct to mark an item of a TypedDict as read-only.

        For example:

            class Movie(TypedDict):
                title: ReadOnly[str]
                year: int

            def mutate_movie(m: Movie) -> None:
                m["year"] = 1992  # allowed
                m["title"] = "The Matrix"  # typechecker error

        There is no runtime checking for this property.
        """
        item = typing._type_check(parameters, f'{self._name} accepts only a single type.')
        return typing._GenericAlias(self, (item,))

else:  # 3.8
    class _ReadOnlyForm(_ExtensionsSpecialForm, _root=True):
        def __getitem__(self, parameters):
            item = typing._type_check(parameters,
                                      f'{self._name} accepts only a single type.')
            return typing._GenericAlias(self, (item,))

    ReadOnly = _ReadOnlyForm(
        'ReadOnly',
        doc="""A special typing construct to mark a key of a TypedDict as read-only.

        For example:

            class Movie(TypedDict):
                title: ReadOnly[str]
                year: int

            def mutate_movie(m: Movie) -> None:
                m["year"] = 1992  # allowed
                m["title"] = "The Matrix"  # typechecker error

        There is no runtime checking for this propery.
        """)


_UNPACK_DOC = """\
Type unpack operator.

The type unpack operator takes the child types from some container type,
such as `tuple[int, str]` or a `TypeVarTuple`, and 'pulls them out'. For
example:

  # For some generic class `Foo`:
  Foo[Unpack[tuple[int, str]]]  # Equivalent to Foo[int, str]

  Ts = TypeVarTuple('Ts')
  # Specifies that `Bar` is generic in an arbitrary number of types.
  # (Think of `Ts` as a tuple of an arbitrary number of individual
  #  `TypeVar`s, which the `Unpack` is 'pulling out' directly into the
  #  `Generic[]`.)
  class Bar(Generic[Unpack[Ts]]): ...
  Bar[int]  # Valid
  Bar[int, str]  # Also valid

From Python 3.11, this can also be done using the `*` operator:

    Foo[*tuple[int, str]]
    class Bar(Generic[*Ts]): ...

The operator can also be used along with a `TypedDict` to annotate
`**kwargs` in a function signature. For instance:

  class Movie(TypedDict):
    name: str
    year: int

  # This function expects two keyword arguments - *name* of type `str` and
  # *year* of type `int`.
  def foo(**kwargs: Unpack[Movie]): ...

Note that there is only some runtime checking of this operator. Not
everything the runtime allows may be accepted by static type checkers.

For more information, see PEP 646 and PEP 692.
"""


if sys.version_info >= (3, 12):  # PEP 692 changed the repr of Unpack[]
    Unpack = typing.Unpack

    def _is_unpack(obj):
        return get_origin(obj) is Unpack

elif sys.version_info[:2] >= (3, 9):  # 3.9+
    class _UnpackSpecialForm(_ExtensionsSpecialForm, _root=True):
        def __init__(self, getitem):
            super().__init__(getitem)
            self.__doc__ = _UNPACK_DOC

    class _UnpackAlias(typing._GenericAlias, _root=True):
        __class__ = typing.TypeVar

        @property
        def __typing_unpacked_tuple_args__(self):
            assert self.__origin__ is Unpack
            assert len(self.__args__) == 1
            arg, = self.__args__
            if isinstance(arg, (typing._GenericAlias, _types.GenericAlias)):
                if arg.__origin__ is not tuple:
                    raise TypeError("Unpack[...] must be used with a tuple type")
                return arg.__args__
            return None

    @_UnpackSpecialForm
    def Unpack(self, parameters):
        item = typing._type_check(parameters, f'{self._name} accepts only a single type.')
        return _UnpackAlias(self, (item,))

    def _is_unpack(obj):
        return isinstance(obj, _UnpackAlias)

else:  # 3.8
    class _UnpackAlias(typing._GenericAlias, _root=True):
        __class__ = typing.TypeVar

    class _UnpackForm(_ExtensionsSpecialForm, _root=True):
        def __getitem__(self, parameters):
            item = typing._type_check(parameters,
                                      f'{self._name} accepts only a single type.')
            return _UnpackAlias(self, (item,))

    Unpack = _UnpackForm('Unpack', doc=_UNPACK_DOC)

    def _is_unpack(obj):
        return isinstance(obj, _UnpackAlias)


if _PEP_696_IMPLEMENTED:
    from typing import TypeVarTuple

elif hasattr(typing, "TypeVarTuple"):  # 3.11+

    def _unpack_args(*args):
        newargs = []
        for arg in args:
            subargs = getattr(arg, '__typing_unpacked_tuple_args__', None)
            if subargs is not None and not (subargs and subargs[-1] is ...):
                newargs.extend(subargs)
            else:
                newargs.append(arg)
        return newargs

    # Add default parameter - PEP 696
    class TypeVarTuple(metaclass=_TypeVarLikeMeta):
        """Type variable tuple."""

        _backported_typevarlike = typing.TypeVarTuple

        def __new__(cls, name, *, default=NoDefault):
            tvt = typing.TypeVarTuple(name)
            _set_default(tvt, default)
            _set_module(tvt)

            def _typevartuple_prepare_subst(alias, args):
                params = alias.__parameters__
                typevartuple_index = params.index(tvt)
                for param in params[typevartuple_index + 1:]:
                    if isinstance(param, TypeVarTuple):
                        raise TypeError(
                            f"More than one TypeVarTuple parameter in {alias}"
                        )

                alen = len(args)
                plen = len(params)
                left = typevartuple_index
                right = plen - typevartuple_index - 1
                var_tuple_index = None
                fillarg = None
                for k, arg in enumerate(args):
                    if not isinstance(arg, type):
                        subargs = getattr(arg, '__typing_unpacked_tuple_args__', None)
                        if subargs and len(subargs) == 2 and subargs[-1] is ...:
                            if var_tuple_index is not None:
                                raise TypeError(
                                    "More than one unpacked "
                                    "arbitrary-length tuple argument"
                                )
                            var_tuple_index = k
                            fillarg = subargs[0]
                if var_tuple_index is not None:
                    left = min(left, var_tuple_index)
                    right = min(right, alen - var_tuple_index - 1)
                elif left + right > alen:
                    raise TypeError(f"Too few arguments for {alias};"
                                    f" actual {alen}, expected at least {plen - 1}")
                if left == alen - right and tvt.has_default():
                    replacement = _unpack_args(tvt.__default__)
                else:
                    replacement = args[left: alen - right]

                return (
                    *args[:left],
                    *([fillarg] * (typevartuple_index - left)),
                    replacement,
                    *([fillarg] * (plen - right - left - typevartuple_index - 1)),
                    *args[alen - right:],
                )

            tvt.__typing_prepare_subst__ = _typevartuple_prepare_subst
            return tvt

        def __init_subclass__(self, *args, **kwds):
            raise TypeError("Cannot subclass special typing classes")

else:  # <=3.10
    class TypeVarTuple(_DefaultMixin):
        """Type variable tuple.

        Usage::

            Ts = TypeVarTuple('Ts')

        In the same way that a normal type variable is a stand-in for a single
        type such as ``int``, a type variable *tuple* is a stand-in for a *tuple*
        type such as ``Tuple[int, str]``.

        Type variable tuples can be used in ``Generic`` declarations.
        Consider the following example::

            class Array(Generic[*Ts]): ...

        The ``Ts`` type variable tuple here behaves like ``tuple[T1, T2]``,
        where ``T1`` and ``T2`` are type variables. To use these type variables
        as type parameters of ``Array``, we must *unpack* the type variable tuple using
        the star operator: ``*Ts``. The signature of ``Array`` then behaves
        as if we had simply written ``class Array(Generic[T1, T2]): ...``.
        In contrast to ``Generic[T1, T2]``, however, ``Generic[*Shape]`` allows
        us to parameterise the class with an *arbitrary* number of type parameters.

        Type variable tuples can be used anywhere a normal ``TypeVar`` can.
        This includes class definitions, as shown above, as well as function
        signatures and variable annotations::

            class Array(Generic[*Ts]):

                def __init__(self, shape: Tuple[*Ts]):
                    self._shape: Tuple[*Ts] = shape

                def get_shape(self) -> Tuple[*Ts]:
                    return self._shape

            shape = (Height(480), Width(640))
            x: Array[Height, Width] = Array(shape)
            y = abs(x)  # Inferred type is Array[Height, Width]
            z = x + x   #        ...    is Array[Height, Width]
            x.get_shape()  #     ...    is tuple[Height, Width]

        """

        # Trick Generic __parameters__.
        __class__ = typing.TypeVar

        def __iter__(self):
            yield self.__unpacked__

        def __init__(self, name, *, default=NoDefault):
            self.__name__ = name
            _DefaultMixin.__init__(self, default)

            # for pickling:
            def_mod = _caller()
            if def_mod != 'typing_extensions':
                self.__module__ = def_mod

            self.__unpacked__ = Unpack[self]

        def __repr__(self):
            return self.__name__

        def __hash__(self):
            return object.__hash__(self)

        def __eq__(self, other):
            return self is other

        def __reduce__(self):
            return self.__name__

        def __init_subclass__(self, *args, **kwds):
            if '_root' not in kwds:
                raise TypeError("Cannot subclass special typing classes")


if hasattr(typing, "reveal_type"):  # 3.11+
    reveal_type = typing.reveal_type
else:  # <=3.10
    def reveal_type(obj: T, /) -> T:
        """Reveal the inferred type of a variable.

        When a static type checker encounters a call to ``reveal_type()``,
        it will emit the inferred type of the argument::

            x: int = 1
            reveal_type(x)

        Running a static type checker (e.g., ``mypy``) on this example
        will produce output similar to 'Revealed type is "builtins.int"'.

        At runtime, the function prints the runtime type of the
        argument and returns it unchanged.

        """
        print(f"Runtime type is {type(obj).__name__!r}", file=sys.stderr)
        return obj


if hasattr(typing, "_ASSERT_NEVER_REPR_MAX_LENGTH"):  # 3.11+
    _ASSERT_NEVER_REPR_MAX_LENGTH = typing._ASSERT_NEVER_REPR_MAX_LENGTH
else:  # <=3.10
    _ASSERT_NEVER_REPR_MAX_LENGTH = 100


if hasattr(typing, "assert_never"):  # 3.11+
    assert_never = typing.assert_never
else:  # <=3.10
    def assert_never(arg: Never, /) -> Never:
        """Assert to the type checker that a line of code is unreachable.

        Example::

            def int_or_str(arg: int | str) -> None:
                match arg:
                    case int():
                        print("It's an int")
                    case str():
                        print("It's a str")
                    case _:
                        assert_never(arg)

        If a type checker finds that a call to assert_never() is
        reachable, it will emit an error.

        At runtime, this throws an exception when called.

        """
        value = repr(arg)
        if len(value) > _ASSERT_NEVER_REPR_MAX_LENGTH:
            value = value[:_ASSERT_NEVER_REPR_MAX_LENGTH] + '...'
        raise AssertionError(f"Expected code to be unreachable, but got: {value}")


if sys.version_info >= (3, 12):  # 3.12+
    # dataclass_transform exists in 3.11 but lacks the frozen_default parameter
    dataclass_transform = typing.dataclass_transform
else:  # <=3.11
    def dataclass_transform(
        *,
        eq_default: bool = True,
        order_default: bool = False,
        kw_only_default: bool = False,
        frozen_default: bool = False,
        field_specifiers: typing.Tuple[
            typing.Union[typing.Type[typing.Any], typing.Callable[..., typing.Any]],
            ...
        ] = (),
        **kwargs: typing.Any,
    ) -> typing.Callable[[T], T]:
        """Decorator that marks a function, class, or metaclass as providing
        dataclass-like behavior.

        Example:

            from typing_extensions import dataclass_transform

            _T = TypeVar("_T")

            # Used on a decorator function
            @dataclass_transform()
            def create_model(cls: type[_T]) -> type[_T]:
                ...
                return cls

            @create_model
            class CustomerModel:
                id: int
                name: str

            # Used on a base class
            @dataclass_transform()
            class ModelBase: ...

            class CustomerModel(ModelBase):
                id: int
                name: str

            # Used on a metaclass
            @dataclass_transform()
            class ModelMeta(type): ...

            class ModelBase(metaclass=ModelMeta): ...

            class CustomerModel(ModelBase):
                id: int
                name: str

        Each of the ``CustomerModel`` classes defined in this example will now
        behave similarly to a dataclass created with the ``@dataclasses.dataclass``
        decorator. For example, the type checker will synthesize an ``__init__``
        method.

        The arguments to this decorator can be used to customize this behavior:
        - ``eq_default`` indicates whether the ``eq`` parameter is assumed to be
          True or False if it is omitted by the caller.
        - ``order_default`` indicates whether the ``order`` parameter is
          assumed to be True or False if it is omitted by the caller.
        - ``kw_only_default`` indicates whether the ``kw_only`` parameter is
          assumed to be True or False if it is omitted by the caller.
        - ``frozen_default`` indicates whether the ``frozen`` parameter is
          assumed to be True or False if it is omitted by the caller.
        - ``field_specifiers`` specifies a static list of supported classes
          or functions that describe fields, similar to ``dataclasses.field()``.

        At runtime, this decorator records its arguments in the
        ``__dataclass_transform__`` attribute on the decorated object.

        See PEP 681 for details.

        """
        def decorator(cls_or_fn):
            cls_or_fn.__dataclass_transform__ = {
                "eq_default": eq_default,
                "order_default": order_default,
                "kw_only_default": kw_only_default,
                "frozen_default": frozen_default,
                "field_specifiers": field_specifiers,
                "kwargs": kwargs,
            }
            return cls_or_fn
        return decorator


if hasattr(typing, "override"):  # 3.12+
    override = typing.override
else:  # <=3.11
    _F = typing.TypeVar("_F", bound=typing.Callable[..., typing.Any])

    def override(arg: _F, /) -> _F:
        """Indicate that a method is intended to override a method in a base class.

        Usage:

            class Base:
                def method(self) -> None:
                    pass

            class Child(Base):
                @override
                def method(self) -> None:
                    super().method()

        When this decorator is applied to a method, the type checker will
        validate that it overrides a method with the same name on a base class.
        This helps prevent bugs that may occur when a base class is changed
        without an equivalent change to a child class.

        There is no runtime checking of these properties. The decorator
        sets the ``__override__`` attribute to ``True`` on the decorated object
        to allow runtime introspection.

        See PEP 698 for details.

        """
        try:
            arg.__override__ = True
        except (AttributeError, TypeError):
            # Skip the attribute silently if it is not writable.
            # AttributeError happens if the object has __slots__ or a
            # read-only property, TypeError if it's a builtin class.
            pass
        return arg


if hasattr(warnings, "deprecated"):
    deprecated = warnings.deprecated
else:
    _T = typing.TypeVar("_T")

    class deprecated:
        """Indicate that a class, function or overload is deprecated.

        When this decorator is applied to an object, the type checker
        will generate a diagnostic on usage of the deprecated object.

        Usage:

            @deprecated("Use B instead")
            class A:
                pass

            @deprecated("Use g instead")
            def f():
                pass

            @overload
            @deprecated("int support is deprecated")
            def g(x: int) -> int: ...
            @overload
            def g(x: str) -> int: ...

        The warning specified by *category* will be emitted at runtime
        on use of deprecated objects. For functions, that happens on calls;
        for classes, on instantiation and on creation of subclasses.
        If the *category* is ``None``, no warning is emitted at runtime.
        The *stacklevel* determines where the
        warning is emitted. If it is ``1`` (the default), the warning
        is emitted at the direct caller of the deprecated object; if it
        is higher, it is emitted further up the stack.
        Static type checker behavior is not affected by the *category*
        and *stacklevel* arguments.

        The deprecation message passed to the decorator is saved in the
        ``__deprecated__`` attribute on the decorated object.
        If applied to an overload, the decorator
        must be after the ``@overload`` decorator for the attribute to
        exist on the overload as returned by ``get_overloads()``.

        See PEP 702 for details.

        """
        def __init__(
            self,
            message: str,
            /,
            *,
            category: typing.Optional[typing.Type[Warning]] = DeprecationWarning,
            stacklevel: int = 1,
        ) -> None:
            if not isinstance(message, str):
                raise TypeError(
                    "Expected an object of type str for 'message', not "
                    f"{type(message).__name__!r}"
                )
            self.message = message
            self.category = category
            self.stacklevel = stacklevel

        def __call__(self, arg: _T, /) -> _T:
            # Make sure the inner functions created below don't
            # retain a reference to self.
            msg = self.message
            category = self.category
            stacklevel = self.stacklevel
            if category is None:
                arg.__deprecated__ = msg
                return arg
            elif isinstance(arg, type):
                import functools
                from types import MethodType

                original_new = arg.__new__

                @functools.wraps(original_new)
                def __new__(cls, *args, **kwargs):
                    if cls is arg:
                        warnings.warn(msg, category=category, stacklevel=stacklevel + 1)
                    if original_new is not object.__new__:
                        return original_new(cls, *args, **kwargs)
                    # Mirrors a similar check in object.__new__.
                    elif cls.__init__ is object.__init__ and (args or kwargs):
                        raise TypeError(f"{cls.__name__}() takes no arguments")
                    else:
                        return original_new(cls)

                arg.__new__ = staticmethod(__new__)

                original_init_subclass = arg.__init_subclass__
                # We need slightly different behavior if __init_subclass__
                # is a bound method (likely if it was implemented in Python)
                if isinstance(original_init_subclass, MethodType):
                    original_init_subclass = original_init_subclass.__func__

                    @functools.wraps(original_init_subclass)
                    def __init_subclass__(*args, **kwargs):
                        warnings.warn(msg, category=category, stacklevel=stacklevel + 1)
                        return original_init_subclass(*args, **kwargs)

                    arg.__init_subclass__ = classmethod(__init_subclass__)
                # Or otherwise, which likely means it's a builtin such as
                # object's implementation of __init_subclass__.
                else:
                    @functools.wraps(original_init_subclass)
                    def __init_subclass__(*args, **kwargs):
                        warnings.warn(msg, category=category, stacklevel=stacklevel + 1)
                        return original_init_subclass(*args, **kwargs)

                    arg.__init_subclass__ = __init_subclass__

                arg.__deprecated__ = __new__.__deprecated__ = msg
                __init_subclass__.__deprecated__ = msg
                return arg
            elif callable(arg):
                import functools

                @functools.wraps(arg)
                def wrapper(*args, **kwargs):
                    warnings.warn(msg, category=category, stacklevel=stacklevel + 1)
                    return arg(*args, **kwargs)

                arg.__deprecated__ = wrapper.__deprecated__ = msg
                return wrapper
            else:
                raise TypeError(
                    "@deprecated decorator with non-None category must be applied to "
                    f"a class or callable, not {arg!r}"
                )


# We have to do some monkey patching to deal with the dual nature of
# Unpack/TypeVarTuple:
# - We want Unpack to be a kind of TypeVar so it gets accepted in
#   Generic[Unpack[Ts]]
# - We want it to *not* be treated as a TypeVar for the purposes of
#   counting generic parameters, so that when we subscript a generic,
#   the runtime doesn't try to substitute the Unpack with the subscripted type.
if not hasattr(typing, "TypeVarTuple"):
    def _check_generic(cls, parameters, elen=_marker):
        """Check correct count for parameters of a generic cls (internal helper).

        This gives a nice error message in case of count mismatch.
        """
        if not elen:
            raise TypeError(f"{cls} is not a generic class")
        if elen is _marker:
            if not hasattr(cls, "__parameters__") or not cls.__parameters__:
                raise TypeError(f"{cls} is not a generic class")
            elen = len(cls.__parameters__)
        alen = len(parameters)
        if alen != elen:
            expect_val = elen
            if hasattr(cls, "__parameters__"):
                parameters = [p for p in cls.__parameters__ if not _is_unpack(p)]
                num_tv_tuples = sum(isinstance(p, TypeVarTuple) for p in parameters)
                if (num_tv_tuples > 0) and (alen >= elen - num_tv_tuples):
                    return

                # deal with TypeVarLike defaults
                # required TypeVarLikes cannot appear after a defaulted one.
                if alen < elen:
                    # since we validate TypeVarLike default in _collect_type_vars
                    # or _collect_parameters we can safely check parameters[alen]
                    if (
                        getattr(parameters[alen], '__default__', NoDefault)
                        is not NoDefault
                    ):
                        return

                    num_default_tv = sum(getattr(p, '__default__', NoDefault)
                                         is not NoDefault for p in parameters)

                    elen -= num_default_tv

                    expect_val = f"at least {elen}"

            things = "arguments" if sys.version_info >= (3, 10) else "parameters"
            raise TypeError(f"Too {'many' if alen > elen else 'few'} {things}"
                            f" for {cls}; actual {alen}, expected {expect_val}")
else:
    # Python 3.11+

    def _check_generic(cls, parameters, elen):
        """Check correct count for parameters of a generic cls (internal helper).

        This gives a nice error message in case of count mismatch.
        """
        if not elen:
            raise TypeError(f"{cls} is not a generic class")
        alen = len(parameters)
        if alen != elen:
            expect_val = elen
            if hasattr(cls, "__parameters__"):
                parameters = [p for p in cls.__parameters__ if not _is_unpack(p)]

                # deal with TypeVarLike defaults
                # required TypeVarLikes cannot appear after a defaulted one.
                if alen < elen:
                    # since we validate TypeVarLike default in _collect_type_vars
                    # or _collect_parameters we can safely check parameters[alen]
                    if (
                        getattr(parameters[alen], '__default__', NoDefault)
                        is not NoDefault
                    ):
                        return

                    num_default_tv = sum(getattr(p, '__default__', NoDefault)
                                         is not NoDefault for p in parameters)

                    elen -= num_default_tv

                    expect_val = f"at least {elen}"

            raise TypeError(f"Too {'many' if alen > elen else 'few'} arguments"
                            f" for {cls}; actual {alen}, expected {expect_val}")

if not _PEP_696_IMPLEMENTED:
    typing._check_generic = _check_generic


def _has_generic_or_protocol_as_origin() -> bool:
    try:
        frame = sys._getframe(2)
    # not all platforms have sys._getframe()
    except AttributeError:
        return False  # err on the side of leniency
    else:
        return frame.f_locals.get("origin") in (
            typing.Generic, Protocol, typing.Protocol
        )


_TYPEVARTUPLE_TYPES = {TypeVarTuple, getattr(typing, "TypeVarTuple", None)}


def _is_unpacked_typevartuple(x) -> bool:
    if get_origin(x) is not Unpack:
        return False
    args = get_args(x)
    return (
        bool(args)
        and len(args) == 1
        and type(args[0]) in _TYPEVARTUPLE_TYPES
    )


# Python 3.11+ _collect_type_vars was renamed to _collect_parameters
if hasattr(typing, '_collect_type_vars'):
    def _collect_type_vars(types, typevar_types=None):
        """Collect all type variable contained in types in order of
        first appearance (lexicographic order). For example::

            _collect_type_vars((T, List[S, T])) == (T, S)
        """
        if typevar_types is None:
            typevar_types = typing.TypeVar
        tvars = []

        # A required TypeVarLike cannot appear after a TypeVarLike with a default
        # if it was a direct call to `Generic[]` or `Protocol[]`
        enforce_default_ordering = _has_generic_or_protocol_as_origin()
        default_encountered = False

        # Also, a TypeVarLike with a default cannot appear after a TypeVarTuple
        type_var_tuple_encountered = False

        for t in types:
            if _is_unpacked_typevartuple(t):
                type_var_tuple_encountered = True
            elif isinstance(t, typevar_types) and t not in tvars:
                if enforce_default_ordering:
                    has_default = getattr(t, '__default__', NoDefault) is not NoDefault
                    if has_default:
                        if type_var_tuple_encountered:
                            raise TypeError('Type parameter with a default'
                                            ' follows TypeVarTuple')
                        default_encountered = True
                    elif default_encountered:
                        raise TypeError(f'Type parameter {t!r} without a default'
                                        ' follows type parameter with a default')

                tvars.append(t)
            if _should_collect_from_parameters(t):
                tvars.extend([t for t in t.__parameters__ if t not in tvars])
        return tuple(tvars)

    typing._collect_type_vars = _collect_type_vars
else:
    def _collect_parameters(args):
        """Collect all type variables and parameter specifications in args
        in order of first appearance (lexicographic order).

        For example::

            assert _collect_parameters((T, Callable[P, T])) == (T, P)
        """
        parameters = []

        # A required TypeVarLike cannot appear after a TypeVarLike with default
        # if it was a direct call to `Generic[]` or `Protocol[]`
        enforce_default_ordering = _has_generic_or_protocol_as_origin()
        default_encountered = False

        # Also, a TypeVarLike with a default cannot appear after a TypeVarTuple
        type_var_tuple_encountered = False

        for t in args:
            if isinstance(t, type):
                # We don't want __parameters__ descriptor of a bare Python class.
                pass
            elif isinstance(t, tuple):
                # `t` might be a tuple, when `ParamSpec` is substituted with
                # `[T, int]`, or `[int, *Ts]`, etc.
                for x in t:
                    for collected in _collect_parameters([x]):
                        if collected not in parameters:
                            parameters.append(collected)
            elif hasattr(t, '__typing_subst__'):
                if t not in parameters:
                    if enforce_default_ordering:
                        has_default = (
                            getattr(t, '__default__', NoDefault) is not NoDefault
                        )

                        if type_var_tuple_encountered and has_default:
                            raise TypeError('Type parameter with a default'
                                            ' follows TypeVarTuple')

                        if has_default:
                            default_encountered = True
                        elif default_encountered:
                            raise TypeError(f'Type parameter {t!r} without a default'
                                            ' follows type parameter with a default')

                    parameters.append(t)
            else:
                if _is_unpacked_typevartuple(t):
                    type_var_tuple_encountered = True
                for x in getattr(t, '__parameters__', ()):
                    if x not in parameters:
                        parameters.append(x)

        return tuple(parameters)

    if not _PEP_696_IMPLEMENTED:
        typing._collect_parameters = _collect_parameters

# Backport typing.NamedTuple as it exists in Python 3.13.
# In 3.11, the ability to define generic `NamedTuple`s was supported.
# This was explicitly disallowed in 3.9-3.10, and only half-worked in <=3.8.
# On 3.12, we added __orig_bases__ to call-based NamedTuples
# On 3.13, we deprecated kwargs-based NamedTuples
if sys.version_info >= (3, 13):
    NamedTuple = typing.NamedTuple
else:
    def _make_nmtuple(name, types, module, defaults=()):
        fields = [n for n, t in types]
        annotations = {n: typing._type_check(t, f"field {n} annotation must be a type")
                       for n, t in types}
        nm_tpl = collections.namedtuple(name, fields,
                                        defaults=defaults, module=module)
        nm_tpl.__annotations__ = nm_tpl.__new__.__annotations__ = annotations
        # The `_field_types` attribute was removed in 3.9;
        # in earlier versions, it is the same as the `__annotations__` attribute
        if sys.version_info < (3, 9):
            nm_tpl._field_types = annotations
        return nm_tpl

    _prohibited_namedtuple_fields = typing._prohibited
    _special_namedtuple_fields = frozenset({'__module__', '__name__', '__annotations__'})

    class _NamedTupleMeta(type):
        def __new__(cls, typename, bases, ns):
            assert _NamedTuple in bases
            for base in bases:
                if base is not _NamedTuple and base is not typing.Generic:
                    raise TypeError(
                        'can only inherit from a NamedTuple type and Generic')
            bases = tuple(tuple if base is _NamedTuple else base for base in bases)
            if "__annotations__" in ns:
                types = ns["__annotations__"]
            elif "__annotate__" in ns:
                # TODO: Use inspect.VALUE here, and make the annotations lazily evaluated
                types = ns["__annotate__"](1)
            else:
                types = {}
            default_names = []
            for field_name in types:
                if field_name in ns:
                    default_names.append(field_name)
                elif default_names:
                    raise TypeError(f"Non-default namedtuple field {field_name} "
                                    f"cannot follow default field"
                                    f"{'s' if len(default_names) > 1 else ''} "
                                    f"{', '.join(default_names)}")
            nm_tpl = _make_nmtuple(
                typename, types.items(),
                defaults=[ns[n] for n in default_names],
                module=ns['__module__']
            )
            nm_tpl.__bases__ = bases
            if typing.Generic in bases:
                if hasattr(typing, '_generic_class_getitem'):  # 3.12+
                    nm_tpl.__class_getitem__ = classmethod(typing._generic_class_getitem)
                else:
                    class_getitem = typing.Generic.__class_getitem__.__func__
                    nm_tpl.__class_getitem__ = classmethod(class_getitem)
            # update from user namespace without overriding special namedtuple attributes
            for key, val in ns.items():
                if key in _prohibited_namedtuple_fields:
                    raise AttributeError("Cannot overwrite NamedTuple attribute " + key)
                elif key not in _special_namedtuple_fields:
                    if key not in nm_tpl._fields:
                        setattr(nm_tpl, key, ns[key])
                    try:
                        set_name = type(val).__set_name__
                    except AttributeError:
                        pass
                    else:
                        try:
                            set_name(val, nm_tpl, key)
                        except BaseException as e:
                            msg = (
                                f"Error calling __set_name__ on {type(val).__name__!r} "
                                f"instance {key!r} in {typename!r}"
                            )
                            # BaseException.add_note() existed on py311,
                            # but the __set_name__ machinery didn't start
                            # using add_note() until py312.
                            # Making sure exceptions are raised in the same way
                            # as in "normal" classes seems most important here.
                            if sys.version_info >= (3, 12):
                                e.add_note(msg)
                                raise
                            else:
                                raise RuntimeError(msg) from e

            if typing.Generic in bases:
                nm_tpl.__init_subclass__()
            return nm_tpl

    _NamedTuple = type.__new__(_NamedTupleMeta, 'NamedTuple', (), {})

    def _namedtuple_mro_entries(bases):
        assert NamedTuple in bases
        return (_NamedTuple,)

    @_ensure_subclassable(_namedtuple_mro_entries)
    def NamedTuple(typename, fields=_marker, /, **kwargs):
        """Typed version of namedtuple.

        Usage::

            class Employee(NamedTuple):
                name: str
                id: int

        This is equivalent to::

            Employee = collections.namedtuple('Employee', ['name', 'id'])

        The resulting class has an extra __annotations__ attribute, giving a
        dict that maps field names to types.  (The field names are also in
        the _fields attribute, which is part of the namedtuple API.)
        An alternative equivalent functional syntax is also accepted::

            Employee = NamedTuple('Employee', [('name', str), ('id', int)])
        """
        if fields is _marker:
            if kwargs:
                deprecated_thing = "Creating NamedTuple classes using keyword arguments"
                deprecation_msg = (
                    "{name} is deprecated and will be disallowed in Python {remove}. "
                    "Use the class-based or functional syntax instead."
                )
            else:
                deprecated_thing = "Failing to pass a value for the 'fields' parameter"
                example = f"`{typename} = NamedTuple({typename!r}, [])`"
                deprecation_msg = (
                    "{name} is deprecated and will be disallowed in Python {remove}. "
                    "To create a NamedTuple class with 0 fields "
                    "using the functional syntax, "
                    "pass an empty list, e.g. "
                ) + example + "."
        elif fields is None:
            if kwargs:
                raise TypeError(
                    "Cannot pass `None` as the 'fields' parameter "
                    "and also specify fields using keyword arguments"
                )
            else:
                deprecated_thing = "Passing `None` as the 'fields' parameter"
                example = f"`{typename} = NamedTuple({typename!r}, [])`"
                deprecation_msg = (
                    "{name} is deprecated and will be disallowed in Python {remove}. "
                    "To create a NamedTuple class with 0 fields "
                    "using the functional syntax, "
                    "pass an empty list, e.g. "
                ) + example + "."
        elif kwargs:
            raise TypeError("Either list of fields or keywords"
                            " can be provided to NamedTuple, not both")
        if fields is _marker or fields is None:
            warnings.warn(
                deprecation_msg.format(name=deprecated_thing, remove="3.15"),
                DeprecationWarning,
                stacklevel=2,
            )
            fields = kwargs.items()
        nt = _make_nmtuple(typename, fields, module=_caller())
        nt.__orig_bases__ = (NamedTuple,)
        return nt


if hasattr(collections.abc, "Buffer"):
    Buffer = collections.abc.Buffer
else:
    class Buffer(abc.ABC):  # noqa: B024
        """Base class for classes that implement the buffer protocol.

        The buffer protocol allows Python objects to expose a low-level
        memory buffer interface. Before Python 3.12, it is not possible
        to implement the buffer protocol in pure Python code, or even
        to check whether a class implements the buffer protocol. In
        Python 3.12 and higher, the ``__buffer__`` method allows access
        to the buffer protocol from Python code, and the
        ``collections.abc.Buffer`` ABC allows checking whether a class
        implements the buffer protocol.

        To indicate support for the buffer protocol in earlier versions,
        inherit from this ABC, either in a stub file or at runtime,
        or use ABC registration. This ABC provides no methods, because
        there is no Python-accessible methods shared by pre-3.12 buffer
        classes. It is useful primarily for static checks.

        """

    # As a courtesy, register the most common stdlib buffer classes.
    Buffer.register(memoryview)
    Buffer.register(bytearray)
    Buffer.register(bytes)


# Backport of types.get_original_bases, available on 3.12+ in CPython
if hasattr(_types, "get_original_bases"):
    get_original_bases = _types.get_original_bases
else:
    def get_original_bases(cls, /):
        """Return the class's "original" bases prior to modification by `__mro_entries__`.

        Examples::

            from typing import TypeVar, Generic
            from typing_extensions import NamedTuple, TypedDict

            T = TypeVar("T")
            class Foo(Generic[T]): ...
            class Bar(Foo[int], float): ...
            class Baz(list[str]): ...
            Eggs = NamedTuple("Eggs", [("a", int), ("b", str)])
            Spam = TypedDict("Spam", {"a": int, "b": str})

            assert get_original_bases(Bar) == (Foo[int], float)
            assert get_original_bases(Baz) == (list[str],)
            assert get_original_bases(Eggs) == (NamedTuple,)
            assert get_original_bases(Spam) == (TypedDict,)
            assert get_original_bases(int) == (object,)
        """
        try:
            return cls.__dict__.get("__orig_bases__", cls.__bases__)
        except AttributeError:
            raise TypeError(
                f'Expected an instance of type, not {type(cls).__name__!r}'
            ) from None


# NewType is a class on Python 3.10+, making it pickleable
# The error message for subclassing instances of NewType was improved on 3.11+
if sys.version_info >= (3, 11):
    NewType = typing.NewType
else:
    class NewType:
        """NewType creates simple unique types with almost zero
        runtime overhead. NewType(name, tp) is considered a subtype of tp
        by static type checkers. At runtime, NewType(name, tp) returns
        a dummy callable that simply returns its argument. Usage::
            UserId = NewType('UserId', int)
            def name_by_id(user_id: UserId) -> str:
                ...
            UserId('user')          # Fails type check
            name_by_id(42)          # Fails type check
            name_by_id(UserId(42))  # OK
            num = UserId(5) + 1     # type: int
        """

        def __call__(self, obj, /):
            return obj

        def __init__(self, name, tp):
            self.__qualname__ = name
            if '.' in name:
                name = name.rpartition('.')[-1]
            self.__name__ = name
            self.__supertype__ = tp
            def_mod = _caller()
            if def_mod != 'typing_extensions':
                self.__module__ = def_mod

        def __mro_entries__(self, bases):
            # We defined __mro_entries__ to get a better error message
            # if a user attempts to subclass a NewType instance. bpo-46170
            supercls_name = self.__name__

            class Dummy:
                def __init_subclass__(cls):
                    subcls_name = cls.__name__
                    raise TypeError(
                        f"Cannot subclass an instance of NewType. "
                        f"Perhaps you were looking for: "
                        f"`{subcls_name} = NewType({subcls_name!r}, {supercls_name})`"
                    )

            return (Dummy,)

        def __repr__(self):
            return f'{self.__module__}.{self.__qualname__}'

        def __reduce__(self):
            return self.__qualname__

        if sys.version_info >= (3, 10):
            # PEP 604 methods
            # It doesn't make sense to have these methods on Python <3.10

            def __or__(self, other):
                return typing.Union[self, other]

            def __ror__(self, other):
                return typing.Union[other, self]


if hasattr(typing, "TypeAliasType"):
    TypeAliasType = typing.TypeAliasType
else:
    def _is_unionable(obj):
        """Corresponds to is_unionable() in unionobject.c in CPython."""
        return obj is None or isinstance(obj, (
            type,
            _types.GenericAlias,
            _types.UnionType,
            TypeAliasType,
        ))

    class TypeAliasType:
        """Create named, parameterized type aliases.

        This provides a backport of the new `type` statement in Python 3.12:

            type ListOrSet[T] = list[T] | set[T]

        is equivalent to:

            T = TypeVar("T")
            ListOrSet = TypeAliasType("ListOrSet", list[T] | set[T], type_params=(T,))

        The name ListOrSet can then be used as an alias for the type it refers to.

        The type_params argument should contain all the type parameters used
        in the value of the type alias. If the alias is not generic, this
        argument is omitted.

        Static type checkers should only support type aliases declared using
        TypeAliasType that follow these rules:

        - The first argument (the name) must be a string literal.
        - The TypeAliasType instance must be immediately assigned to a variable
          of the same name. (For example, 'X = TypeAliasType("Y", int)' is invalid,
          as is 'X, Y = TypeAliasType("X", int), TypeAliasType("Y", int)').

        """

        def __init__(self, name: str, value, *, type_params=()):
            if not isinstance(name, str):
                raise TypeError("TypeAliasType name must be a string")
            self.__value__ = value
            self.__type_params__ = type_params

            parameters = []
            for type_param in type_params:
                if isinstance(type_param, TypeVarTuple):
                    parameters.extend(type_param)
                else:
                    parameters.append(type_param)
            self.__parameters__ = tuple(parameters)
            def_mod = _caller()
            if def_mod != 'typing_extensions':
                self.__module__ = def_mod
            # Setting this attribute closes the TypeAliasType from further modification
            self.__name__ = name

        def __setattr__(self, name: str, value: object, /) -> None:
            if hasattr(self, "__name__"):
                self._raise_attribute_error(name)
            super().__setattr__(name, value)

        def __delattr__(self, name: str, /) -> Never:
            self._raise_attribute_error(name)

        def _raise_attribute_error(self, name: str) -> Never:
            # Match the Python 3.12 error messages exactly
            if name == "__name__":
                raise AttributeError("readonly attribute")
            elif name in {"__value__", "__type_params__", "__parameters__", "__module__"}:
                raise AttributeError(
                    f"attribute '{name}' of 'typing.TypeAliasType' objects "
                    "is not writable"
                )
            else:
                raise AttributeError(
                    f"'typing.TypeAliasType' object has no attribute '{name}'"
                )

        def __repr__(self) -> str:
            return self.__name__

        def __getitem__(self, parameters):
            if not isinstance(parameters, tuple):
                parameters = (parameters,)
            parameters = [
                typing._type_check(
                    item, f'Subscripting {self.__name__} requires a type.'
                )
                for item in parameters
            ]
            return typing._GenericAlias(self, tuple(parameters))

        def __reduce__(self):
            return self.__name__

        def __init_subclass__(cls, *args, **kwargs):
            raise TypeError(
                "type 'typing_extensions.TypeAliasType' is not an acceptable base type"
            )

        # The presence of this method convinces typing._type_check
        # that TypeAliasTypes are types.
        def __call__(self):
            raise TypeError("Type alias is not callable")

        if sys.version_info >= (3, 10):
            def __or__(self, right):
                # For forward compatibility with 3.12, reject Unions
                # that are not accepted by the built-in Union.
                if not _is_unionable(right):
                    return NotImplemented
                return typing.Union[self, right]

            def __ror__(self, left):
                if not _is_unionable(left):
                    return NotImplemented
                return typing.Union[left, self]


if hasattr(typing, "is_protocol"):
    is_protocol = typing.is_protocol
    get_protocol_members = typing.get_protocol_members
else:
    def is_protocol(tp: type, /) -> bool:
        """Return True if the given type is a Protocol.

        Example::

            >>> from typing_extensions import Protocol, is_protocol
            >>> class P(Protocol):
            ...     def a(self) -> str: ...
            ...     b: int
            >>> is_protocol(P)
            True
            >>> is_protocol(int)
            False
        """
        return (
            isinstance(tp, type)
            and getattr(tp, '_is_protocol', False)
            and tp is not Protocol
            and tp is not typing.Protocol
        )

    def get_protocol_members(tp: type, /) -> typing.FrozenSet[str]:
        """Return the set of members defined in a Protocol.

        Example::

            >>> from typing_extensions import Protocol, get_protocol_members
            >>> class P(Protocol):
            ...     def a(self) -> str: ...
            ...     b: int
            >>> get_protocol_members(P)
            frozenset({'a', 'b'})

        Raise a TypeError for arguments that are not Protocols.
        """
        if not is_protocol(tp):
            raise TypeError(f'{tp!r} is not a Protocol')
        if hasattr(tp, '__protocol_attrs__'):
            return frozenset(tp.__protocol_attrs__)
        return frozenset(_get_protocol_attrs(tp))


if hasattr(typing, "Doc"):
    Doc = typing.Doc
else:
    class Doc:
        """Define the documentation of a type annotation using ``Annotated``, to be
         used in class attributes, function and method parameters, return values,
         and variables.

        The value should be a positional-only string literal to allow static tools
        like editors and documentation generators to use it.

        This complements docstrings.

        The string value passed is available in the attribute ``documentation``.

        Example::

            >>> from typing_extensions import Annotated, Doc
            >>> def hi(to: Annotated[str, Doc("Who to say hi to")]) -> None: ...
        """
        def __init__(self, documentation: str, /) -> None:
            self.documentation = documentation

        def __repr__(self) -> str:
            return f"Doc({self.documentation!r})"

        def __hash__(self) -> int:
            return hash(self.documentation)

        def __eq__(self, other: object) -> bool:
            if not isinstance(other, Doc):
                return NotImplemented
            return self.documentation == other.documentation


_CapsuleType = getattr(_types, "CapsuleType", None)

if _CapsuleType is None:
    try:
        import _socket
    except ImportError:
        pass
    else:
        _CAPI = getattr(_socket, "CAPI", None)
        if _CAPI is not None:
            _CapsuleType = type(_CAPI)

if _CapsuleType is not None:
    CapsuleType = _CapsuleType
    __all__.append("CapsuleType")


# Aliases for items that have always been in typing.
# Explicitly assign these (rather than using `from typing import *` at the top),
# so that we get a CI error if one of these is deleted from typing.py
# in a future version of Python
AbstractSet = typing.AbstractSet
AnyStr = typing.AnyStr
BinaryIO = typing.BinaryIO
Callable = typing.Callable
Collection = typing.Collection
Container = typing.Container
Dict = typing.Dict
ForwardRef = typing.ForwardRef
FrozenSet = typing.FrozenSet
Generic = typing.Generic
Hashable = typing.Hashable
IO = typing.IO
ItemsView = typing.ItemsView
Iterable = typing.Iterable
Iterator = typing.Iterator
KeysView = typing.KeysView
List = typing.List
Mapping = typing.Mapping
MappingView = typing.MappingView
Match = typing.Match
MutableMapping = typing.MutableMapping
MutableSequence = typing.MutableSequence
MutableSet = typing.MutableSet
Optional = typing.Optional
Pattern = typing.Pattern
Reversible = typing.Reversible
Sequence = typing.Sequence
Set = typing.Set
Sized = typing.Sized
TextIO = typing.TextIO
Tuple = typing.Tuple
Union = typing.Union
ValuesView = typing.ValuesView
cast = typing.cast
no_type_check = typing.no_type_check
no_type_check_decorator = typing.no_type_check_decorator