aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/python/pytest/py3/_pytest/python_api.py
blob: 9cbf5584e8039e8197b9bb03a8727218a59eff33 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
import math
import pprint
from collections.abc import Iterable 
from collections.abc import Mapping 
from collections.abc import Sized 
from decimal import Decimal
from numbers import Complex 
from types import TracebackType 
from typing import Any 
from typing import Callable 
from typing import cast 
from typing import Generic 
from typing import Optional 
from typing import overload 
from typing import Pattern 
from typing import Tuple 
from typing import Type 
from typing import TYPE_CHECKING 
from typing import TypeVar 
from typing import Union 

if TYPE_CHECKING: 
    from numpy import ndarray 

 
import _pytest._code
from _pytest.compat import final 
from _pytest.compat import STRING_TYPES
from _pytest.outcomes import fail


def _non_numeric_type_error(value, at: Optional[str]) -> TypeError: 
    at_str = f" at {at}" if at else "" 
    return TypeError(
        "cannot make approximate comparisons to non-numeric values: {!r} {}".format(
            value, at_str
        )
    )


# builtin pytest.approx helper


class ApproxBase: 
    """Provide shared utilities for making approximate comparisons between 
    numbers or sequences of numbers.""" 

    # Tell numpy to use our `__eq__` operator instead of its.
    __array_ufunc__ = None
    __array_priority__ = 100

    def __init__(self, expected, rel=None, abs=None, nan_ok: bool = False) -> None: 
        __tracebackhide__ = True
        self.expected = expected
        self.abs = abs
        self.rel = rel
        self.nan_ok = nan_ok
        self._check_type()

    def __repr__(self) -> str: 
        raise NotImplementedError

    def __eq__(self, actual) -> bool: 
        return all(
            a == self._approx_scalar(x) for a, x in self._yield_comparisons(actual)
        )

    # Ignore type because of https://github.com/python/mypy/issues/4266. 
    __hash__ = None  # type: ignore 

    def __ne__(self, actual) -> bool: 
        return not (actual == self)

    def _approx_scalar(self, x) -> "ApproxScalar": 
        return ApproxScalar(x, rel=self.rel, abs=self.abs, nan_ok=self.nan_ok)

    def _yield_comparisons(self, actual):
        """Yield all the pairs of numbers to be compared. 
 
        This is used to implement the `__eq__` method. 
        """
        raise NotImplementedError

    def _check_type(self) -> None: 
        """Raise a TypeError if the expected value is not a valid type.""" 
        # This is only a concern if the expected value is a sequence.  In every
        # other case, the approx() function ensures that the expected value has
        # a numeric type.  For this reason, the default is to do nothing.  The
        # classes that deal with sequences should reimplement this method to
        # raise if there are any non-numeric elements in the sequence.
        pass


def _recursive_list_map(f, x):
    if isinstance(x, list):
        return list(_recursive_list_map(f, xi) for xi in x)
    else:
        return f(x)


class ApproxNumpy(ApproxBase):
    """Perform approximate comparisons where the expected value is numpy array.""" 

    def __repr__(self) -> str: 
        list_scalars = _recursive_list_map(self._approx_scalar, self.expected.tolist())
        return f"approx({list_scalars!r})" 

    def __eq__(self, actual) -> bool: 
        import numpy as np

        # self.expected is supposed to always be an array here. 

        if not np.isscalar(actual):
            try:
                actual = np.asarray(actual)
            except Exception as e: 
                raise TypeError(f"cannot compare '{actual}' to numpy.ndarray") from e 

        if not np.isscalar(actual) and actual.shape != self.expected.shape:
            return False

        return ApproxBase.__eq__(self, actual)

    def _yield_comparisons(self, actual):
        import numpy as np

        # `actual` can either be a numpy array or a scalar, it is treated in
        # `__eq__` before being passed to `ApproxBase.__eq__`, which is the
        # only method that calls this one.

        if np.isscalar(actual):
            for i in np.ndindex(self.expected.shape):
                yield actual, self.expected[i].item() 
        else:
            for i in np.ndindex(self.expected.shape):
                yield actual[i].item(), self.expected[i].item() 


class ApproxMapping(ApproxBase):
    """Perform approximate comparisons where the expected value is a mapping 
    with numeric values (the keys can be anything).""" 

    def __repr__(self) -> str: 
        return "approx({!r})".format(
            {k: self._approx_scalar(v) for k, v in self.expected.items()}
        )

    def __eq__(self, actual) -> bool: 
        try: 
            if set(actual.keys()) != set(self.expected.keys()): 
                return False 
        except AttributeError: 
            return False

        return ApproxBase.__eq__(self, actual)

    def _yield_comparisons(self, actual):
        for k in self.expected.keys():
            yield actual[k], self.expected[k]

    def _check_type(self) -> None: 
        __tracebackhide__ = True
        for key, value in self.expected.items():
            if isinstance(value, type(self.expected)):
                msg = "pytest.approx() does not support nested dictionaries: key={!r} value={!r}\n  full mapping={}"
                raise TypeError(msg.format(key, value, pprint.pformat(self.expected)))


class ApproxSequencelike(ApproxBase): 
    """Perform approximate comparisons where the expected value is a sequence of numbers.""" 

    def __repr__(self) -> str: 
        seq_type = type(self.expected)
        if seq_type not in (tuple, list, set):
            seq_type = list
        return "approx({!r})".format(
            seq_type(self._approx_scalar(x) for x in self.expected)
        )

    def __eq__(self, actual) -> bool: 
        try: 
            if len(actual) != len(self.expected): 
                return False 
        except TypeError: 
            return False
        return ApproxBase.__eq__(self, actual)

    def _yield_comparisons(self, actual):
        return zip(actual, self.expected)

    def _check_type(self) -> None: 
        __tracebackhide__ = True
        for index, x in enumerate(self.expected):
            if isinstance(x, type(self.expected)):
                msg = "pytest.approx() does not support nested data structures: {!r} at index {}\n  full sequence: {}"
                raise TypeError(msg.format(x, index, pprint.pformat(self.expected)))


class ApproxScalar(ApproxBase):
    """Perform approximate comparisons where the expected value is a single number.""" 

    # Using Real should be better than this Union, but not possible yet: 
    # https://github.com/python/typeshed/pull/3108 
    DEFAULT_ABSOLUTE_TOLERANCE: Union[float, Decimal] = 1e-12 
    DEFAULT_RELATIVE_TOLERANCE: Union[float, Decimal] = 1e-6 

    def __repr__(self) -> str: 
        """Return a string communicating both the expected value and the 
        tolerance for the comparison being made. 
 
        For example, ``1.0 ± 1e-6``, ``(3+4j) ± 5e-6 ∠ ±180°``. 
        """

        # Don't show a tolerance for values that aren't compared using 
        # tolerances, i.e. non-numerics and infinities. Need to call abs to 
        # handle complex numbers, e.g. (inf + 1j). 
        if (not isinstance(self.expected, (Complex, Decimal))) or math.isinf( 
            abs(self.expected)  # type: ignore[arg-type] 
        ): 
            return str(self.expected)

        # If a sensible tolerance can't be calculated, self.tolerance will
        # raise a ValueError.  In this case, display '???'.
        try:
            vetted_tolerance = f"{self.tolerance:.1e}" 
            if ( 
                isinstance(self.expected, Complex) 
                and self.expected.imag 
                and not math.isinf(self.tolerance) 
            ): 
                vetted_tolerance += " ∠ ±180°" 
        except ValueError:
            vetted_tolerance = "???"

        return f"{self.expected} ± {vetted_tolerance}" 

    def __eq__(self, actual) -> bool: 
        """Return whether the given value is equal to the expected value 
        within the pre-specified tolerance.""" 
        asarray = _as_numpy_array(actual) 
        if asarray is not None: 
            # Call ``__eq__()`` manually to prevent infinite-recursion with
            # numpy<1.13.  See #3748.
            return all(self.__eq__(a) for a in asarray.flat) 

        # Short-circuit exact equality.
        if actual == self.expected:
            return True

        # If either type is non-numeric, fall back to strict equality. 
        # NB: we need Complex, rather than just Number, to ensure that __abs__, 
        # __sub__, and __float__ are defined. 
        if not ( 
            isinstance(self.expected, (Complex, Decimal)) 
            and isinstance(actual, (Complex, Decimal)) 
        ): 
            return False 
 
        # Allow the user to control whether NaNs are considered equal to each
        # other or not.  The abs() calls are for compatibility with complex
        # numbers.
        if math.isnan(abs(self.expected)):  # type: ignore[arg-type] 
            return self.nan_ok and math.isnan(abs(actual))  # type: ignore[arg-type] 

        # Infinity shouldn't be approximately equal to anything but itself, but
        # if there's a relative tolerance, it will be infinite and infinity
        # will seem approximately equal to everything.  The equal-to-itself
        # case would have been short circuited above, so here we can just
        # return false if the expected value is infinite.  The abs() call is
        # for compatibility with complex numbers.
        if math.isinf(abs(self.expected)):  # type: ignore[arg-type] 
            return False

        # Return true if the two numbers are within the tolerance.
        result: bool = abs(self.expected - actual) <= self.tolerance 
        return result 

    # Ignore type because of https://github.com/python/mypy/issues/4266. 
    __hash__ = None  # type: ignore 

    @property
    def tolerance(self):
        """Return the tolerance for the comparison. 
 
        This could be either an absolute tolerance or a relative tolerance, 
        depending on what the user specified or which would be larger. 
        """

        def set_default(x, default):
            return x if x is not None else default

        # Figure out what the absolute tolerance should be.  ``self.abs`` is
        # either None or a value specified by the user.
        absolute_tolerance = set_default(self.abs, self.DEFAULT_ABSOLUTE_TOLERANCE)

        if absolute_tolerance < 0:
            raise ValueError(
                f"absolute tolerance can't be negative: {absolute_tolerance}" 
            )
        if math.isnan(absolute_tolerance):
            raise ValueError("absolute tolerance can't be NaN.")

        # If the user specified an absolute tolerance but not a relative one,
        # just return the absolute tolerance.
        if self.rel is None:
            if self.abs is not None:
                return absolute_tolerance

        # Figure out what the relative tolerance should be.  ``self.rel`` is
        # either None or a value specified by the user.  This is done after
        # we've made sure the user didn't ask for an absolute tolerance only,
        # because we don't want to raise errors about the relative tolerance if
        # we aren't even going to use it.
        relative_tolerance = set_default(
            self.rel, self.DEFAULT_RELATIVE_TOLERANCE
        ) * abs(self.expected)

        if relative_tolerance < 0:
            raise ValueError(
                f"relative tolerance can't be negative: {absolute_tolerance}" 
            )
        if math.isnan(relative_tolerance):
            raise ValueError("relative tolerance can't be NaN.")

        # Return the larger of the relative and absolute tolerances.
        return max(relative_tolerance, absolute_tolerance)


class ApproxDecimal(ApproxScalar):
    """Perform approximate comparisons where the expected value is a Decimal.""" 

    DEFAULT_ABSOLUTE_TOLERANCE = Decimal("1e-12")
    DEFAULT_RELATIVE_TOLERANCE = Decimal("1e-6")


def approx(expected, rel=None, abs=None, nan_ok: bool = False) -> ApproxBase: 
    """Assert that two numbers (or two sets of numbers) are equal to each other 
    within some tolerance.

    Due to the `intricacies of floating-point arithmetic`__, numbers that we
    would intuitively expect to be equal are not always so::

        >>> 0.1 + 0.2 == 0.3
        False

    __ https://docs.python.org/3/tutorial/floatingpoint.html

    This problem is commonly encountered when writing tests, e.g. when making
    sure that floating-point values are what you expect them to be.  One way to
    deal with this problem is to assert that two floating-point numbers are
    equal to within some appropriate tolerance::

        >>> abs((0.1 + 0.2) - 0.3) < 1e-6
        True

    However, comparisons like this are tedious to write and difficult to
    understand.  Furthermore, absolute comparisons like the one above are
    usually discouraged because there's no tolerance that works well for all
    situations.  ``1e-6`` is good for numbers around ``1``, but too small for
    very big numbers and too big for very small ones.  It's better to express
    the tolerance as a fraction of the expected value, but relative comparisons
    like that are even more difficult to write correctly and concisely.

    The ``approx`` class performs floating-point comparisons using a syntax
    that's as intuitive as possible::

        >>> from pytest import approx
        >>> 0.1 + 0.2 == approx(0.3)
        True

    The same syntax also works for sequences of numbers::

        >>> (0.1 + 0.2, 0.2 + 0.4) == approx((0.3, 0.6))
        True

    Dictionary *values*::

        >>> {'a': 0.1 + 0.2, 'b': 0.2 + 0.4} == approx({'a': 0.3, 'b': 0.6})
        True

    ``numpy`` arrays::

        >>> import numpy as np                                                          # doctest: +SKIP
        >>> np.array([0.1, 0.2]) + np.array([0.2, 0.4]) == approx(np.array([0.3, 0.6])) # doctest: +SKIP
        True

    And for a ``numpy`` array against a scalar::

        >>> import numpy as np                                         # doctest: +SKIP
        >>> np.array([0.1, 0.2]) + np.array([0.2, 0.1]) == approx(0.3) # doctest: +SKIP
        True

    By default, ``approx`` considers numbers within a relative tolerance of
    ``1e-6`` (i.e. one part in a million) of its expected value to be equal.
    This treatment would lead to surprising results if the expected value was
    ``0.0``, because nothing but ``0.0`` itself is relatively close to ``0.0``.
    To handle this case less surprisingly, ``approx`` also considers numbers
    within an absolute tolerance of ``1e-12`` of its expected value to be
    equal.  Infinity and NaN are special cases.  Infinity is only considered
    equal to itself, regardless of the relative tolerance.  NaN is not
    considered equal to anything by default, but you can make it be equal to
    itself by setting the ``nan_ok`` argument to True.  (This is meant to
    facilitate comparing arrays that use NaN to mean "no data".)

    Both the relative and absolute tolerances can be changed by passing
    arguments to the ``approx`` constructor::

        >>> 1.0001 == approx(1)
        False
        >>> 1.0001 == approx(1, rel=1e-3)
        True
        >>> 1.0001 == approx(1, abs=1e-3)
        True

    If you specify ``abs`` but not ``rel``, the comparison will not consider
    the relative tolerance at all.  In other words, two numbers that are within
    the default relative tolerance of ``1e-6`` will still be considered unequal
    if they exceed the specified absolute tolerance.  If you specify both
    ``abs`` and ``rel``, the numbers will be considered equal if either
    tolerance is met::

        >>> 1 + 1e-8 == approx(1)
        True
        >>> 1 + 1e-8 == approx(1, abs=1e-12)
        False
        >>> 1 + 1e-8 == approx(1, rel=1e-6, abs=1e-12)
        True

    You can also use ``approx`` to compare nonnumeric types, or dicts and 
    sequences containing nonnumeric types, in which case it falls back to 
    strict equality. This can be useful for comparing dicts and sequences that 
    can contain optional values:: 
 
        >>> {"required": 1.0000005, "optional": None} == approx({"required": 1, "optional": None}) 
        True 
        >>> [None, 1.0000005] == approx([None,1]) 
        True 
        >>> ["foo", 1.0000005] == approx([None,1]) 
        False 
 
    If you're thinking about using ``approx``, then you might want to know how
    it compares to other good ways of comparing floating-point numbers.  All of
    these algorithms are based on relative and absolute tolerances and should
    agree for the most part, but they do have meaningful differences:

    - ``math.isclose(a, b, rel_tol=1e-9, abs_tol=0.0)``:  True if the relative
      tolerance is met w.r.t. either ``a`` or ``b`` or if the absolute
      tolerance is met.  Because the relative tolerance is calculated w.r.t.
      both ``a`` and ``b``, this test is symmetric (i.e.  neither ``a`` nor
      ``b`` is a "reference value").  You have to specify an absolute tolerance
      if you want to compare to ``0.0`` because there is no tolerance by
      default.  `More information...`__ 

      __ https://docs.python.org/3/library/math.html#math.isclose

    - ``numpy.isclose(a, b, rtol=1e-5, atol=1e-8)``: True if the difference
      between ``a`` and ``b`` is less that the sum of the relative tolerance
      w.r.t. ``b`` and the absolute tolerance.  Because the relative tolerance
      is only calculated w.r.t. ``b``, this test is asymmetric and you can
      think of ``b`` as the reference value.  Support for comparing sequences
      is provided by ``numpy.allclose``.  `More information...`__

      __ https://numpy.org/doc/stable/reference/generated/numpy.isclose.html 

    - ``unittest.TestCase.assertAlmostEqual(a, b)``: True if ``a`` and ``b``
      are within an absolute tolerance of ``1e-7``.  No relative tolerance is
      considered and the absolute tolerance cannot be changed, so this function
      is not appropriate for very large or very small numbers.  Also, it's only
      available in subclasses of ``unittest.TestCase`` and it's ugly because it
      doesn't follow PEP8.  `More information...`__

      __ https://docs.python.org/3/library/unittest.html#unittest.TestCase.assertAlmostEqual

    - ``a == pytest.approx(b, rel=1e-6, abs=1e-12)``: True if the relative
      tolerance is met w.r.t. ``b`` or if the absolute tolerance is met.
      Because the relative tolerance is only calculated w.r.t. ``b``, this test
      is asymmetric and you can think of ``b`` as the reference value.  In the
      special case that you explicitly specify an absolute tolerance but not a
      relative tolerance, only the absolute tolerance is considered.

    .. warning::

       .. versionchanged:: 3.2

       In order to avoid inconsistent behavior, ``TypeError`` is
       raised for ``>``, ``>=``, ``<`` and ``<=`` comparisons.
       The example below illustrates the problem::

           assert approx(0.1) > 0.1 + 1e-10  # calls approx(0.1).__gt__(0.1 + 1e-10)
           assert 0.1 + 1e-10 > approx(0.1)  # calls approx(0.1).__lt__(0.1 + 1e-10)

       In the second example one expects ``approx(0.1).__le__(0.1 + 1e-10)``
       to be called. But instead, ``approx(0.1).__lt__(0.1 + 1e-10)`` is used to
       comparison. This is because the call hierarchy of rich comparisons
       follows a fixed behavior. `More information...`__

       __ https://docs.python.org/3/reference/datamodel.html#object.__ge__
 
    .. versionchanged:: 3.7.1 
       ``approx`` raises ``TypeError`` when it encounters a dict value or 
       sequence element of nonnumeric type. 
 
    .. versionchanged:: 6.1.0 
       ``approx`` falls back to strict equality for nonnumeric types instead 
       of raising ``TypeError``. 
    """

    # Delegate the comparison to a class that knows how to deal with the type
    # of the expected value (e.g. int, float, list, dict, numpy.array, etc).
    #
    # The primary responsibility of these classes is to implement ``__eq__()``
    # and ``__repr__()``.  The former is used to actually check if some
    # "actual" value is equivalent to the given expected value within the
    # allowed tolerance.  The latter is used to show the user the expected
    # value and tolerance, in the case that a test failed.
    #
    # The actual logic for making approximate comparisons can be found in
    # ApproxScalar, which is used to compare individual numbers.  All of the
    # other Approx classes eventually delegate to this class.  The ApproxBase
    # class provides some convenient methods and overloads, but isn't really
    # essential.

    __tracebackhide__ = True

    if isinstance(expected, Decimal):
        cls: Type[ApproxBase] = ApproxDecimal 
    elif isinstance(expected, Mapping):
        cls = ApproxMapping
    elif _is_numpy_array(expected):
        expected = _as_numpy_array(expected) 
        cls = ApproxNumpy
    elif ( 
        isinstance(expected, Iterable) 
        and isinstance(expected, Sized) 
        # Type ignored because the error is wrong -- not unreachable. 
        and not isinstance(expected, STRING_TYPES)  # type: ignore[unreachable] 
    ): 
        cls = ApproxSequencelike 
    else:
        cls = ApproxScalar 

    return cls(expected, rel, abs, nan_ok)


def _is_numpy_array(obj: object) -> bool: 
    """
    Return true if the given object is implicitly convertible to ndarray, 
    and numpy is already imported. 
    """
    return _as_numpy_array(obj) is not None 
 
 
def _as_numpy_array(obj: object) -> Optional["ndarray"]: 
    """ 
    Return an ndarray if the given object is implicitly convertible to ndarray, 
    and numpy is already imported, otherwise None. 
    """ 
    import sys

    np: Any = sys.modules.get("numpy") 
    if np is not None:
        # avoid infinite recursion on numpy scalars, which have __array__ 
        if np.isscalar(obj): 
            return None 
        elif isinstance(obj, np.ndarray): 
            return obj 
        elif hasattr(obj, "__array__") or hasattr("obj", "__array_interface__"): 
            return np.asarray(obj) 
    return None 


# builtin pytest.raises helper

_E = TypeVar("_E", bound=BaseException) 

 
@overload 
def raises( 
    expected_exception: Union[Type[_E], Tuple[Type[_E], ...]], 
    *, 
    match: Optional[Union[str, Pattern[str]]] = ..., 
) -> "RaisesContext[_E]": 
    ... 
 
 
@overload 
def raises( 
    expected_exception: Union[Type[_E], Tuple[Type[_E], ...]], 
    func: Callable[..., Any], 
    *args: Any, 
    **kwargs: Any, 
) -> _pytest._code.ExceptionInfo[_E]: 
    ... 
 
 
def raises( 
    expected_exception: Union[Type[_E], Tuple[Type[_E], ...]], *args: Any, **kwargs: Any 
) -> Union["RaisesContext[_E]", _pytest._code.ExceptionInfo[_E]]: 
    r"""Assert that a code block/function call raises ``expected_exception`` 
    or raise a failure exception otherwise. 

    :kwparam match: 
        If specified, a string containing a regular expression, 
        or a regular expression object, that is tested against the string 
        representation of the exception using ``re.search``. To match a literal 
        string that may contain `special characters`__, the pattern can 
        first be escaped with ``re.escape``. 

        (This is only used when ``pytest.raises`` is used as a context manager, 
        and passed through to the function otherwise. 
        When using ``pytest.raises`` as a function, you can use: 
        ``pytest.raises(Exc, func, match="passed on").match("my pattern")``.) 

        __ https://docs.python.org/3/library/re.html#regular-expression-syntax 

    .. currentmodule:: _pytest._code 
 
    Use ``pytest.raises`` as a context manager, which will capture the exception of the given 
    type:: 
 
        >>> import pytest 
        >>> with pytest.raises(ZeroDivisionError): 
        ...    1/0

    If the code block does not raise the expected exception (``ZeroDivisionError`` in the example 
    above), or no exception at all, the check will fail instead. 

    You can also use the keyword argument ``match`` to assert that the 
    exception matches a text or regex:: 

        >>> with pytest.raises(ValueError, match='must be 0 or None'): 
        ...     raise ValueError("value must be 0 or None") 

        >>> with pytest.raises(ValueError, match=r'must be \d+$'): 
        ...     raise ValueError("value must be 42") 
 
    The context manager produces an :class:`ExceptionInfo` object which can be used to inspect the 
    details of the captured exception:: 
 
        >>> with pytest.raises(ValueError) as exc_info: 
        ...     raise ValueError("value must be 42") 
        >>> assert exc_info.type is ValueError 
        >>> assert exc_info.value.args[0] == "value must be 42" 
 
    .. note::

       When using ``pytest.raises`` as a context manager, it's worthwhile to
       note that normal context manager rules apply and that the exception
       raised *must* be the final line in the scope of the context manager.
       Lines of code after that, within the scope of the context manager will
       not be executed. For example::

           >>> value = 15
           >>> with pytest.raises(ValueError) as exc_info: 
           ...     if value > 10:
           ...         raise ValueError("value must be <= 10")
           ...     assert exc_info.type is ValueError  # this will not execute 

       Instead, the following approach must be taken (note the difference in
       scope)::

           >>> with pytest.raises(ValueError) as exc_info: 
           ...     if value > 10:
           ...         raise ValueError("value must be <= 10")
           ...
           >>> assert exc_info.type is ValueError 

    **Using with** ``pytest.mark.parametrize`` 

    When using :ref:`pytest.mark.parametrize ref` 
    it is possible to parametrize tests such that 
    some runs raise an exception and others do not. 

    See :ref:`parametrizing_conditional_raising` for an example. 

    **Legacy form** 

    It is possible to specify a callable by passing a to-be-called lambda::

        >>> raises(ZeroDivisionError, lambda: 1/0)
        <ExceptionInfo ...>

    or you can specify an arbitrary callable with arguments::

        >>> def f(x): return 1/x
        ...
        >>> raises(ZeroDivisionError, f, 0)
        <ExceptionInfo ...>
        >>> raises(ZeroDivisionError, f, x=0)
        <ExceptionInfo ...>

    The form above is fully supported but discouraged for new code because the 
    context manager form is regarded as more readable and less error-prone. 

    .. note::
        Similar to caught exception objects in Python, explicitly clearing
        local references to returned ``ExceptionInfo`` objects can
        help the Python interpreter speed up its garbage collection.

        Clearing those references breaks a reference cycle
        (``ExceptionInfo`` --> caught exception --> frame stack raising
        the exception --> current frame stack --> local variables -->
        ``ExceptionInfo``) which makes Python keep all objects referenced
        from that cycle (including all local variables in the current
        frame) alive until the next cyclic garbage collection run. 
        More detailed information can be found in the official Python 
        documentation for :ref:`the try statement <python:try>`. 
    """
    __tracebackhide__ = True

    if isinstance(expected_exception, type): 
        excepted_exceptions: Tuple[Type[_E], ...] = (expected_exception,) 
    else: 
        excepted_exceptions = expected_exception 
    for exc in excepted_exceptions: 
        if not isinstance(exc, type) or not issubclass(exc, BaseException):  # type: ignore[unreachable] 
            msg = "expected exception must be a BaseException type, not {}"  # type: ignore[unreachable] 
            not_a = exc.__name__ if isinstance(exc, type) else type(exc).__name__ 
            raise TypeError(msg.format(not_a)) 

    message = f"DID NOT RAISE {expected_exception}" 
 
    if not args:
        match: Optional[Union[str, Pattern[str]]] = kwargs.pop("match", None) 
        if kwargs:
            msg = "Unexpected keyword arguments passed to pytest.raises: "
            msg += ", ".join(sorted(kwargs)) 
            msg += "\nUse context-manager form instead?" 
            raise TypeError(msg)
        return RaisesContext(expected_exception, message, match) 
    else:
        func = args[0]
        if not callable(func): 
            raise TypeError( 
                "{!r} object (type: {}) must be callable".format(func, type(func)) 
            ) 
        try:
            func(*args[1:], **kwargs)
        except expected_exception as e: 
            # We just caught the exception - there is a traceback. 
            assert e.__traceback__ is not None 
            return _pytest._code.ExceptionInfo.from_exc_info( 
                (type(e), e, e.__traceback__) 
            ) 
    fail(message)


# This doesn't work with mypy for now. Use fail.Exception instead. 
raises.Exception = fail.Exception  # type: ignore 


@final 
class RaisesContext(Generic[_E]): 
    def __init__( 
        self, 
        expected_exception: Union[Type[_E], Tuple[Type[_E], ...]], 
        message: str, 
        match_expr: Optional[Union[str, Pattern[str]]] = None, 
    ) -> None: 
        self.expected_exception = expected_exception
        self.message = message
        self.match_expr = match_expr
        self.excinfo: Optional[_pytest._code.ExceptionInfo[_E]] = None 

    def __enter__(self) -> _pytest._code.ExceptionInfo[_E]: 
        self.excinfo = _pytest._code.ExceptionInfo.for_later() 
        return self.excinfo

    def __exit__( 
        self, 
        exc_type: Optional[Type[BaseException]], 
        exc_val: Optional[BaseException], 
        exc_tb: Optional[TracebackType], 
    ) -> bool: 
        __tracebackhide__ = True
        if exc_type is None: 
            fail(self.message)
        assert self.excinfo is not None 
        if not issubclass(exc_type, self.expected_exception): 
            return False 
        # Cast to narrow the exception type now that it's verified. 
        exc_info = cast(Tuple[Type[_E], _E, TracebackType], (exc_type, exc_val, exc_tb)) 
        self.excinfo.fill_unfilled(exc_info) 
        if self.match_expr is not None: 
            self.excinfo.match(self.match_expr)
        return True