1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
|
# `pure_eval`
[![Build Status](https://travis-ci.org/alexmojaki/pure_eval.svg?branch=master)](https://travis-ci.org/alexmojaki/pure_eval) [![Coverage Status](https://coveralls.io/repos/github/alexmojaki/pure_eval/badge.svg?branch=master)](https://coveralls.io/github/alexmojaki/pure_eval?branch=master) [![Supports Python versions 3.5+](https://img.shields.io/pypi/pyversions/pure_eval.svg)](https://pypi.python.org/pypi/pure_eval)
This is a Python package that lets you safely evaluate certain AST nodes without triggering arbitrary code that may have unwanted side effects.
It can be installed from PyPI:
pip install pure_eval
To demonstrate usage, suppose we have an object defined as follows:
```python
class Rectangle:
def __init__(self, width, height):
self.width = width
self.height = height
@property
def area(self):
print("Calculating area...")
return self.width * self.height
rect = Rectangle(3, 5)
```
Given the `rect` object, we want to evaluate whatever expressions we can in this source code:
```python
source = "(rect.width, rect.height, rect.area)"
```
This library works with the AST, so let's parse the source code and peek inside:
```python
import ast
tree = ast.parse(source)
the_tuple = tree.body[0].value
for node in the_tuple.elts:
print(ast.dump(node))
```
Output:
```python
Attribute(value=Name(id='rect', ctx=Load()), attr='width', ctx=Load())
Attribute(value=Name(id='rect', ctx=Load()), attr='height', ctx=Load())
Attribute(value=Name(id='rect', ctx=Load()), attr='area', ctx=Load())
```
Now to actually use the library. First construct an Evaluator:
```python
from pure_eval import Evaluator
evaluator = Evaluator({"rect": rect})
```
The argument to `Evaluator` should be a mapping from variable names to their values. Or if you have access to the stack frame where `rect` is defined, you can instead use:
```python
evaluator = Evaluator.from_frame(frame)
```
Now to evaluate some nodes, using `evaluator[node]`:
```python
print("rect.width:", evaluator[the_tuple.elts[0]])
print("rect:", evaluator[the_tuple.elts[0].value])
```
Output:
```
rect.width: 3
rect: <__main__.Rectangle object at 0x105b0dd30>
```
OK, but you could have done the same thing with `eval`. The useful part is that it will refuse to evaluate the property `rect.area` because that would trigger unknown code. If we try, it'll raise a `CannotEval` exception.
```python
from pure_eval import CannotEval
try:
print("rect.area:", evaluator[the_tuple.elts[2]]) # fails
except CannotEval as e:
print(e) # prints CannotEval
```
To find all the expressions that can be evaluated in a tree:
```python
for node, value in evaluator.find_expressions(tree):
print(ast.dump(node), value)
```
Output:
```python
Attribute(value=Name(id='rect', ctx=Load()), attr='width', ctx=Load()) 3
Attribute(value=Name(id='rect', ctx=Load()), attr='height', ctx=Load()) 5
Name(id='rect', ctx=Load()) <__main__.Rectangle object at 0x105568d30>
Name(id='rect', ctx=Load()) <__main__.Rectangle object at 0x105568d30>
Name(id='rect', ctx=Load()) <__main__.Rectangle object at 0x105568d30>
```
Note that this includes `rect` three times, once for each appearance in the source code. Since all these nodes are equivalent, we can group them together:
```python
from pure_eval import group_expressions
for nodes, values in group_expressions(evaluator.find_expressions(tree)):
print(len(nodes), "nodes with value:", values)
```
Output:
```
1 nodes with value: 3
1 nodes with value: 5
3 nodes with value: <__main__.Rectangle object at 0x10d374d30>
```
If we want to list all the expressions in a tree, we may want to filter out certain expressions whose values are obvious. For example, suppose we have a function `foo`:
```python
def foo():
pass
```
If we refer to `foo` by its name as usual, then that's not interesting:
```python
from pure_eval import is_expression_interesting
node = ast.parse('foo').body[0].value
print(ast.dump(node))
print(is_expression_interesting(node, foo))
```
Output:
```python
Name(id='foo', ctx=Load())
False
```
But if we refer to it by a different name, then it's interesting:
```python
node = ast.parse('bar').body[0].value
print(ast.dump(node))
print(is_expression_interesting(node, foo))
```
Output:
```python
Name(id='bar', ctx=Load())
True
```
In general `is_expression_interesting` returns False for the following values:
- Literals (e.g. `123`, `'abc'`, `[1, 2, 3]`, `{'a': (), 'b': ([1, 2], [3])}`)
- Variables or attributes whose name is equal to the value's `__name__`, such as `foo` above or `self.foo` if it was a method.
- Builtins (e.g. `len`) referred to by their usual name.
To make things easier, you can combine finding expressions, grouping them, and filtering out the obvious ones with:
```python
evaluator.interesting_expressions_grouped(root)
```
To get the source code of an AST node, I recommend [asttokens](https://github.com/gristlabs/asttokens).
Here's a complete example that brings it all together:
```python
from asttokens import ASTTokens
from pure_eval import Evaluator
source = """
x = 1
d = {x: 2}
y = d[x]
"""
names = {}
exec(source, names)
atok = ASTTokens(source, parse=True)
for nodes, value in Evaluator(names).interesting_expressions_grouped(atok.tree):
print(atok.get_text(nodes[0]), "=", value)
```
Output:
```python
x = 1
d = {1: 2}
y = 2
d[x] = 2
```
|