aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/python/prompt-toolkit/py3/prompt_toolkit/layout/processors.py
blob: 90c017ade7ca5d3f293127c23a6f7217f07e6307 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
"""
Processors are little transformation blocks that transform the fragments list
from a buffer before the BufferControl will render it to the screen.

They can insert fragments before or after, or highlight fragments by replacing the
fragment types.
"""
from __future__ import annotations

import re
from abc import ABCMeta, abstractmethod
from typing import TYPE_CHECKING, Callable, Hashable, cast

from prompt_toolkit.application.current import get_app
from prompt_toolkit.cache import SimpleCache
from prompt_toolkit.document import Document
from prompt_toolkit.filters import FilterOrBool, to_filter, vi_insert_multiple_mode
from prompt_toolkit.formatted_text import (
    AnyFormattedText,
    StyleAndTextTuples,
    to_formatted_text,
)
from prompt_toolkit.formatted_text.utils import fragment_list_len, fragment_list_to_text
from prompt_toolkit.search import SearchDirection
from prompt_toolkit.utils import to_int, to_str

from .utils import explode_text_fragments

if TYPE_CHECKING:
    from .controls import BufferControl, UIContent

__all__ = [
    "Processor",
    "TransformationInput",
    "Transformation",
    "DummyProcessor",
    "HighlightSearchProcessor",
    "HighlightIncrementalSearchProcessor",
    "HighlightSelectionProcessor",
    "PasswordProcessor",
    "HighlightMatchingBracketProcessor",
    "DisplayMultipleCursors",
    "BeforeInput",
    "ShowArg",
    "AfterInput",
    "AppendAutoSuggestion",
    "ConditionalProcessor",
    "ShowLeadingWhiteSpaceProcessor",
    "ShowTrailingWhiteSpaceProcessor",
    "TabsProcessor",
    "ReverseSearchProcessor",
    "DynamicProcessor",
    "merge_processors",
]


class Processor(metaclass=ABCMeta):
    """
    Manipulate the fragments for a given line in a
    :class:`~prompt_toolkit.layout.controls.BufferControl`.
    """

    @abstractmethod
    def apply_transformation(
        self, transformation_input: TransformationInput
    ) -> Transformation:
        """
        Apply transformation. Returns a :class:`.Transformation` instance.

        :param transformation_input: :class:`.TransformationInput` object.
        """
        return Transformation(transformation_input.fragments)


SourceToDisplay = Callable[[int], int]
DisplayToSource = Callable[[int], int]


class TransformationInput:
    """
    :param buffer_control: :class:`.BufferControl` instance.
    :param lineno: The number of the line to which we apply the processor.
    :param source_to_display: A function that returns the position in the
        `fragments` for any position in the source string. (This takes
        previous processors into account.)
    :param fragments: List of fragments that we can transform. (Received from the
        previous processor.)
    """

    def __init__(
        self,
        buffer_control: BufferControl,
        document: Document,
        lineno: int,
        source_to_display: SourceToDisplay,
        fragments: StyleAndTextTuples,
        width: int,
        height: int,
    ) -> None:
        self.buffer_control = buffer_control
        self.document = document
        self.lineno = lineno
        self.source_to_display = source_to_display
        self.fragments = fragments
        self.width = width
        self.height = height

    def unpack(
        self,
    ) -> tuple[
        BufferControl, Document, int, SourceToDisplay, StyleAndTextTuples, int, int
    ]:
        return (
            self.buffer_control,
            self.document,
            self.lineno,
            self.source_to_display,
            self.fragments,
            self.width,
            self.height,
        )


class Transformation:
    """
    Transformation result, as returned by :meth:`.Processor.apply_transformation`.

    Important: Always make sure that the length of `document.text` is equal to
               the length of all the text in `fragments`!

    :param fragments: The transformed fragments. To be displayed, or to pass to
        the next processor.
    :param source_to_display: Cursor position transformation from original
        string to transformed string.
    :param display_to_source: Cursor position transformed from source string to
        original string.
    """

    def __init__(
        self,
        fragments: StyleAndTextTuples,
        source_to_display: SourceToDisplay | None = None,
        display_to_source: DisplayToSource | None = None,
    ) -> None:
        self.fragments = fragments
        self.source_to_display = source_to_display or (lambda i: i)
        self.display_to_source = display_to_source or (lambda i: i)


class DummyProcessor(Processor):
    """
    A `Processor` that doesn't do anything.
    """

    def apply_transformation(
        self, transformation_input: TransformationInput
    ) -> Transformation:
        return Transformation(transformation_input.fragments)


class HighlightSearchProcessor(Processor):
    """
    Processor that highlights search matches in the document.
    Note that this doesn't support multiline search matches yet.

    The style classes 'search' and 'search.current' will be applied to the
    content.
    """

    _classname = "search"
    _classname_current = "search.current"

    def _get_search_text(self, buffer_control: BufferControl) -> str:
        """
        The text we are searching for.
        """
        return buffer_control.search_state.text

    def apply_transformation(
        self, transformation_input: TransformationInput
    ) -> Transformation:
        (
            buffer_control,
            document,
            lineno,
            source_to_display,
            fragments,
            _,
            _,
        ) = transformation_input.unpack()

        search_text = self._get_search_text(buffer_control)
        searchmatch_fragment = f" class:{self._classname} "
        searchmatch_current_fragment = f" class:{self._classname_current} "

        if search_text and not get_app().is_done:
            # For each search match, replace the style string.
            line_text = fragment_list_to_text(fragments)
            fragments = explode_text_fragments(fragments)

            if buffer_control.search_state.ignore_case():
                flags = re.IGNORECASE
            else:
                flags = re.RegexFlag(0)

            # Get cursor column.
            cursor_column: int | None
            if document.cursor_position_row == lineno:
                cursor_column = source_to_display(document.cursor_position_col)
            else:
                cursor_column = None

            for match in re.finditer(re.escape(search_text), line_text, flags=flags):
                if cursor_column is not None:
                    on_cursor = match.start() <= cursor_column < match.end()
                else:
                    on_cursor = False

                for i in range(match.start(), match.end()):
                    old_fragment, text, *_ = fragments[i]
                    if on_cursor:
                        fragments[i] = (
                            old_fragment + searchmatch_current_fragment,
                            fragments[i][1],
                        )
                    else:
                        fragments[i] = (
                            old_fragment + searchmatch_fragment,
                            fragments[i][1],
                        )

        return Transformation(fragments)


class HighlightIncrementalSearchProcessor(HighlightSearchProcessor):
    """
    Highlight the search terms that are used for highlighting the incremental
    search. The style class 'incsearch' will be applied to the content.

    Important: this requires the `preview_search=True` flag to be set for the
    `BufferControl`. Otherwise, the cursor position won't be set to the search
    match while searching, and nothing happens.
    """

    _classname = "incsearch"
    _classname_current = "incsearch.current"

    def _get_search_text(self, buffer_control: BufferControl) -> str:
        """
        The text we are searching for.
        """
        # When the search buffer has focus, take that text.
        search_buffer = buffer_control.search_buffer
        if search_buffer is not None and search_buffer.text:
            return search_buffer.text
        return ""


class HighlightSelectionProcessor(Processor):
    """
    Processor that highlights the selection in the document.
    """

    def apply_transformation(
        self, transformation_input: TransformationInput
    ) -> Transformation:
        (
            buffer_control,
            document,
            lineno,
            source_to_display,
            fragments,
            _,
            _,
        ) = transformation_input.unpack()

        selected_fragment = " class:selected "

        # In case of selection, highlight all matches.
        selection_at_line = document.selection_range_at_line(lineno)

        if selection_at_line:
            from_, to = selection_at_line
            from_ = source_to_display(from_)
            to = source_to_display(to)

            fragments = explode_text_fragments(fragments)

            if from_ == 0 and to == 0 and len(fragments) == 0:
                # When this is an empty line, insert a space in order to
                # visualise the selection.
                return Transformation([(selected_fragment, " ")])
            else:
                for i in range(from_, to):
                    if i < len(fragments):
                        old_fragment, old_text, *_ = fragments[i]
                        fragments[i] = (old_fragment + selected_fragment, old_text)
                    elif i == len(fragments):
                        fragments.append((selected_fragment, " "))

        return Transformation(fragments)


class PasswordProcessor(Processor):
    """
    Processor that masks the input. (For passwords.)

    :param char: (string) Character to be used. "*" by default.
    """

    def __init__(self, char: str = "*") -> None:
        self.char = char

    def apply_transformation(self, ti: TransformationInput) -> Transformation:
        fragments: StyleAndTextTuples = cast(
            StyleAndTextTuples,
            [
                (style, self.char * len(text), *handler)
                for style, text, *handler in ti.fragments
            ],
        )

        return Transformation(fragments)


class HighlightMatchingBracketProcessor(Processor):
    """
    When the cursor is on or right after a bracket, it highlights the matching
    bracket.

    :param max_cursor_distance: Only highlight matching brackets when the
        cursor is within this distance. (From inside a `Processor`, we can't
        know which lines will be visible on the screen. But we also don't want
        to scan the whole document for matching brackets on each key press, so
        we limit to this value.)
    """

    _closing_braces = "])}>"

    def __init__(
        self, chars: str = "[](){}<>", max_cursor_distance: int = 1000
    ) -> None:
        self.chars = chars
        self.max_cursor_distance = max_cursor_distance

        self._positions_cache: SimpleCache[
            Hashable, list[tuple[int, int]]
        ] = SimpleCache(maxsize=8)

    def _get_positions_to_highlight(self, document: Document) -> list[tuple[int, int]]:
        """
        Return a list of (row, col) tuples that need to be highlighted.
        """
        pos: int | None

        # Try for the character under the cursor.
        if document.current_char and document.current_char in self.chars:
            pos = document.find_matching_bracket_position(
                start_pos=document.cursor_position - self.max_cursor_distance,
                end_pos=document.cursor_position + self.max_cursor_distance,
            )

        # Try for the character before the cursor.
        elif (
            document.char_before_cursor
            and document.char_before_cursor in self._closing_braces
            and document.char_before_cursor in self.chars
        ):
            document = Document(document.text, document.cursor_position - 1)

            pos = document.find_matching_bracket_position(
                start_pos=document.cursor_position - self.max_cursor_distance,
                end_pos=document.cursor_position + self.max_cursor_distance,
            )
        else:
            pos = None

        # Return a list of (row, col) tuples that need to be highlighted.
        if pos:
            pos += document.cursor_position  # pos is relative.
            row, col = document.translate_index_to_position(pos)
            return [
                (row, col),
                (document.cursor_position_row, document.cursor_position_col),
            ]
        else:
            return []

    def apply_transformation(
        self, transformation_input: TransformationInput
    ) -> Transformation:
        (
            buffer_control,
            document,
            lineno,
            source_to_display,
            fragments,
            _,
            _,
        ) = transformation_input.unpack()

        # When the application is in the 'done' state, don't highlight.
        if get_app().is_done:
            return Transformation(fragments)

        # Get the highlight positions.
        key = (get_app().render_counter, document.text, document.cursor_position)
        positions = self._positions_cache.get(
            key, lambda: self._get_positions_to_highlight(document)
        )

        # Apply if positions were found at this line.
        if positions:
            for row, col in positions:
                if row == lineno:
                    col = source_to_display(col)
                    fragments = explode_text_fragments(fragments)
                    style, text, *_ = fragments[col]

                    if col == document.cursor_position_col:
                        style += " class:matching-bracket.cursor "
                    else:
                        style += " class:matching-bracket.other "

                    fragments[col] = (style, text)

        return Transformation(fragments)


class DisplayMultipleCursors(Processor):
    """
    When we're in Vi block insert mode, display all the cursors.
    """

    def apply_transformation(
        self, transformation_input: TransformationInput
    ) -> Transformation:
        (
            buffer_control,
            document,
            lineno,
            source_to_display,
            fragments,
            _,
            _,
        ) = transformation_input.unpack()

        buff = buffer_control.buffer

        if vi_insert_multiple_mode():
            cursor_positions = buff.multiple_cursor_positions
            fragments = explode_text_fragments(fragments)

            # If any cursor appears on the current line, highlight that.
            start_pos = document.translate_row_col_to_index(lineno, 0)
            end_pos = start_pos + len(document.lines[lineno])

            fragment_suffix = " class:multiple-cursors"

            for p in cursor_positions:
                if start_pos <= p <= end_pos:
                    column = source_to_display(p - start_pos)

                    # Replace fragment.
                    try:
                        style, text, *_ = fragments[column]
                    except IndexError:
                        # Cursor needs to be displayed after the current text.
                        fragments.append((fragment_suffix, " "))
                    else:
                        style += fragment_suffix
                        fragments[column] = (style, text)

            return Transformation(fragments)
        else:
            return Transformation(fragments)


class BeforeInput(Processor):
    """
    Insert text before the input.

    :param text: This can be either plain text or formatted text
        (or a callable that returns any of those).
    :param style: style to be applied to this prompt/prefix.
    """

    def __init__(self, text: AnyFormattedText, style: str = "") -> None:
        self.text = text
        self.style = style

    def apply_transformation(self, ti: TransformationInput) -> Transformation:
        source_to_display: SourceToDisplay | None
        display_to_source: DisplayToSource | None

        if ti.lineno == 0:
            # Get fragments.
            fragments_before = to_formatted_text(self.text, self.style)
            fragments = fragments_before + ti.fragments

            shift_position = fragment_list_len(fragments_before)
            source_to_display = lambda i: i + shift_position
            display_to_source = lambda i: i - shift_position
        else:
            fragments = ti.fragments
            source_to_display = None
            display_to_source = None

        return Transformation(
            fragments,
            source_to_display=source_to_display,
            display_to_source=display_to_source,
        )

    def __repr__(self) -> str:
        return f"BeforeInput({self.text!r}, {self.style!r})"


class ShowArg(BeforeInput):
    """
    Display the 'arg' in front of the input.

    This was used by the `PromptSession`, but now it uses the
    `Window.get_line_prefix` function instead.
    """

    def __init__(self) -> None:
        super().__init__(self._get_text_fragments)

    def _get_text_fragments(self) -> StyleAndTextTuples:
        app = get_app()
        if app.key_processor.arg is None:
            return []
        else:
            arg = app.key_processor.arg

            return [
                ("class:prompt.arg", "(arg: "),
                ("class:prompt.arg.text", str(arg)),
                ("class:prompt.arg", ") "),
            ]

    def __repr__(self) -> str:
        return "ShowArg()"


class AfterInput(Processor):
    """
    Insert text after the input.

    :param text: This can be either plain text or formatted text
        (or a callable that returns any of those).
    :param style: style to be applied to this prompt/prefix.
    """

    def __init__(self, text: AnyFormattedText, style: str = "") -> None:
        self.text = text
        self.style = style

    def apply_transformation(self, ti: TransformationInput) -> Transformation:
        # Insert fragments after the last line.
        if ti.lineno == ti.document.line_count - 1:
            # Get fragments.
            fragments_after = to_formatted_text(self.text, self.style)
            return Transformation(fragments=ti.fragments + fragments_after)
        else:
            return Transformation(fragments=ti.fragments)

    def __repr__(self) -> str:
        return f"{self.__class__.__name__}({self.text!r}, style={self.style!r})"


class AppendAutoSuggestion(Processor):
    """
    Append the auto suggestion to the input.
    (The user can then press the right arrow the insert the suggestion.)
    """

    def __init__(self, style: str = "class:auto-suggestion") -> None:
        self.style = style

    def apply_transformation(self, ti: TransformationInput) -> Transformation:
        # Insert fragments after the last line.
        if ti.lineno == ti.document.line_count - 1:
            buffer = ti.buffer_control.buffer

            if buffer.suggestion and ti.document.is_cursor_at_the_end:
                suggestion = buffer.suggestion.text
            else:
                suggestion = ""

            return Transformation(fragments=ti.fragments + [(self.style, suggestion)])
        else:
            return Transformation(fragments=ti.fragments)


class ShowLeadingWhiteSpaceProcessor(Processor):
    """
    Make leading whitespace visible.

    :param get_char: Callable that returns one character.
    """

    def __init__(
        self,
        get_char: Callable[[], str] | None = None,
        style: str = "class:leading-whitespace",
    ) -> None:
        def default_get_char() -> str:
            if "\xb7".encode(get_app().output.encoding(), "replace") == b"?":
                return "."
            else:
                return "\xb7"

        self.style = style
        self.get_char = get_char or default_get_char

    def apply_transformation(self, ti: TransformationInput) -> Transformation:
        fragments = ti.fragments

        # Walk through all te fragments.
        if fragments and fragment_list_to_text(fragments).startswith(" "):
            t = (self.style, self.get_char())
            fragments = explode_text_fragments(fragments)

            for i in range(len(fragments)):
                if fragments[i][1] == " ":
                    fragments[i] = t
                else:
                    break

        return Transformation(fragments)


class ShowTrailingWhiteSpaceProcessor(Processor):
    """
    Make trailing whitespace visible.

    :param get_char: Callable that returns one character.
    """

    def __init__(
        self,
        get_char: Callable[[], str] | None = None,
        style: str = "class:training-whitespace",
    ) -> None:
        def default_get_char() -> str:
            if "\xb7".encode(get_app().output.encoding(), "replace") == b"?":
                return "."
            else:
                return "\xb7"

        self.style = style
        self.get_char = get_char or default_get_char

    def apply_transformation(self, ti: TransformationInput) -> Transformation:
        fragments = ti.fragments

        if fragments and fragments[-1][1].endswith(" "):
            t = (self.style, self.get_char())
            fragments = explode_text_fragments(fragments)

            # Walk backwards through all te fragments and replace whitespace.
            for i in range(len(fragments) - 1, -1, -1):
                char = fragments[i][1]
                if char == " ":
                    fragments[i] = t
                else:
                    break

        return Transformation(fragments)


class TabsProcessor(Processor):
    """
    Render tabs as spaces (instead of ^I) or make them visible (for instance,
    by replacing them with dots.)

    :param tabstop: Horizontal space taken by a tab. (`int` or callable that
        returns an `int`).
    :param char1: Character or callable that returns a character (text of
        length one). This one is used for the first space taken by the tab.
    :param char2: Like `char1`, but for the rest of the space.
    """

    def __init__(
        self,
        tabstop: int | Callable[[], int] = 4,
        char1: str | Callable[[], str] = "|",
        char2: str | Callable[[], str] = "\u2508",
        style: str = "class:tab",
    ) -> None:
        self.char1 = char1
        self.char2 = char2
        self.tabstop = tabstop
        self.style = style

    def apply_transformation(self, ti: TransformationInput) -> Transformation:
        tabstop = to_int(self.tabstop)
        style = self.style

        # Create separator for tabs.
        separator1 = to_str(self.char1)
        separator2 = to_str(self.char2)

        # Transform fragments.
        fragments = explode_text_fragments(ti.fragments)

        position_mappings = {}
        result_fragments: StyleAndTextTuples = []
        pos = 0

        for i, fragment_and_text in enumerate(fragments):
            position_mappings[i] = pos

            if fragment_and_text[1] == "\t":
                # Calculate how many characters we have to insert.
                count = tabstop - (pos % tabstop)
                if count == 0:
                    count = tabstop

                # Insert tab.
                result_fragments.append((style, separator1))
                result_fragments.append((style, separator2 * (count - 1)))
                pos += count
            else:
                result_fragments.append(fragment_and_text)
                pos += 1

        position_mappings[len(fragments)] = pos
        # Add `pos+1` to mapping, because the cursor can be right after the
        # line as well.
        position_mappings[len(fragments) + 1] = pos + 1

        def source_to_display(from_position: int) -> int:
            "Maps original cursor position to the new one."
            return position_mappings[from_position]

        def display_to_source(display_pos: int) -> int:
            "Maps display cursor position to the original one."
            position_mappings_reversed = {v: k for k, v in position_mappings.items()}

            while display_pos >= 0:
                try:
                    return position_mappings_reversed[display_pos]
                except KeyError:
                    display_pos -= 1
            return 0

        return Transformation(
            result_fragments,
            source_to_display=source_to_display,
            display_to_source=display_to_source,
        )


class ReverseSearchProcessor(Processor):
    """
    Process to display the "(reverse-i-search)`...`:..." stuff around
    the search buffer.

    Note: This processor is meant to be applied to the BufferControl that
    contains the search buffer, it's not meant for the original input.
    """

    _excluded_input_processors: list[type[Processor]] = [
        HighlightSearchProcessor,
        HighlightSelectionProcessor,
        BeforeInput,
        AfterInput,
    ]

    def _get_main_buffer(self, buffer_control: BufferControl) -> BufferControl | None:
        from prompt_toolkit.layout.controls import BufferControl

        prev_control = get_app().layout.search_target_buffer_control
        if (
            isinstance(prev_control, BufferControl)
            and prev_control.search_buffer_control == buffer_control
        ):
            return prev_control
        return None

    def _content(
        self, main_control: BufferControl, ti: TransformationInput
    ) -> UIContent:
        from prompt_toolkit.layout.controls import BufferControl

        # Emulate the BufferControl through which we are searching.
        # For this we filter out some of the input processors.
        excluded_processors = tuple(self._excluded_input_processors)

        def filter_processor(item: Processor) -> Processor | None:
            """Filter processors from the main control that we want to disable
            here. This returns either an accepted processor or None."""
            # For a `_MergedProcessor`, check each individual processor, recursively.
            if isinstance(item, _MergedProcessor):
                accepted_processors = [filter_processor(p) for p in item.processors]
                return merge_processors(
                    [p for p in accepted_processors if p is not None]
                )

            # For a `ConditionalProcessor`, check the body.
            elif isinstance(item, ConditionalProcessor):
                p = filter_processor(item.processor)
                if p:
                    return ConditionalProcessor(p, item.filter)

            # Otherwise, check the processor itself.
            else:
                if not isinstance(item, excluded_processors):
                    return item

            return None

        filtered_processor = filter_processor(
            merge_processors(main_control.input_processors or [])
        )
        highlight_processor = HighlightIncrementalSearchProcessor()

        if filtered_processor:
            new_processors = [filtered_processor, highlight_processor]
        else:
            new_processors = [highlight_processor]

        from .controls import SearchBufferControl

        assert isinstance(ti.buffer_control, SearchBufferControl)

        buffer_control = BufferControl(
            buffer=main_control.buffer,
            input_processors=new_processors,
            include_default_input_processors=False,
            lexer=main_control.lexer,
            preview_search=True,
            search_buffer_control=ti.buffer_control,
        )

        return buffer_control.create_content(ti.width, ti.height, preview_search=True)

    def apply_transformation(self, ti: TransformationInput) -> Transformation:
        from .controls import SearchBufferControl

        assert isinstance(
            ti.buffer_control, SearchBufferControl
        ), "`ReverseSearchProcessor` should be applied to a `SearchBufferControl` only."

        source_to_display: SourceToDisplay | None
        display_to_source: DisplayToSource | None

        main_control = self._get_main_buffer(ti.buffer_control)

        if ti.lineno == 0 and main_control:
            content = self._content(main_control, ti)

            # Get the line from the original document for this search.
            line_fragments = content.get_line(content.cursor_position.y)

            if main_control.search_state.direction == SearchDirection.FORWARD:
                direction_text = "i-search"
            else:
                direction_text = "reverse-i-search"

            fragments_before: StyleAndTextTuples = [
                ("class:prompt.search", "("),
                ("class:prompt.search", direction_text),
                ("class:prompt.search", ")`"),
            ]

            fragments = (
                fragments_before
                + [
                    ("class:prompt.search.text", fragment_list_to_text(ti.fragments)),
                    ("", "': "),
                ]
                + line_fragments
            )

            shift_position = fragment_list_len(fragments_before)
            source_to_display = lambda i: i + shift_position
            display_to_source = lambda i: i - shift_position
        else:
            source_to_display = None
            display_to_source = None
            fragments = ti.fragments

        return Transformation(
            fragments,
            source_to_display=source_to_display,
            display_to_source=display_to_source,
        )


class ConditionalProcessor(Processor):
    """
    Processor that applies another processor, according to a certain condition.
    Example::

        # Create a function that returns whether or not the processor should
        # currently be applied.
        def highlight_enabled():
            return true_or_false

        # Wrapped it in a `ConditionalProcessor` for usage in a `BufferControl`.
        BufferControl(input_processors=[
            ConditionalProcessor(HighlightSearchProcessor(),
                                 Condition(highlight_enabled))])

    :param processor: :class:`.Processor` instance.
    :param filter: :class:`~prompt_toolkit.filters.Filter` instance.
    """

    def __init__(self, processor: Processor, filter: FilterOrBool) -> None:
        self.processor = processor
        self.filter = to_filter(filter)

    def apply_transformation(
        self, transformation_input: TransformationInput
    ) -> Transformation:
        # Run processor when enabled.
        if self.filter():
            return self.processor.apply_transformation(transformation_input)
        else:
            return Transformation(transformation_input.fragments)

    def __repr__(self) -> str:
        return "{}(processor={!r}, filter={!r})".format(
            self.__class__.__name__,
            self.processor,
            self.filter,
        )


class DynamicProcessor(Processor):
    """
    Processor class that dynamically returns any Processor.

    :param get_processor: Callable that returns a :class:`.Processor` instance.
    """

    def __init__(self, get_processor: Callable[[], Processor | None]) -> None:
        self.get_processor = get_processor

    def apply_transformation(self, ti: TransformationInput) -> Transformation:
        processor = self.get_processor() or DummyProcessor()
        return processor.apply_transformation(ti)


def merge_processors(processors: list[Processor]) -> Processor:
    """
    Merge multiple `Processor` objects into one.
    """
    if len(processors) == 0:
        return DummyProcessor()

    if len(processors) == 1:
        return processors[0]  # Nothing to merge.

    return _MergedProcessor(processors)


class _MergedProcessor(Processor):
    """
    Processor that groups multiple other `Processor` objects, but exposes an
    API as if it is one `Processor`.
    """

    def __init__(self, processors: list[Processor]):
        self.processors = processors

    def apply_transformation(self, ti: TransformationInput) -> Transformation:
        source_to_display_functions = [ti.source_to_display]
        display_to_source_functions = []
        fragments = ti.fragments

        def source_to_display(i: int) -> int:
            """Translate x position from the buffer to the x position in the
            processor fragments list."""
            for f in source_to_display_functions:
                i = f(i)
            return i

        for p in self.processors:
            transformation = p.apply_transformation(
                TransformationInput(
                    ti.buffer_control,
                    ti.document,
                    ti.lineno,
                    source_to_display,
                    fragments,
                    ti.width,
                    ti.height,
                )
            )
            fragments = transformation.fragments
            display_to_source_functions.append(transformation.display_to_source)
            source_to_display_functions.append(transformation.source_to_display)

        def display_to_source(i: int) -> int:
            for f in reversed(display_to_source_functions):
                i = f(i)
            return i

        # In the case of a nested _MergedProcessor, each processor wants to
        # receive a 'source_to_display' function (as part of the
        # TransformationInput) that has everything in the chain before
        # included, because it can be called as part of the
        # `apply_transformation` function. However, this first
        # `source_to_display` should not be part of the output that we are
        # returning. (This is the most consistent with `display_to_source`.)
        del source_to_display_functions[:1]

        return Transformation(fragments, source_to_display, display_to_source)