1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
|
"""
Module contains tools for processing files into DataFrames or other objects
GH#48849 provides a convenient way of deprecating keyword arguments
"""
from __future__ import annotations
from collections import abc
import csv
import sys
from textwrap import fill
from types import TracebackType
from typing import (
IO,
Any,
Callable,
Hashable,
Literal,
NamedTuple,
Sequence,
overload,
)
import warnings
import numpy as np
from pandas._libs import lib
from pandas._libs.parsers import STR_NA_VALUES
from pandas._typing import (
CompressionOptions,
CSVEngine,
DtypeArg,
DtypeBackend,
FilePath,
IndexLabel,
ReadCsvBuffer,
StorageOptions,
)
from pandas.errors import (
AbstractMethodError,
ParserWarning,
)
from pandas.util._decorators import Appender
from pandas.util._exceptions import find_stack_level
from pandas.util._validators import check_dtype_backend
from pandas.core.dtypes.common import (
is_file_like,
is_float,
is_integer,
is_list_like,
)
from pandas.core.frame import DataFrame
from pandas.core.indexes.api import RangeIndex
from pandas.core.shared_docs import _shared_docs
from pandas.io.common import (
IOHandles,
get_handle,
stringify_path,
validate_header_arg,
)
from pandas.io.parsers.arrow_parser_wrapper import ArrowParserWrapper
from pandas.io.parsers.base_parser import (
ParserBase,
is_index_col,
parser_defaults,
)
from pandas.io.parsers.c_parser_wrapper import CParserWrapper
from pandas.io.parsers.python_parser import (
FixedWidthFieldParser,
PythonParser,
)
_doc_read_csv_and_table = (
r"""
{summary}
Also supports optionally iterating or breaking of the file
into chunks.
Additional help can be found in the online docs for
`IO Tools <https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html>`_.
Parameters
----------
filepath_or_buffer : str, path object or file-like object
Any valid string path is acceptable. The string could be a URL. Valid
URL schemes include http, ftp, s3, gs, and file. For file URLs, a host is
expected. A local file could be: file://localhost/path/to/table.csv.
If you want to pass in a path object, pandas accepts any ``os.PathLike``.
By file-like object, we refer to objects with a ``read()`` method, such as
a file handle (e.g. via builtin ``open`` function) or ``StringIO``.
sep : str, default {_default_sep}
Delimiter to use. If sep is None, the C engine cannot automatically detect
the separator, but the Python parsing engine can, meaning the latter will
be used and automatically detect the separator by Python's builtin sniffer
tool, ``csv.Sniffer``. In addition, separators longer than 1 character and
different from ``'\s+'`` will be interpreted as regular expressions and
will also force the use of the Python parsing engine. Note that regex
delimiters are prone to ignoring quoted data. Regex example: ``'\r\t'``.
delimiter : str, default ``None``
Alias for sep.
header : int, list of int, None, default 'infer'
Row number(s) to use as the column names, and the start of the
data. Default behavior is to infer the column names: if no names
are passed the behavior is identical to ``header=0`` and column
names are inferred from the first line of the file, if column
names are passed explicitly then the behavior is identical to
``header=None``. Explicitly pass ``header=0`` to be able to
replace existing names. The header can be a list of integers that
specify row locations for a multi-index on the columns
e.g. [0,1,3]. Intervening rows that are not specified will be
skipped (e.g. 2 in this example is skipped). Note that this
parameter ignores commented lines and empty lines if
``skip_blank_lines=True``, so ``header=0`` denotes the first line of
data rather than the first line of the file.
names : array-like, optional
List of column names to use. If the file contains a header row,
then you should explicitly pass ``header=0`` to override the column names.
Duplicates in this list are not allowed.
index_col : int, str, sequence of int / str, or False, optional, default ``None``
Column(s) to use as the row labels of the ``DataFrame``, either given as
string name or column index. If a sequence of int / str is given, a
MultiIndex is used.
Note: ``index_col=False`` can be used to force pandas to *not* use the first
column as the index, e.g. when you have a malformed file with delimiters at
the end of each line.
usecols : list-like or callable, optional
Return a subset of the columns. If list-like, all elements must either
be positional (i.e. integer indices into the document columns) or strings
that correspond to column names provided either by the user in `names` or
inferred from the document header row(s). If ``names`` are given, the document
header row(s) are not taken into account. For example, a valid list-like
`usecols` parameter would be ``[0, 1, 2]`` or ``['foo', 'bar', 'baz']``.
Element order is ignored, so ``usecols=[0, 1]`` is the same as ``[1, 0]``.
To instantiate a DataFrame from ``data`` with element order preserved use
``pd.read_csv(data, usecols=['foo', 'bar'])[['foo', 'bar']]`` for columns
in ``['foo', 'bar']`` order or
``pd.read_csv(data, usecols=['foo', 'bar'])[['bar', 'foo']]``
for ``['bar', 'foo']`` order.
If callable, the callable function will be evaluated against the column
names, returning names where the callable function evaluates to True. An
example of a valid callable argument would be ``lambda x: x.upper() in
['AAA', 'BBB', 'DDD']``. Using this parameter results in much faster
parsing time and lower memory usage.
dtype : Type name or dict of column -> type, optional
Data type for data or columns. E.g. {{'a': np.float64, 'b': np.int32,
'c': 'Int64'}}
Use `str` or `object` together with suitable `na_values` settings
to preserve and not interpret dtype.
If converters are specified, they will be applied INSTEAD
of dtype conversion.
.. versionadded:: 1.5.0
Support for defaultdict was added. Specify a defaultdict as input where
the default determines the dtype of the columns which are not explicitly
listed.
engine : {{'c', 'python', 'pyarrow'}}, optional
Parser engine to use. The C and pyarrow engines are faster, while the python engine
is currently more feature-complete. Multithreading is currently only supported by
the pyarrow engine.
.. versionadded:: 1.4.0
The "pyarrow" engine was added as an *experimental* engine, and some features
are unsupported, or may not work correctly, with this engine.
converters : dict, optional
Dict of functions for converting values in certain columns. Keys can either
be integers or column labels.
true_values : list, optional
Values to consider as True in addition to case-insensitive variants of "True".
false_values : list, optional
Values to consider as False in addition to case-insensitive variants of "False".
skipinitialspace : bool, default False
Skip spaces after delimiter.
skiprows : list-like, int or callable, optional
Line numbers to skip (0-indexed) or number of lines to skip (int)
at the start of the file.
If callable, the callable function will be evaluated against the row
indices, returning True if the row should be skipped and False otherwise.
An example of a valid callable argument would be ``lambda x: x in [0, 2]``.
skipfooter : int, default 0
Number of lines at bottom of file to skip (Unsupported with engine='c').
nrows : int, optional
Number of rows of file to read. Useful for reading pieces of large files.
na_values : scalar, str, list-like, or dict, optional
Additional strings to recognize as NA/NaN. If dict passed, specific
per-column NA values. By default the following values are interpreted as
NaN: '"""
+ fill("', '".join(sorted(STR_NA_VALUES)), 70, subsequent_indent=" ")
+ """'.
keep_default_na : bool, default True
Whether or not to include the default NaN values when parsing the data.
Depending on whether `na_values` is passed in, the behavior is as follows:
* If `keep_default_na` is True, and `na_values` are specified, `na_values`
is appended to the default NaN values used for parsing.
* If `keep_default_na` is True, and `na_values` are not specified, only
the default NaN values are used for parsing.
* If `keep_default_na` is False, and `na_values` are specified, only
the NaN values specified `na_values` are used for parsing.
* If `keep_default_na` is False, and `na_values` are not specified, no
strings will be parsed as NaN.
Note that if `na_filter` is passed in as False, the `keep_default_na` and
`na_values` parameters will be ignored.
na_filter : bool, default True
Detect missing value markers (empty strings and the value of na_values). In
data without any NAs, passing na_filter=False can improve the performance
of reading a large file.
verbose : bool, default False
Indicate number of NA values placed in non-numeric columns.
skip_blank_lines : bool, default True
If True, skip over blank lines rather than interpreting as NaN values.
parse_dates : bool or list of int or names or list of lists or dict, \
default False
The behavior is as follows:
* boolean. If True -> try parsing the index.
* list of int or names. e.g. If [1, 2, 3] -> try parsing columns 1, 2, 3
each as a separate date column.
* list of lists. e.g. If [[1, 3]] -> combine columns 1 and 3 and parse as
a single date column.
* dict, e.g. {{'foo' : [1, 3]}} -> parse columns 1, 3 as date and call
result 'foo'
If a column or index cannot be represented as an array of datetimes,
say because of an unparsable value or a mixture of timezones, the column
or index will be returned unaltered as an object data type. For
non-standard datetime parsing, use ``pd.to_datetime`` after
``pd.read_csv``.
Note: A fast-path exists for iso8601-formatted dates.
infer_datetime_format : bool, default False
If True and `parse_dates` is enabled, pandas will attempt to infer the
format of the datetime strings in the columns, and if it can be inferred,
switch to a faster method of parsing them. In some cases this can increase
the parsing speed by 5-10x.
.. deprecated:: 2.0.0
A strict version of this argument is now the default, passing it has no effect.
keep_date_col : bool, default False
If True and `parse_dates` specifies combining multiple columns then
keep the original columns.
date_parser : function, optional
Function to use for converting a sequence of string columns to an array of
datetime instances. The default uses ``dateutil.parser.parser`` to do the
conversion. Pandas will try to call `date_parser` in three different ways,
advancing to the next if an exception occurs: 1) Pass one or more arrays
(as defined by `parse_dates`) as arguments; 2) concatenate (row-wise) the
string values from the columns defined by `parse_dates` into a single array
and pass that; and 3) call `date_parser` once for each row using one or
more strings (corresponding to the columns defined by `parse_dates`) as
arguments.
.. deprecated:: 2.0.0
Use ``date_format`` instead, or read in as ``object`` and then apply
:func:`to_datetime` as-needed.
date_format : str or dict of column -> format, default ``None``
If used in conjunction with ``parse_dates``, will parse dates according to this
format. For anything more complex,
please read in as ``object`` and then apply :func:`to_datetime` as-needed.
.. versionadded:: 2.0.0
dayfirst : bool, default False
DD/MM format dates, international and European format.
cache_dates : bool, default True
If True, use a cache of unique, converted dates to apply the datetime
conversion. May produce significant speed-up when parsing duplicate
date strings, especially ones with timezone offsets.
iterator : bool, default False
Return TextFileReader object for iteration or getting chunks with
``get_chunk()``.
.. versionchanged:: 1.2
``TextFileReader`` is a context manager.
chunksize : int, optional
Return TextFileReader object for iteration.
See the `IO Tools docs
<https://pandas.pydata.org/pandas-docs/stable/io.html#io-chunking>`_
for more information on ``iterator`` and ``chunksize``.
.. versionchanged:: 1.2
``TextFileReader`` is a context manager.
{decompression_options}
.. versionchanged:: 1.4.0 Zstandard support.
thousands : str, optional
Thousands separator.
decimal : str, default '.'
Character to recognize as decimal point (e.g. use ',' for European data).
lineterminator : str (length 1), optional
Character to break file into lines. Only valid with C parser.
quotechar : str (length 1), optional
The character used to denote the start and end of a quoted item. Quoted
items can include the delimiter and it will be ignored.
quoting : int or csv.QUOTE_* instance, default 0
Control field quoting behavior per ``csv.QUOTE_*`` constants. Use one of
QUOTE_MINIMAL (0), QUOTE_ALL (1), QUOTE_NONNUMERIC (2) or QUOTE_NONE (3).
doublequote : bool, default ``True``
When quotechar is specified and quoting is not ``QUOTE_NONE``, indicate
whether or not to interpret two consecutive quotechar elements INSIDE a
field as a single ``quotechar`` element.
escapechar : str (length 1), optional
One-character string used to escape other characters.
comment : str, optional
Indicates remainder of line should not be parsed. If found at the beginning
of a line, the line will be ignored altogether. This parameter must be a
single character. Like empty lines (as long as ``skip_blank_lines=True``),
fully commented lines are ignored by the parameter `header` but not by
`skiprows`. For example, if ``comment='#'``, parsing
``#empty\\na,b,c\\n1,2,3`` with ``header=0`` will result in 'a,b,c' being
treated as the header.
encoding : str, optional, default "utf-8"
Encoding to use for UTF when reading/writing (ex. 'utf-8'). `List of Python
standard encodings
<https://docs.python.org/3/library/codecs.html#standard-encodings>`_ .
.. versionchanged:: 1.2
When ``encoding`` is ``None``, ``errors="replace"`` is passed to
``open()``. Otherwise, ``errors="strict"`` is passed to ``open()``.
This behavior was previously only the case for ``engine="python"``.
.. versionchanged:: 1.3.0
``encoding_errors`` is a new argument. ``encoding`` has no longer an
influence on how encoding errors are handled.
encoding_errors : str, optional, default "strict"
How encoding errors are treated. `List of possible values
<https://docs.python.org/3/library/codecs.html#error-handlers>`_ .
.. versionadded:: 1.3.0
dialect : str or csv.Dialect, optional
If provided, this parameter will override values (default or not) for the
following parameters: `delimiter`, `doublequote`, `escapechar`,
`skipinitialspace`, `quotechar`, and `quoting`. If it is necessary to
override values, a ParserWarning will be issued. See csv.Dialect
documentation for more details.
on_bad_lines : {{'error', 'warn', 'skip'}} or callable, default 'error'
Specifies what to do upon encountering a bad line (a line with too many fields).
Allowed values are :
- 'error', raise an Exception when a bad line is encountered.
- 'warn', raise a warning when a bad line is encountered and skip that line.
- 'skip', skip bad lines without raising or warning when they are encountered.
.. versionadded:: 1.3.0
.. versionadded:: 1.4.0
- callable, function with signature
``(bad_line: list[str]) -> list[str] | None`` that will process a single
bad line. ``bad_line`` is a list of strings split by the ``sep``.
If the function returns ``None``, the bad line will be ignored.
If the function returns a new list of strings with more elements than
expected, a ``ParserWarning`` will be emitted while dropping extra elements.
Only supported when ``engine="python"``
delim_whitespace : bool, default False
Specifies whether or not whitespace (e.g. ``' '`` or ``'\t'``) will be
used as the sep. Equivalent to setting ``sep='\\s+'``. If this option
is set to True, nothing should be passed in for the ``delimiter``
parameter.
low_memory : bool, default True
Internally process the file in chunks, resulting in lower memory use
while parsing, but possibly mixed type inference. To ensure no mixed
types either set False, or specify the type with the `dtype` parameter.
Note that the entire file is read into a single DataFrame regardless,
use the `chunksize` or `iterator` parameter to return the data in chunks.
(Only valid with C parser).
memory_map : bool, default False
If a filepath is provided for `filepath_or_buffer`, map the file object
directly onto memory and access the data directly from there. Using this
option can improve performance because there is no longer any I/O overhead.
float_precision : str, optional
Specifies which converter the C engine should use for floating-point
values. The options are ``None`` or 'high' for the ordinary converter,
'legacy' for the original lower precision pandas converter, and
'round_trip' for the round-trip converter.
.. versionchanged:: 1.2
{storage_options}
.. versionadded:: 1.2
dtype_backend : {{"numpy_nullable", "pyarrow"}}, defaults to NumPy backed DataFrames
Which dtype_backend to use, e.g. whether a DataFrame should have NumPy
arrays, nullable dtypes are used for all dtypes that have a nullable
implementation when "numpy_nullable" is set, pyarrow is used for all
dtypes if "pyarrow" is set.
The dtype_backends are still experimential.
.. versionadded:: 2.0
Returns
-------
DataFrame or TextFileReader
A comma-separated values (csv) file is returned as two-dimensional
data structure with labeled axes.
See Also
--------
DataFrame.to_csv : Write DataFrame to a comma-separated values (csv) file.
read_csv : Read a comma-separated values (csv) file into DataFrame.
read_fwf : Read a table of fixed-width formatted lines into DataFrame.
Examples
--------
>>> pd.{func_name}('data.csv') # doctest: +SKIP
"""
)
_c_parser_defaults = {
"delim_whitespace": False,
"na_filter": True,
"low_memory": True,
"memory_map": False,
"float_precision": None,
}
_fwf_defaults = {"colspecs": "infer", "infer_nrows": 100, "widths": None}
_c_unsupported = {"skipfooter"}
_python_unsupported = {"low_memory", "float_precision"}
_pyarrow_unsupported = {
"skipfooter",
"float_precision",
"chunksize",
"comment",
"nrows",
"thousands",
"memory_map",
"dialect",
"on_bad_lines",
"delim_whitespace",
"quoting",
"lineterminator",
"converters",
"iterator",
"dayfirst",
"verbose",
"skipinitialspace",
"low_memory",
}
class _DeprecationConfig(NamedTuple):
default_value: Any
msg: str | None
@overload
def validate_integer(name, val: None, min_val: int = ...) -> None:
...
@overload
def validate_integer(name, val: float, min_val: int = ...) -> int:
...
@overload
def validate_integer(name, val: int | None, min_val: int = ...) -> int | None:
...
def validate_integer(name, val: int | float | None, min_val: int = 0) -> int | None:
"""
Checks whether the 'name' parameter for parsing is either
an integer OR float that can SAFELY be cast to an integer
without losing accuracy. Raises a ValueError if that is
not the case.
Parameters
----------
name : str
Parameter name (used for error reporting)
val : int or float
The value to check
min_val : int
Minimum allowed value (val < min_val will result in a ValueError)
"""
if val is None:
return val
msg = f"'{name:s}' must be an integer >={min_val:d}"
if is_float(val):
if int(val) != val:
raise ValueError(msg)
val = int(val)
elif not (is_integer(val) and val >= min_val):
raise ValueError(msg)
return int(val)
def _validate_names(names: Sequence[Hashable] | None) -> None:
"""
Raise ValueError if the `names` parameter contains duplicates or has an
invalid data type.
Parameters
----------
names : array-like or None
An array containing a list of the names used for the output DataFrame.
Raises
------
ValueError
If names are not unique or are not ordered (e.g. set).
"""
if names is not None:
if len(names) != len(set(names)):
raise ValueError("Duplicate names are not allowed.")
if not (
is_list_like(names, allow_sets=False) or isinstance(names, abc.KeysView)
):
raise ValueError("Names should be an ordered collection.")
def _read(
filepath_or_buffer: FilePath | ReadCsvBuffer[bytes] | ReadCsvBuffer[str], kwds
) -> DataFrame | TextFileReader:
"""Generic reader of line files."""
# if we pass a date_parser and parse_dates=False, we should not parse the
# dates GH#44366
if kwds.get("parse_dates", None) is None:
if (
kwds.get("date_parser", lib.no_default) is lib.no_default
and kwds.get("date_format", None) is None
):
kwds["parse_dates"] = False
else:
kwds["parse_dates"] = True
# Extract some of the arguments (pass chunksize on).
iterator = kwds.get("iterator", False)
chunksize = kwds.get("chunksize", None)
if kwds.get("engine") == "pyarrow":
if iterator:
raise ValueError(
"The 'iterator' option is not supported with the 'pyarrow' engine"
)
if chunksize is not None:
raise ValueError(
"The 'chunksize' option is not supported with the 'pyarrow' engine"
)
else:
chunksize = validate_integer("chunksize", chunksize, 1)
nrows = kwds.get("nrows", None)
# Check for duplicates in names.
_validate_names(kwds.get("names", None))
# Create the parser.
parser = TextFileReader(filepath_or_buffer, **kwds)
if chunksize or iterator:
return parser
with parser:
return parser.read(nrows)
# iterator=True -> TextFileReader
@overload
def read_csv(
filepath_or_buffer: FilePath | ReadCsvBuffer[bytes] | ReadCsvBuffer[str],
*,
sep: str | None | lib.NoDefault = ...,
delimiter: str | None | lib.NoDefault = ...,
header: int | Sequence[int] | None | Literal["infer"] = ...,
names: Sequence[Hashable] | None | lib.NoDefault = ...,
index_col: IndexLabel | Literal[False] | None = ...,
usecols=...,
dtype: DtypeArg | None = ...,
engine: CSVEngine | None = ...,
converters=...,
true_values=...,
false_values=...,
skipinitialspace: bool = ...,
skiprows=...,
skipfooter: int = ...,
nrows: int | None = ...,
na_values=...,
keep_default_na: bool = ...,
na_filter: bool = ...,
verbose: bool = ...,
skip_blank_lines: bool = ...,
parse_dates: bool | Sequence[Hashable] | None = ...,
infer_datetime_format: bool | lib.NoDefault = ...,
keep_date_col: bool = ...,
date_parser=...,
date_format: str | None = ...,
dayfirst: bool = ...,
cache_dates: bool = ...,
iterator: Literal[True],
chunksize: int | None = ...,
compression: CompressionOptions = ...,
thousands: str | None = ...,
decimal: str = ...,
lineterminator: str | None = ...,
quotechar: str = ...,
quoting: int = ...,
doublequote: bool = ...,
escapechar: str | None = ...,
comment: str | None = ...,
encoding: str | None = ...,
encoding_errors: str | None = ...,
dialect: str | csv.Dialect | None = ...,
on_bad_lines=...,
delim_whitespace: bool = ...,
low_memory=...,
memory_map: bool = ...,
float_precision: Literal["high", "legacy"] | None = ...,
storage_options: StorageOptions = ...,
dtype_backend: DtypeBackend | lib.NoDefault = ...,
) -> TextFileReader:
...
# chunksize=int -> TextFileReader
@overload
def read_csv(
filepath_or_buffer: FilePath | ReadCsvBuffer[bytes] | ReadCsvBuffer[str],
*,
sep: str | None | lib.NoDefault = ...,
delimiter: str | None | lib.NoDefault = ...,
header: int | Sequence[int] | None | Literal["infer"] = ...,
names: Sequence[Hashable] | None | lib.NoDefault = ...,
index_col: IndexLabel | Literal[False] | None = ...,
usecols=...,
dtype: DtypeArg | None = ...,
engine: CSVEngine | None = ...,
converters=...,
true_values=...,
false_values=...,
skipinitialspace: bool = ...,
skiprows=...,
skipfooter: int = ...,
nrows: int | None = ...,
na_values=...,
keep_default_na: bool = ...,
na_filter: bool = ...,
verbose: bool = ...,
skip_blank_lines: bool = ...,
parse_dates: bool | Sequence[Hashable] | None = ...,
infer_datetime_format: bool | lib.NoDefault = ...,
keep_date_col: bool = ...,
date_parser=...,
date_format: str | None = ...,
dayfirst: bool = ...,
cache_dates: bool = ...,
iterator: bool = ...,
chunksize: int,
compression: CompressionOptions = ...,
thousands: str | None = ...,
decimal: str = ...,
lineterminator: str | None = ...,
quotechar: str = ...,
quoting: int = ...,
doublequote: bool = ...,
escapechar: str | None = ...,
comment: str | None = ...,
encoding: str | None = ...,
encoding_errors: str | None = ...,
dialect: str | csv.Dialect | None = ...,
on_bad_lines=...,
delim_whitespace: bool = ...,
low_memory=...,
memory_map: bool = ...,
float_precision: Literal["high", "legacy"] | None = ...,
storage_options: StorageOptions = ...,
dtype_backend: DtypeBackend | lib.NoDefault = ...,
) -> TextFileReader:
...
# default case -> DataFrame
@overload
def read_csv(
filepath_or_buffer: FilePath | ReadCsvBuffer[bytes] | ReadCsvBuffer[str],
*,
sep: str | None | lib.NoDefault = ...,
delimiter: str | None | lib.NoDefault = ...,
header: int | Sequence[int] | None | Literal["infer"] = ...,
names: Sequence[Hashable] | None | lib.NoDefault = ...,
index_col: IndexLabel | Literal[False] | None = ...,
usecols=...,
dtype: DtypeArg | None = ...,
engine: CSVEngine | None = ...,
converters=...,
true_values=...,
false_values=...,
skipinitialspace: bool = ...,
skiprows=...,
skipfooter: int = ...,
nrows: int | None = ...,
na_values=...,
keep_default_na: bool = ...,
na_filter: bool = ...,
verbose: bool = ...,
skip_blank_lines: bool = ...,
parse_dates: bool | Sequence[Hashable] | None = ...,
infer_datetime_format: bool | lib.NoDefault = ...,
keep_date_col: bool = ...,
date_parser=...,
date_format: str | None = ...,
dayfirst: bool = ...,
cache_dates: bool = ...,
iterator: Literal[False] = ...,
chunksize: None = ...,
compression: CompressionOptions = ...,
thousands: str | None = ...,
decimal: str = ...,
lineterminator: str | None = ...,
quotechar: str = ...,
quoting: int = ...,
doublequote: bool = ...,
escapechar: str | None = ...,
comment: str | None = ...,
encoding: str | None = ...,
encoding_errors: str | None = ...,
dialect: str | csv.Dialect | None = ...,
on_bad_lines=...,
delim_whitespace: bool = ...,
low_memory=...,
memory_map: bool = ...,
float_precision: Literal["high", "legacy"] | None = ...,
storage_options: StorageOptions = ...,
dtype_backend: DtypeBackend | lib.NoDefault = ...,
) -> DataFrame:
...
# Unions -> DataFrame | TextFileReader
@overload
def read_csv(
filepath_or_buffer: FilePath | ReadCsvBuffer[bytes] | ReadCsvBuffer[str],
*,
sep: str | None | lib.NoDefault = ...,
delimiter: str | None | lib.NoDefault = ...,
header: int | Sequence[int] | None | Literal["infer"] = ...,
names: Sequence[Hashable] | None | lib.NoDefault = ...,
index_col: IndexLabel | Literal[False] | None = ...,
usecols=...,
dtype: DtypeArg | None = ...,
engine: CSVEngine | None = ...,
converters=...,
true_values=...,
false_values=...,
skipinitialspace: bool = ...,
skiprows=...,
skipfooter: int = ...,
nrows: int | None = ...,
na_values=...,
keep_default_na: bool = ...,
na_filter: bool = ...,
verbose: bool = ...,
skip_blank_lines: bool = ...,
parse_dates: bool | Sequence[Hashable] | None = ...,
infer_datetime_format: bool | lib.NoDefault = ...,
keep_date_col: bool = ...,
date_parser=...,
date_format: str | None = ...,
dayfirst: bool = ...,
cache_dates: bool = ...,
iterator: bool = ...,
chunksize: int | None = ...,
compression: CompressionOptions = ...,
thousands: str | None = ...,
decimal: str = ...,
lineterminator: str | None = ...,
quotechar: str = ...,
quoting: int = ...,
doublequote: bool = ...,
escapechar: str | None = ...,
comment: str | None = ...,
encoding: str | None = ...,
encoding_errors: str | None = ...,
dialect: str | csv.Dialect | None = ...,
on_bad_lines=...,
delim_whitespace: bool = ...,
low_memory=...,
memory_map: bool = ...,
float_precision: Literal["high", "legacy"] | None = ...,
storage_options: StorageOptions = ...,
dtype_backend: DtypeBackend | lib.NoDefault = ...,
) -> DataFrame | TextFileReader:
...
@Appender(
_doc_read_csv_and_table.format(
func_name="read_csv",
summary="Read a comma-separated values (csv) file into DataFrame.",
_default_sep="','",
storage_options=_shared_docs["storage_options"],
decompression_options=_shared_docs["decompression_options"]
% "filepath_or_buffer",
)
)
def read_csv(
filepath_or_buffer: FilePath | ReadCsvBuffer[bytes] | ReadCsvBuffer[str],
*,
sep: str | None | lib.NoDefault = lib.no_default,
delimiter: str | None | lib.NoDefault = None,
# Column and Index Locations and Names
header: int | Sequence[int] | None | Literal["infer"] = "infer",
names: Sequence[Hashable] | None | lib.NoDefault = lib.no_default,
index_col: IndexLabel | Literal[False] | None = None,
usecols=None,
# General Parsing Configuration
dtype: DtypeArg | None = None,
engine: CSVEngine | None = None,
converters=None,
true_values=None,
false_values=None,
skipinitialspace: bool = False,
skiprows=None,
skipfooter: int = 0,
nrows: int | None = None,
# NA and Missing Data Handling
na_values=None,
keep_default_na: bool = True,
na_filter: bool = True,
verbose: bool = False,
skip_blank_lines: bool = True,
# Datetime Handling
parse_dates: bool | Sequence[Hashable] | None = None,
infer_datetime_format: bool | lib.NoDefault = lib.no_default,
keep_date_col: bool = False,
date_parser=lib.no_default,
date_format: str | None = None,
dayfirst: bool = False,
cache_dates: bool = True,
# Iteration
iterator: bool = False,
chunksize: int | None = None,
# Quoting, Compression, and File Format
compression: CompressionOptions = "infer",
thousands: str | None = None,
decimal: str = ".",
lineterminator: str | None = None,
quotechar: str = '"',
quoting: int = csv.QUOTE_MINIMAL,
doublequote: bool = True,
escapechar: str | None = None,
comment: str | None = None,
encoding: str | None = None,
encoding_errors: str | None = "strict",
dialect: str | csv.Dialect | None = None,
# Error Handling
on_bad_lines: str = "error",
# Internal
delim_whitespace: bool = False,
low_memory=_c_parser_defaults["low_memory"],
memory_map: bool = False,
float_precision: Literal["high", "legacy"] | None = None,
storage_options: StorageOptions = None,
dtype_backend: DtypeBackend | lib.NoDefault = lib.no_default,
) -> DataFrame | TextFileReader:
if infer_datetime_format is not lib.no_default:
warnings.warn(
"The argument 'infer_datetime_format' is deprecated and will "
"be removed in a future version. "
"A strict version of it is now the default, see "
"https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. "
"You can safely remove this argument.",
FutureWarning,
stacklevel=find_stack_level(),
)
# locals() should never be modified
kwds = locals().copy()
del kwds["filepath_or_buffer"]
del kwds["sep"]
kwds_defaults = _refine_defaults_read(
dialect,
delimiter,
delim_whitespace,
engine,
sep,
on_bad_lines,
names,
defaults={"delimiter": ","},
dtype_backend=dtype_backend,
)
kwds.update(kwds_defaults)
return _read(filepath_or_buffer, kwds)
# iterator=True -> TextFileReader
@overload
def read_table(
filepath_or_buffer: FilePath | ReadCsvBuffer[bytes] | ReadCsvBuffer[str],
*,
sep: str | None | lib.NoDefault = ...,
delimiter: str | None | lib.NoDefault = ...,
header: int | Sequence[int] | None | Literal["infer"] = ...,
names: Sequence[Hashable] | None | lib.NoDefault = ...,
index_col: IndexLabel | Literal[False] | None = ...,
usecols=...,
dtype: DtypeArg | None = ...,
engine: CSVEngine | None = ...,
converters=...,
true_values=...,
false_values=...,
skipinitialspace: bool = ...,
skiprows=...,
skipfooter: int = ...,
nrows: int | None = ...,
na_values=...,
keep_default_na: bool = ...,
na_filter: bool = ...,
verbose: bool = ...,
skip_blank_lines: bool = ...,
parse_dates: bool | Sequence[Hashable] = ...,
infer_datetime_format: bool | lib.NoDefault = ...,
keep_date_col: bool = ...,
date_parser=...,
date_format: str | None = ...,
dayfirst: bool = ...,
cache_dates: bool = ...,
iterator: Literal[True],
chunksize: int | None = ...,
compression: CompressionOptions = ...,
thousands: str | None = ...,
decimal: str = ...,
lineterminator: str | None = ...,
quotechar: str = ...,
quoting: int = ...,
doublequote: bool = ...,
escapechar: str | None = ...,
comment: str | None = ...,
encoding: str | None = ...,
encoding_errors: str | None = ...,
dialect: str | csv.Dialect | None = ...,
on_bad_lines=...,
delim_whitespace: bool = ...,
low_memory=...,
memory_map: bool = ...,
float_precision: str | None = ...,
storage_options: StorageOptions = ...,
dtype_backend: DtypeBackend | lib.NoDefault = ...,
) -> TextFileReader:
...
# chunksize=int -> TextFileReader
@overload
def read_table(
filepath_or_buffer: FilePath | ReadCsvBuffer[bytes] | ReadCsvBuffer[str],
*,
sep: str | None | lib.NoDefault = ...,
delimiter: str | None | lib.NoDefault = ...,
header: int | Sequence[int] | None | Literal["infer"] = ...,
names: Sequence[Hashable] | None | lib.NoDefault = ...,
index_col: IndexLabel | Literal[False] | None = ...,
usecols=...,
dtype: DtypeArg | None = ...,
engine: CSVEngine | None = ...,
converters=...,
true_values=...,
false_values=...,
skipinitialspace: bool = ...,
skiprows=...,
skipfooter: int = ...,
nrows: int | None = ...,
na_values=...,
keep_default_na: bool = ...,
na_filter: bool = ...,
verbose: bool = ...,
skip_blank_lines: bool = ...,
parse_dates: bool | Sequence[Hashable] = ...,
infer_datetime_format: bool | lib.NoDefault = ...,
keep_date_col: bool = ...,
date_parser=...,
date_format: str | None = ...,
dayfirst: bool = ...,
cache_dates: bool = ...,
iterator: bool = ...,
chunksize: int,
compression: CompressionOptions = ...,
thousands: str | None = ...,
decimal: str = ...,
lineterminator: str | None = ...,
quotechar: str = ...,
quoting: int = ...,
doublequote: bool = ...,
escapechar: str | None = ...,
comment: str | None = ...,
encoding: str | None = ...,
encoding_errors: str | None = ...,
dialect: str | csv.Dialect | None = ...,
on_bad_lines=...,
delim_whitespace: bool = ...,
low_memory=...,
memory_map: bool = ...,
float_precision: str | None = ...,
storage_options: StorageOptions = ...,
dtype_backend: DtypeBackend | lib.NoDefault = ...,
) -> TextFileReader:
...
# default -> DataFrame
@overload
def read_table(
filepath_or_buffer: FilePath | ReadCsvBuffer[bytes] | ReadCsvBuffer[str],
*,
sep: str | None | lib.NoDefault = ...,
delimiter: str | None | lib.NoDefault = ...,
header: int | Sequence[int] | None | Literal["infer"] = ...,
names: Sequence[Hashable] | None | lib.NoDefault = ...,
index_col: IndexLabel | Literal[False] | None = ...,
usecols=...,
dtype: DtypeArg | None = ...,
engine: CSVEngine | None = ...,
converters=...,
true_values=...,
false_values=...,
skipinitialspace: bool = ...,
skiprows=...,
skipfooter: int = ...,
nrows: int | None = ...,
na_values=...,
keep_default_na: bool = ...,
na_filter: bool = ...,
verbose: bool = ...,
skip_blank_lines: bool = ...,
parse_dates: bool | Sequence[Hashable] = ...,
infer_datetime_format: bool | lib.NoDefault = ...,
keep_date_col: bool = ...,
date_parser=...,
date_format: str | None = ...,
dayfirst: bool = ...,
cache_dates: bool = ...,
iterator: Literal[False] = ...,
chunksize: None = ...,
compression: CompressionOptions = ...,
thousands: str | None = ...,
decimal: str = ...,
lineterminator: str | None = ...,
quotechar: str = ...,
quoting: int = ...,
doublequote: bool = ...,
escapechar: str | None = ...,
comment: str | None = ...,
encoding: str | None = ...,
encoding_errors: str | None = ...,
dialect: str | csv.Dialect | None = ...,
on_bad_lines=...,
delim_whitespace: bool = ...,
low_memory=...,
memory_map: bool = ...,
float_precision: str | None = ...,
storage_options: StorageOptions = ...,
dtype_backend: DtypeBackend | lib.NoDefault = ...,
) -> DataFrame:
...
# Unions -> DataFrame | TextFileReader
@overload
def read_table(
filepath_or_buffer: FilePath | ReadCsvBuffer[bytes] | ReadCsvBuffer[str],
*,
sep: str | None | lib.NoDefault = ...,
delimiter: str | None | lib.NoDefault = ...,
header: int | Sequence[int] | None | Literal["infer"] = ...,
names: Sequence[Hashable] | None | lib.NoDefault = ...,
index_col: IndexLabel | Literal[False] | None = ...,
usecols=...,
dtype: DtypeArg | None = ...,
engine: CSVEngine | None = ...,
converters=...,
true_values=...,
false_values=...,
skipinitialspace: bool = ...,
skiprows=...,
skipfooter: int = ...,
nrows: int | None = ...,
na_values=...,
keep_default_na: bool = ...,
na_filter: bool = ...,
verbose: bool = ...,
skip_blank_lines: bool = ...,
parse_dates: bool | Sequence[Hashable] = ...,
infer_datetime_format: bool | lib.NoDefault = ...,
keep_date_col: bool = ...,
date_parser=...,
date_format: str | None = ...,
dayfirst: bool = ...,
cache_dates: bool = ...,
iterator: bool = ...,
chunksize: int | None = ...,
compression: CompressionOptions = ...,
thousands: str | None = ...,
decimal: str = ...,
lineterminator: str | None = ...,
quotechar: str = ...,
quoting: int = ...,
doublequote: bool = ...,
escapechar: str | None = ...,
comment: str | None = ...,
encoding: str | None = ...,
encoding_errors: str | None = ...,
dialect: str | csv.Dialect | None = ...,
on_bad_lines=...,
delim_whitespace: bool = ...,
low_memory=...,
memory_map: bool = ...,
float_precision: str | None = ...,
storage_options: StorageOptions = ...,
dtype_backend: DtypeBackend | lib.NoDefault = ...,
) -> DataFrame | TextFileReader:
...
@Appender(
_doc_read_csv_and_table.format(
func_name="read_table",
summary="Read general delimited file into DataFrame.",
_default_sep=r"'\\t' (tab-stop)",
storage_options=_shared_docs["storage_options"],
decompression_options=_shared_docs["decompression_options"]
% "filepath_or_buffer",
)
)
def read_table(
filepath_or_buffer: FilePath | ReadCsvBuffer[bytes] | ReadCsvBuffer[str],
*,
sep: str | None | lib.NoDefault = lib.no_default,
delimiter: str | None | lib.NoDefault = None,
# Column and Index Locations and Names
header: int | Sequence[int] | None | Literal["infer"] = "infer",
names: Sequence[Hashable] | None | lib.NoDefault = lib.no_default,
index_col: IndexLabel | Literal[False] | None = None,
usecols=None,
# General Parsing Configuration
dtype: DtypeArg | None = None,
engine: CSVEngine | None = None,
converters=None,
true_values=None,
false_values=None,
skipinitialspace: bool = False,
skiprows=None,
skipfooter: int = 0,
nrows: int | None = None,
# NA and Missing Data Handling
na_values=None,
keep_default_na: bool = True,
na_filter: bool = True,
verbose: bool = False,
skip_blank_lines: bool = True,
# Datetime Handling
parse_dates: bool | Sequence[Hashable] = False,
infer_datetime_format: bool | lib.NoDefault = lib.no_default,
keep_date_col: bool = False,
date_parser=lib.no_default,
date_format: str | None = None,
dayfirst: bool = False,
cache_dates: bool = True,
# Iteration
iterator: bool = False,
chunksize: int | None = None,
# Quoting, Compression, and File Format
compression: CompressionOptions = "infer",
thousands: str | None = None,
decimal: str = ".",
lineterminator: str | None = None,
quotechar: str = '"',
quoting: int = csv.QUOTE_MINIMAL,
doublequote: bool = True,
escapechar: str | None = None,
comment: str | None = None,
encoding: str | None = None,
encoding_errors: str | None = "strict",
dialect: str | csv.Dialect | None = None,
# Error Handling
on_bad_lines: str = "error",
# Internal
delim_whitespace: bool = False,
low_memory=_c_parser_defaults["low_memory"],
memory_map: bool = False,
float_precision: str | None = None,
storage_options: StorageOptions = None,
dtype_backend: DtypeBackend | lib.NoDefault = lib.no_default,
) -> DataFrame | TextFileReader:
if infer_datetime_format is not lib.no_default:
warnings.warn(
"The argument 'infer_datetime_format' is deprecated and will "
"be removed in a future version. "
"A strict version of it is now the default, see "
"https://pandas.pydata.org/pdeps/0004-consistent-to-datetime-parsing.html. "
"You can safely remove this argument.",
FutureWarning,
stacklevel=find_stack_level(),
)
# locals() should never be modified
kwds = locals().copy()
del kwds["filepath_or_buffer"]
del kwds["sep"]
kwds_defaults = _refine_defaults_read(
dialect,
delimiter,
delim_whitespace,
engine,
sep,
on_bad_lines,
names,
defaults={"delimiter": "\t"},
dtype_backend=dtype_backend,
)
kwds.update(kwds_defaults)
return _read(filepath_or_buffer, kwds)
def read_fwf(
filepath_or_buffer: FilePath | ReadCsvBuffer[bytes] | ReadCsvBuffer[str],
*,
colspecs: Sequence[tuple[int, int]] | str | None = "infer",
widths: Sequence[int] | None = None,
infer_nrows: int = 100,
dtype_backend: DtypeBackend | lib.NoDefault = lib.no_default,
**kwds,
) -> DataFrame | TextFileReader:
r"""
Read a table of fixed-width formatted lines into DataFrame.
Also supports optionally iterating or breaking of the file
into chunks.
Additional help can be found in the `online docs for IO Tools
<https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html>`_.
Parameters
----------
filepath_or_buffer : str, path object, or file-like object
String, path object (implementing ``os.PathLike[str]``), or file-like
object implementing a text ``read()`` function.The string could be a URL.
Valid URL schemes include http, ftp, s3, and file. For file URLs, a host is
expected. A local file could be:
``file://localhost/path/to/table.csv``.
colspecs : list of tuple (int, int) or 'infer'. optional
A list of tuples giving the extents of the fixed-width
fields of each line as half-open intervals (i.e., [from, to[ ).
String value 'infer' can be used to instruct the parser to try
detecting the column specifications from the first 100 rows of
the data which are not being skipped via skiprows (default='infer').
widths : list of int, optional
A list of field widths which can be used instead of 'colspecs' if
the intervals are contiguous.
infer_nrows : int, default 100
The number of rows to consider when letting the parser determine the
`colspecs`.
dtype_backend : {"numpy_nullable", "pyarrow"}, defaults to NumPy backed DataFrames
Which dtype_backend to use, e.g. whether a DataFrame should have NumPy
arrays, nullable dtypes are used for all dtypes that have a nullable
implementation when "numpy_nullable" is set, pyarrow is used for all
dtypes if "pyarrow" is set.
The dtype_backends are still experimential.
.. versionadded:: 2.0
**kwds : optional
Optional keyword arguments can be passed to ``TextFileReader``.
Returns
-------
DataFrame or TextFileReader
A comma-separated values (csv) file is returned as two-dimensional
data structure with labeled axes.
See Also
--------
DataFrame.to_csv : Write DataFrame to a comma-separated values (csv) file.
read_csv : Read a comma-separated values (csv) file into DataFrame.
Examples
--------
>>> pd.read_fwf('data.csv') # doctest: +SKIP
"""
# Check input arguments.
if colspecs is None and widths is None:
raise ValueError("Must specify either colspecs or widths")
if colspecs not in (None, "infer") and widths is not None:
raise ValueError("You must specify only one of 'widths' and 'colspecs'")
# Compute 'colspecs' from 'widths', if specified.
if widths is not None:
colspecs, col = [], 0
for w in widths:
colspecs.append((col, col + w))
col += w
# for mypy
assert colspecs is not None
# GH#40830
# Ensure length of `colspecs` matches length of `names`
names = kwds.get("names")
if names is not None:
if len(names) != len(colspecs) and colspecs != "infer":
# need to check len(index_col) as it might contain
# unnamed indices, in which case it's name is not required
len_index = 0
if kwds.get("index_col") is not None:
index_col: Any = kwds.get("index_col")
if index_col is not False:
if not is_list_like(index_col):
len_index = 1
else:
len_index = len(index_col)
if kwds.get("usecols") is None and len(names) + len_index != len(colspecs):
# If usecols is used colspec may be longer than names
raise ValueError("Length of colspecs must match length of names")
kwds["colspecs"] = colspecs
kwds["infer_nrows"] = infer_nrows
kwds["engine"] = "python-fwf"
check_dtype_backend(dtype_backend)
kwds["dtype_backend"] = dtype_backend
return _read(filepath_or_buffer, kwds)
class TextFileReader(abc.Iterator):
"""
Passed dialect overrides any of the related parser options
"""
def __init__(
self,
f: FilePath | ReadCsvBuffer[bytes] | ReadCsvBuffer[str] | list,
engine: CSVEngine | None = None,
**kwds,
) -> None:
if engine is not None:
engine_specified = True
else:
engine = "python"
engine_specified = False
self.engine = engine
self._engine_specified = kwds.get("engine_specified", engine_specified)
_validate_skipfooter(kwds)
dialect = _extract_dialect(kwds)
if dialect is not None:
if engine == "pyarrow":
raise ValueError(
"The 'dialect' option is not supported with the 'pyarrow' engine"
)
kwds = _merge_with_dialect_properties(dialect, kwds)
if kwds.get("header", "infer") == "infer":
kwds["header"] = 0 if kwds.get("names") is None else None
self.orig_options = kwds
# miscellanea
self._currow = 0
options = self._get_options_with_defaults(engine)
options["storage_options"] = kwds.get("storage_options", None)
self.chunksize = options.pop("chunksize", None)
self.nrows = options.pop("nrows", None)
self._check_file_or_buffer(f, engine)
self.options, self.engine = self._clean_options(options, engine)
if "has_index_names" in kwds:
self.options["has_index_names"] = kwds["has_index_names"]
self.handles: IOHandles | None = None
self._engine = self._make_engine(f, self.engine)
def close(self) -> None:
if self.handles is not None:
self.handles.close()
self._engine.close()
def _get_options_with_defaults(self, engine: CSVEngine) -> dict[str, Any]:
kwds = self.orig_options
options = {}
default: object | None
for argname, default in parser_defaults.items():
value = kwds.get(argname, default)
# see gh-12935
if (
engine == "pyarrow"
and argname in _pyarrow_unsupported
and value != default
and value != getattr(value, "value", default)
):
raise ValueError(
f"The {repr(argname)} option is not supported with the "
f"'pyarrow' engine"
)
options[argname] = value
for argname, default in _c_parser_defaults.items():
if argname in kwds:
value = kwds[argname]
if engine != "c" and value != default:
if "python" in engine and argname not in _python_unsupported:
pass
else:
raise ValueError(
f"The {repr(argname)} option is not supported with the "
f"{repr(engine)} engine"
)
else:
value = default
options[argname] = value
if engine == "python-fwf":
for argname, default in _fwf_defaults.items():
options[argname] = kwds.get(argname, default)
return options
def _check_file_or_buffer(self, f, engine: CSVEngine) -> None:
# see gh-16530
if is_file_like(f) and engine != "c" and not hasattr(f, "__iter__"):
# The C engine doesn't need the file-like to have the "__iter__"
# attribute. However, the Python engine needs "__iter__(...)"
# when iterating through such an object, meaning it
# needs to have that attribute
raise ValueError(
"The 'python' engine cannot iterate through this file buffer."
)
def _clean_options(
self, options: dict[str, Any], engine: CSVEngine
) -> tuple[dict[str, Any], CSVEngine]:
result = options.copy()
fallback_reason = None
# C engine not supported yet
if engine == "c":
if options["skipfooter"] > 0:
fallback_reason = "the 'c' engine does not support skipfooter"
engine = "python"
sep = options["delimiter"]
delim_whitespace = options["delim_whitespace"]
if sep is None and not delim_whitespace:
if engine in ("c", "pyarrow"):
fallback_reason = (
f"the '{engine}' engine does not support "
"sep=None with delim_whitespace=False"
)
engine = "python"
elif sep is not None and len(sep) > 1:
if engine == "c" and sep == r"\s+":
result["delim_whitespace"] = True
del result["delimiter"]
elif engine not in ("python", "python-fwf"):
# wait until regex engine integrated
fallback_reason = (
f"the '{engine}' engine does not support "
"regex separators (separators > 1 char and "
r"different from '\s+' are interpreted as regex)"
)
engine = "python"
elif delim_whitespace:
if "python" in engine:
result["delimiter"] = r"\s+"
elif sep is not None:
encodeable = True
encoding = sys.getfilesystemencoding() or "utf-8"
try:
if len(sep.encode(encoding)) > 1:
encodeable = False
except UnicodeDecodeError:
encodeable = False
if not encodeable and engine not in ("python", "python-fwf"):
fallback_reason = (
f"the separator encoded in {encoding} "
f"is > 1 char long, and the '{engine}' engine "
"does not support such separators"
)
engine = "python"
quotechar = options["quotechar"]
if quotechar is not None and isinstance(quotechar, (str, bytes)):
if (
len(quotechar) == 1
and ord(quotechar) > 127
and engine not in ("python", "python-fwf")
):
fallback_reason = (
"ord(quotechar) > 127, meaning the "
"quotechar is larger than one byte, "
f"and the '{engine}' engine does not support such quotechars"
)
engine = "python"
if fallback_reason and self._engine_specified:
raise ValueError(fallback_reason)
if engine == "c":
for arg in _c_unsupported:
del result[arg]
if "python" in engine:
for arg in _python_unsupported:
if fallback_reason and result[arg] != _c_parser_defaults[arg]:
raise ValueError(
"Falling back to the 'python' engine because "
f"{fallback_reason}, but this causes {repr(arg)} to be "
"ignored as it is not supported by the 'python' engine."
)
del result[arg]
if fallback_reason:
warnings.warn(
(
"Falling back to the 'python' engine because "
f"{fallback_reason}; you can avoid this warning by specifying "
"engine='python'."
),
ParserWarning,
stacklevel=find_stack_level(),
)
index_col = options["index_col"]
names = options["names"]
converters = options["converters"]
na_values = options["na_values"]
skiprows = options["skiprows"]
validate_header_arg(options["header"])
if index_col is True:
raise ValueError("The value of index_col couldn't be 'True'")
if is_index_col(index_col):
if not isinstance(index_col, (list, tuple, np.ndarray)):
index_col = [index_col]
result["index_col"] = index_col
names = list(names) if names is not None else names
# type conversion-related
if converters is not None:
if not isinstance(converters, dict):
raise TypeError(
"Type converters must be a dict or subclass, "
f"input was a {type(converters).__name__}"
)
else:
converters = {}
# Converting values to NA
keep_default_na = options["keep_default_na"]
na_values, na_fvalues = _clean_na_values(na_values, keep_default_na)
# handle skiprows; this is internally handled by the
# c-engine, so only need for python and pyarrow parsers
if engine == "pyarrow":
if not is_integer(skiprows) and skiprows is not None:
# pyarrow expects skiprows to be passed as an integer
raise ValueError(
"skiprows argument must be an integer when using "
"engine='pyarrow'"
)
else:
if is_integer(skiprows):
skiprows = list(range(skiprows))
if skiprows is None:
skiprows = set()
elif not callable(skiprows):
skiprows = set(skiprows)
# put stuff back
result["names"] = names
result["converters"] = converters
result["na_values"] = na_values
result["na_fvalues"] = na_fvalues
result["skiprows"] = skiprows
return result, engine
def __next__(self) -> DataFrame:
try:
return self.get_chunk()
except StopIteration:
self.close()
raise
def _make_engine(
self,
f: FilePath | ReadCsvBuffer[bytes] | ReadCsvBuffer[str] | list | IO,
engine: CSVEngine = "c",
) -> ParserBase:
mapping: dict[str, type[ParserBase]] = {
"c": CParserWrapper,
"python": PythonParser,
"pyarrow": ArrowParserWrapper,
"python-fwf": FixedWidthFieldParser,
}
if engine not in mapping:
raise ValueError(
f"Unknown engine: {engine} (valid options are {mapping.keys()})"
)
if not isinstance(f, list):
# open file here
is_text = True
mode = "r"
if engine == "pyarrow":
is_text = False
mode = "rb"
elif (
engine == "c"
and self.options.get("encoding", "utf-8") == "utf-8"
and isinstance(stringify_path(f), str)
):
# c engine can decode utf-8 bytes, adding TextIOWrapper makes
# the c-engine especially for memory_map=True far slower
is_text = False
if "b" not in mode:
mode += "b"
self.handles = get_handle(
f,
mode,
encoding=self.options.get("encoding", None),
compression=self.options.get("compression", None),
memory_map=self.options.get("memory_map", False),
is_text=is_text,
errors=self.options.get("encoding_errors", "strict"),
storage_options=self.options.get("storage_options", None),
)
assert self.handles is not None
f = self.handles.handle
elif engine != "python":
msg = f"Invalid file path or buffer object type: {type(f)}"
raise ValueError(msg)
try:
return mapping[engine](f, **self.options)
except Exception:
if self.handles is not None:
self.handles.close()
raise
def _failover_to_python(self) -> None:
raise AbstractMethodError(self)
def read(self, nrows: int | None = None) -> DataFrame:
if self.engine == "pyarrow":
try:
# error: "ParserBase" has no attribute "read"
df = self._engine.read() # type: ignore[attr-defined]
except Exception:
self.close()
raise
else:
nrows = validate_integer("nrows", nrows)
try:
# error: "ParserBase" has no attribute "read"
(
index,
columns,
col_dict,
) = self._engine.read( # type: ignore[attr-defined]
nrows
)
except Exception:
self.close()
raise
if index is None:
if col_dict:
# Any column is actually fine:
new_rows = len(next(iter(col_dict.values())))
index = RangeIndex(self._currow, self._currow + new_rows)
else:
new_rows = 0
else:
new_rows = len(index)
df = DataFrame(col_dict, columns=columns, index=index)
self._currow += new_rows
return df
def get_chunk(self, size: int | None = None) -> DataFrame:
if size is None:
size = self.chunksize
if self.nrows is not None:
if self._currow >= self.nrows:
raise StopIteration
size = min(size, self.nrows - self._currow)
return self.read(nrows=size)
def __enter__(self) -> TextFileReader:
return self
def __exit__(
self,
exc_type: type[BaseException] | None,
exc_value: BaseException | None,
traceback: TracebackType | None,
) -> None:
self.close()
def TextParser(*args, **kwds) -> TextFileReader:
"""
Converts lists of lists/tuples into DataFrames with proper type inference
and optional (e.g. string to datetime) conversion. Also enables iterating
lazily over chunks of large files
Parameters
----------
data : file-like object or list
delimiter : separator character to use
dialect : str or csv.Dialect instance, optional
Ignored if delimiter is longer than 1 character
names : sequence, default
header : int, default 0
Row to use to parse column labels. Defaults to the first row. Prior
rows will be discarded
index_col : int or list, optional
Column or columns to use as the (possibly hierarchical) index
has_index_names: bool, default False
True if the cols defined in index_col have an index name and are
not in the header.
na_values : scalar, str, list-like, or dict, optional
Additional strings to recognize as NA/NaN.
keep_default_na : bool, default True
thousands : str, optional
Thousands separator
comment : str, optional
Comment out remainder of line
parse_dates : bool, default False
keep_date_col : bool, default False
date_parser : function, optional
.. deprecated:: 2.0.0
date_format : str or dict of column -> format, default ``None``
.. versionadded:: 2.0.0
skiprows : list of integers
Row numbers to skip
skipfooter : int
Number of line at bottom of file to skip
converters : dict, optional
Dict of functions for converting values in certain columns. Keys can
either be integers or column labels, values are functions that take one
input argument, the cell (not column) content, and return the
transformed content.
encoding : str, optional
Encoding to use for UTF when reading/writing (ex. 'utf-8')
float_precision : str, optional
Specifies which converter the C engine should use for floating-point
values. The options are `None` or `high` for the ordinary converter,
`legacy` for the original lower precision pandas converter, and
`round_trip` for the round-trip converter.
.. versionchanged:: 1.2
"""
kwds["engine"] = "python"
return TextFileReader(*args, **kwds)
def _clean_na_values(na_values, keep_default_na: bool = True):
na_fvalues: set | dict
if na_values is None:
if keep_default_na:
na_values = STR_NA_VALUES
else:
na_values = set()
na_fvalues = set()
elif isinstance(na_values, dict):
old_na_values = na_values.copy()
na_values = {} # Prevent aliasing.
# Convert the values in the na_values dictionary
# into array-likes for further use. This is also
# where we append the default NaN values, provided
# that `keep_default_na=True`.
for k, v in old_na_values.items():
if not is_list_like(v):
v = [v]
if keep_default_na:
v = set(v) | STR_NA_VALUES
na_values[k] = v
na_fvalues = {k: _floatify_na_values(v) for k, v in na_values.items()}
else:
if not is_list_like(na_values):
na_values = [na_values]
na_values = _stringify_na_values(na_values)
if keep_default_na:
na_values = na_values | STR_NA_VALUES
na_fvalues = _floatify_na_values(na_values)
return na_values, na_fvalues
def _floatify_na_values(na_values):
# create float versions of the na_values
result = set()
for v in na_values:
try:
v = float(v)
if not np.isnan(v):
result.add(v)
except (TypeError, ValueError, OverflowError):
pass
return result
def _stringify_na_values(na_values):
"""return a stringified and numeric for these values"""
result: list[str | float] = []
for x in na_values:
result.append(str(x))
result.append(x)
try:
v = float(x)
# we are like 999 here
if v == int(v):
v = int(v)
result.append(f"{v}.0")
result.append(str(v))
result.append(v)
except (TypeError, ValueError, OverflowError):
pass
try:
result.append(int(x))
except (TypeError, ValueError, OverflowError):
pass
return set(result)
def _refine_defaults_read(
dialect: str | csv.Dialect | None,
delimiter: str | None | lib.NoDefault,
delim_whitespace: bool,
engine: CSVEngine | None,
sep: str | None | lib.NoDefault,
on_bad_lines: str | Callable,
names: Sequence[Hashable] | None | lib.NoDefault,
defaults: dict[str, Any],
dtype_backend: DtypeBackend | lib.NoDefault,
):
"""Validate/refine default values of input parameters of read_csv, read_table.
Parameters
----------
dialect : str or csv.Dialect
If provided, this parameter will override values (default or not) for the
following parameters: `delimiter`, `doublequote`, `escapechar`,
`skipinitialspace`, `quotechar`, and `quoting`. If it is necessary to
override values, a ParserWarning will be issued. See csv.Dialect
documentation for more details.
delimiter : str or object
Alias for sep.
delim_whitespace : bool
Specifies whether or not whitespace (e.g. ``' '`` or ``'\t'``) will be
used as the sep. Equivalent to setting ``sep='\\s+'``. If this option
is set to True, nothing should be passed in for the ``delimiter``
parameter.
engine : {{'c', 'python'}}
Parser engine to use. The C engine is faster while the python engine is
currently more feature-complete.
sep : str or object
A delimiter provided by the user (str) or a sentinel value, i.e.
pandas._libs.lib.no_default.
on_bad_lines : str, callable
An option for handling bad lines or a sentinel value(None).
names : array-like, optional
List of column names to use. If the file contains a header row,
then you should explicitly pass ``header=0`` to override the column names.
Duplicates in this list are not allowed.
defaults: dict
Default values of input parameters.
Returns
-------
kwds : dict
Input parameters with correct values.
Raises
------
ValueError :
If a delimiter was specified with ``sep`` (or ``delimiter``) and
``delim_whitespace=True``.
"""
# fix types for sep, delimiter to Union(str, Any)
delim_default = defaults["delimiter"]
kwds: dict[str, Any] = {}
# gh-23761
#
# When a dialect is passed, it overrides any of the overlapping
# parameters passed in directly. We don't want to warn if the
# default parameters were passed in (since it probably means
# that the user didn't pass them in explicitly in the first place).
#
# "delimiter" is the annoying corner case because we alias it to
# "sep" before doing comparison to the dialect values later on.
# Thus, we need a flag to indicate that we need to "override"
# the comparison to dialect values by checking if default values
# for BOTH "delimiter" and "sep" were provided.
if dialect is not None:
kwds["sep_override"] = delimiter is None and (
sep is lib.no_default or sep == delim_default
)
if delimiter and (sep is not lib.no_default):
raise ValueError("Specified a sep and a delimiter; you can only specify one.")
kwds["names"] = None if names is lib.no_default else names
# Alias sep -> delimiter.
if delimiter is None:
delimiter = sep
if delim_whitespace and (delimiter is not lib.no_default):
raise ValueError(
"Specified a delimiter with both sep and "
"delim_whitespace=True; you can only specify one."
)
if delimiter == "\n":
raise ValueError(
r"Specified \n as separator or delimiter. This forces the python engine "
"which does not accept a line terminator. Hence it is not allowed to use "
"the line terminator as separator.",
)
if delimiter is lib.no_default:
# assign default separator value
kwds["delimiter"] = delim_default
else:
kwds["delimiter"] = delimiter
if engine is not None:
kwds["engine_specified"] = True
else:
kwds["engine"] = "c"
kwds["engine_specified"] = False
if on_bad_lines == "error":
kwds["on_bad_lines"] = ParserBase.BadLineHandleMethod.ERROR
elif on_bad_lines == "warn":
kwds["on_bad_lines"] = ParserBase.BadLineHandleMethod.WARN
elif on_bad_lines == "skip":
kwds["on_bad_lines"] = ParserBase.BadLineHandleMethod.SKIP
elif callable(on_bad_lines):
if engine != "python":
raise ValueError(
"on_bad_line can only be a callable function if engine='python'"
)
kwds["on_bad_lines"] = on_bad_lines
else:
raise ValueError(f"Argument {on_bad_lines} is invalid for on_bad_lines")
check_dtype_backend(dtype_backend)
kwds["dtype_backend"] = dtype_backend
return kwds
def _extract_dialect(kwds: dict[str, Any]) -> csv.Dialect | None:
"""
Extract concrete csv dialect instance.
Returns
-------
csv.Dialect or None
"""
if kwds.get("dialect") is None:
return None
dialect = kwds["dialect"]
if dialect in csv.list_dialects():
dialect = csv.get_dialect(dialect)
_validate_dialect(dialect)
return dialect
MANDATORY_DIALECT_ATTRS = (
"delimiter",
"doublequote",
"escapechar",
"skipinitialspace",
"quotechar",
"quoting",
)
def _validate_dialect(dialect: csv.Dialect) -> None:
"""
Validate csv dialect instance.
Raises
------
ValueError
If incorrect dialect is provided.
"""
for param in MANDATORY_DIALECT_ATTRS:
if not hasattr(dialect, param):
raise ValueError(f"Invalid dialect {dialect} provided")
def _merge_with_dialect_properties(
dialect: csv.Dialect,
defaults: dict[str, Any],
) -> dict[str, Any]:
"""
Merge default kwargs in TextFileReader with dialect parameters.
Parameters
----------
dialect : csv.Dialect
Concrete csv dialect. See csv.Dialect documentation for more details.
defaults : dict
Keyword arguments passed to TextFileReader.
Returns
-------
kwds : dict
Updated keyword arguments, merged with dialect parameters.
"""
kwds = defaults.copy()
for param in MANDATORY_DIALECT_ATTRS:
dialect_val = getattr(dialect, param)
parser_default = parser_defaults[param]
provided = kwds.get(param, parser_default)
# Messages for conflicting values between the dialect
# instance and the actual parameters provided.
conflict_msgs = []
# Don't warn if the default parameter was passed in,
# even if it conflicts with the dialect (gh-23761).
if provided not in (parser_default, dialect_val):
msg = (
f"Conflicting values for '{param}': '{provided}' was "
f"provided, but the dialect specifies '{dialect_val}'. "
"Using the dialect-specified value."
)
# Annoying corner case for not warning about
# conflicts between dialect and delimiter parameter.
# Refer to the outer "_read_" function for more info.
if not (param == "delimiter" and kwds.pop("sep_override", False)):
conflict_msgs.append(msg)
if conflict_msgs:
warnings.warn(
"\n\n".join(conflict_msgs), ParserWarning, stacklevel=find_stack_level()
)
kwds[param] = dialect_val
return kwds
def _validate_skipfooter(kwds: dict[str, Any]) -> None:
"""
Check whether skipfooter is compatible with other kwargs in TextFileReader.
Parameters
----------
kwds : dict
Keyword arguments passed to TextFileReader.
Raises
------
ValueError
If skipfooter is not compatible with other parameters.
"""
if kwds.get("skipfooter"):
if kwds.get("iterator") or kwds.get("chunksize"):
raise ValueError("'skipfooter' not supported for iteration")
if kwds.get("nrows"):
raise ValueError("'skipfooter' not supported with 'nrows'")
|