aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/python/pandas/py3/pandas/core/base.py
blob: a454bfce279f49e21f81c4edf7f1159ed6924353 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
"""
Base and utility classes for pandas objects.
"""

from __future__ import annotations

import textwrap
from typing import (
    TYPE_CHECKING,
    Any,
    Generic,
    Hashable,
    Iterator,
    Literal,
    TypeVar,
    cast,
    final,
    overload,
)

import numpy as np

from pandas._config import using_copy_on_write

from pandas._libs import lib
from pandas._typing import (
    Axis,
    AxisInt,
    DtypeObj,
    IndexLabel,
    NDFrameT,
    Shape,
    npt,
)
from pandas.compat import PYPY
from pandas.compat.numpy import function as nv
from pandas.errors import AbstractMethodError
from pandas.util._decorators import (
    cache_readonly,
    doc,
)

from pandas.core.dtypes.cast import can_hold_element
from pandas.core.dtypes.common import (
    is_categorical_dtype,
    is_dict_like,
    is_extension_array_dtype,
    is_object_dtype,
    is_scalar,
)
from pandas.core.dtypes.generic import (
    ABCDataFrame,
    ABCIndex,
    ABCSeries,
)
from pandas.core.dtypes.missing import (
    isna,
    remove_na_arraylike,
)

from pandas.core import (
    algorithms,
    nanops,
    ops,
)
from pandas.core.accessor import DirNamesMixin
from pandas.core.arraylike import OpsMixin
from pandas.core.arrays import ExtensionArray
from pandas.core.construction import (
    ensure_wrapped_if_datetimelike,
    extract_array,
)

if TYPE_CHECKING:
    from pandas._typing import (
        DropKeep,
        NumpySorter,
        NumpyValueArrayLike,
        ScalarLike_co,
    )

    from pandas import (
        Categorical,
        Index,
        Series,
    )


_shared_docs: dict[str, str] = {}
_indexops_doc_kwargs = {
    "klass": "IndexOpsMixin",
    "inplace": "",
    "unique": "IndexOpsMixin",
    "duplicated": "IndexOpsMixin",
}

_T = TypeVar("_T", bound="IndexOpsMixin")


class PandasObject(DirNamesMixin):
    """
    Baseclass for various pandas objects.
    """

    # results from calls to methods decorated with cache_readonly get added to _cache
    _cache: dict[str, Any]

    @property
    def _constructor(self):
        """
        Class constructor (for this class it's just `__class__`.
        """
        return type(self)

    def __repr__(self) -> str:
        """
        Return a string representation for a particular object.
        """
        # Should be overwritten by base classes
        return object.__repr__(self)

    def _reset_cache(self, key: str | None = None) -> None:
        """
        Reset cached properties. If ``key`` is passed, only clears that key.
        """
        if not hasattr(self, "_cache"):
            return
        if key is None:
            self._cache.clear()
        else:
            self._cache.pop(key, None)

    def __sizeof__(self) -> int:
        """
        Generates the total memory usage for an object that returns
        either a value or Series of values
        """
        memory_usage = getattr(self, "memory_usage", None)
        if memory_usage:
            mem = memory_usage(deep=True)  # pylint: disable=not-callable
            return int(mem if is_scalar(mem) else mem.sum())

        # no memory_usage attribute, so fall back to object's 'sizeof'
        return super().__sizeof__()


class NoNewAttributesMixin:
    """
    Mixin which prevents adding new attributes.

    Prevents additional attributes via xxx.attribute = "something" after a
    call to `self.__freeze()`. Mainly used to prevent the user from using
    wrong attributes on an accessor (`Series.cat/.str/.dt`).

    If you really want to add a new attribute at a later time, you need to use
    `object.__setattr__(self, key, value)`.
    """

    def _freeze(self) -> None:
        """
        Prevents setting additional attributes.
        """
        object.__setattr__(self, "__frozen", True)

    # prevent adding any attribute via s.xxx.new_attribute = ...
    def __setattr__(self, key: str, value) -> None:
        # _cache is used by a decorator
        # We need to check both 1.) cls.__dict__ and 2.) getattr(self, key)
        # because
        # 1.) getattr is false for attributes that raise errors
        # 2.) cls.__dict__ doesn't traverse into base classes
        if getattr(self, "__frozen", False) and not (
            key == "_cache"
            or key in type(self).__dict__
            or getattr(self, key, None) is not None
        ):
            raise AttributeError(f"You cannot add any new attribute '{key}'")
        object.__setattr__(self, key, value)


class SelectionMixin(Generic[NDFrameT]):
    """
    mixin implementing the selection & aggregation interface on a group-like
    object sub-classes need to define: obj, exclusions
    """

    obj: NDFrameT
    _selection: IndexLabel | None = None
    exclusions: frozenset[Hashable]
    _internal_names = ["_cache", "__setstate__"]
    _internal_names_set = set(_internal_names)

    @final
    @property
    def _selection_list(self):
        if not isinstance(
            self._selection, (list, tuple, ABCSeries, ABCIndex, np.ndarray)
        ):
            return [self._selection]
        return self._selection

    @cache_readonly
    def _selected_obj(self):
        if self._selection is None or isinstance(self.obj, ABCSeries):
            return self.obj
        else:
            return self.obj[self._selection]

    @final
    @cache_readonly
    def ndim(self) -> int:
        return self._selected_obj.ndim

    @final
    @cache_readonly
    def _obj_with_exclusions(self):
        if isinstance(self.obj, ABCSeries):
            return self.obj

        if self._selection is not None:
            return self.obj._getitem_nocopy(self._selection_list)

        if len(self.exclusions) > 0:
            # equivalent to `self.obj.drop(self.exclusions, axis=1)
            #  but this avoids consolidating and making a copy
            # TODO: following GH#45287 can we now use .drop directly without
            #  making a copy?
            return self.obj._drop_axis(self.exclusions, axis=1, only_slice=True)
        else:
            return self.obj

    def __getitem__(self, key):
        if self._selection is not None:
            raise IndexError(f"Column(s) {self._selection} already selected")

        if isinstance(key, (list, tuple, ABCSeries, ABCIndex, np.ndarray)):
            if len(self.obj.columns.intersection(key)) != len(set(key)):
                bad_keys = list(set(key).difference(self.obj.columns))
                raise KeyError(f"Columns not found: {str(bad_keys)[1:-1]}")
            return self._gotitem(list(key), ndim=2)

        else:
            if key not in self.obj:
                raise KeyError(f"Column not found: {key}")
            ndim = self.obj[key].ndim
            return self._gotitem(key, ndim=ndim)

    def _gotitem(self, key, ndim: int, subset=None):
        """
        sub-classes to define
        return a sliced object

        Parameters
        ----------
        key : str / list of selections
        ndim : {1, 2}
            requested ndim of result
        subset : object, default None
            subset to act on
        """
        raise AbstractMethodError(self)

    def aggregate(self, func, *args, **kwargs):
        raise AbstractMethodError(self)

    agg = aggregate


class IndexOpsMixin(OpsMixin):
    """
    Common ops mixin to support a unified interface / docs for Series / Index
    """

    # ndarray compatibility
    __array_priority__ = 1000
    _hidden_attrs: frozenset[str] = frozenset(
        ["tolist"]  # tolist is not deprecated, just suppressed in the __dir__
    )

    @property
    def dtype(self) -> DtypeObj:
        # must be defined here as a property for mypy
        raise AbstractMethodError(self)

    @property
    def _values(self) -> ExtensionArray | np.ndarray:
        # must be defined here as a property for mypy
        raise AbstractMethodError(self)

    @final
    def transpose(self: _T, *args, **kwargs) -> _T:
        """
        Return the transpose, which is by definition self.

        Returns
        -------
        %(klass)s
        """
        nv.validate_transpose(args, kwargs)
        return self

    T = property(
        transpose,
        doc="""
        Return the transpose, which is by definition self.
        """,
    )

    @property
    def shape(self) -> Shape:
        """
        Return a tuple of the shape of the underlying data.

        Examples
        --------
        >>> s = pd.Series([1, 2, 3])
        >>> s.shape
        (3,)
        """
        return self._values.shape

    def __len__(self) -> int:
        # We need this defined here for mypy
        raise AbstractMethodError(self)

    @property
    def ndim(self) -> Literal[1]:
        """
        Number of dimensions of the underlying data, by definition 1.
        """
        return 1

    @final
    def item(self):
        """
        Return the first element of the underlying data as a Python scalar.

        Returns
        -------
        scalar
            The first element of %(klass)s.

        Raises
        ------
        ValueError
            If the data is not length-1.
        """
        if len(self) == 1:
            return next(iter(self))
        raise ValueError("can only convert an array of size 1 to a Python scalar")

    @property
    def nbytes(self) -> int:
        """
        Return the number of bytes in the underlying data.
        """
        return self._values.nbytes

    @property
    def size(self) -> int:
        """
        Return the number of elements in the underlying data.
        """
        return len(self._values)

    @property
    def array(self) -> ExtensionArray:
        """
        The ExtensionArray of the data backing this Series or Index.

        Returns
        -------
        ExtensionArray
            An ExtensionArray of the values stored within. For extension
            types, this is the actual array. For NumPy native types, this
            is a thin (no copy) wrapper around :class:`numpy.ndarray`.

            ``.array`` differs ``.values`` which may require converting the
            data to a different form.

        See Also
        --------
        Index.to_numpy : Similar method that always returns a NumPy array.
        Series.to_numpy : Similar method that always returns a NumPy array.

        Notes
        -----
        This table lays out the different array types for each extension
        dtype within pandas.

        ================== =============================
        dtype              array type
        ================== =============================
        category           Categorical
        period             PeriodArray
        interval           IntervalArray
        IntegerNA          IntegerArray
        string             StringArray
        boolean            BooleanArray
        datetime64[ns, tz] DatetimeArray
        ================== =============================

        For any 3rd-party extension types, the array type will be an
        ExtensionArray.

        For all remaining dtypes ``.array`` will be a
        :class:`arrays.NumpyExtensionArray` wrapping the actual ndarray
        stored within. If you absolutely need a NumPy array (possibly with
        copying / coercing data), then use :meth:`Series.to_numpy` instead.

        Examples
        --------
        For regular NumPy types like int, and float, a PandasArray
        is returned.

        >>> pd.Series([1, 2, 3]).array
        <PandasArray>
        [1, 2, 3]
        Length: 3, dtype: int64

        For extension types, like Categorical, the actual ExtensionArray
        is returned

        >>> ser = pd.Series(pd.Categorical(['a', 'b', 'a']))
        >>> ser.array
        ['a', 'b', 'a']
        Categories (2, object): ['a', 'b']
        """
        raise AbstractMethodError(self)

    @final
    def to_numpy(
        self,
        dtype: npt.DTypeLike | None = None,
        copy: bool = False,
        na_value: object = lib.no_default,
        **kwargs,
    ) -> np.ndarray:
        """
        A NumPy ndarray representing the values in this Series or Index.

        Parameters
        ----------
        dtype : str or numpy.dtype, optional
            The dtype to pass to :meth:`numpy.asarray`.
        copy : bool, default False
            Whether to ensure that the returned value is not a view on
            another array. Note that ``copy=False`` does not *ensure* that
            ``to_numpy()`` is no-copy. Rather, ``copy=True`` ensure that
            a copy is made, even if not strictly necessary.
        na_value : Any, optional
            The value to use for missing values. The default value depends
            on `dtype` and the type of the array.
        **kwargs
            Additional keywords passed through to the ``to_numpy`` method
            of the underlying array (for extension arrays).

        Returns
        -------
        numpy.ndarray

        See Also
        --------
        Series.array : Get the actual data stored within.
        Index.array : Get the actual data stored within.
        DataFrame.to_numpy : Similar method for DataFrame.

        Notes
        -----
        The returned array will be the same up to equality (values equal
        in `self` will be equal in the returned array; likewise for values
        that are not equal). When `self` contains an ExtensionArray, the
        dtype may be different. For example, for a category-dtype Series,
        ``to_numpy()`` will return a NumPy array and the categorical dtype
        will be lost.

        For NumPy dtypes, this will be a reference to the actual data stored
        in this Series or Index (assuming ``copy=False``). Modifying the result
        in place will modify the data stored in the Series or Index (not that
        we recommend doing that).

        For extension types, ``to_numpy()`` *may* require copying data and
        coercing the result to a NumPy type (possibly object), which may be
        expensive. When you need a no-copy reference to the underlying data,
        :attr:`Series.array` should be used instead.

        This table lays out the different dtypes and default return types of
        ``to_numpy()`` for various dtypes within pandas.

        ================== ================================
        dtype              array type
        ================== ================================
        category[T]        ndarray[T] (same dtype as input)
        period             ndarray[object] (Periods)
        interval           ndarray[object] (Intervals)
        IntegerNA          ndarray[object]
        datetime64[ns]     datetime64[ns]
        datetime64[ns, tz] ndarray[object] (Timestamps)
        ================== ================================

        Examples
        --------
        >>> ser = pd.Series(pd.Categorical(['a', 'b', 'a']))
        >>> ser.to_numpy()
        array(['a', 'b', 'a'], dtype=object)

        Specify the `dtype` to control how datetime-aware data is represented.
        Use ``dtype=object`` to return an ndarray of pandas :class:`Timestamp`
        objects, each with the correct ``tz``.

        >>> ser = pd.Series(pd.date_range('2000', periods=2, tz="CET"))
        >>> ser.to_numpy(dtype=object)
        array([Timestamp('2000-01-01 00:00:00+0100', tz='CET'),
               Timestamp('2000-01-02 00:00:00+0100', tz='CET')],
              dtype=object)

        Or ``dtype='datetime64[ns]'`` to return an ndarray of native
        datetime64 values. The values are converted to UTC and the timezone
        info is dropped.

        >>> ser.to_numpy(dtype="datetime64[ns]")
        ... # doctest: +ELLIPSIS
        array(['1999-12-31T23:00:00.000000000', '2000-01-01T23:00:00...'],
              dtype='datetime64[ns]')
        """
        if is_extension_array_dtype(self.dtype):
            return self.array.to_numpy(dtype, copy=copy, na_value=na_value, **kwargs)
        elif kwargs:
            bad_keys = list(kwargs.keys())[0]
            raise TypeError(
                f"to_numpy() got an unexpected keyword argument '{bad_keys}'"
            )

        if na_value is not lib.no_default:
            values = self._values
            if not can_hold_element(values, na_value):
                # if we can't hold the na_value asarray either makes a copy or we
                # error before modifying values. The asarray later on thus won't make
                # another copy
                values = np.asarray(values, dtype=dtype)
            else:
                values = values.copy()

            values[np.asanyarray(self.isna())] = na_value
        else:
            values = self._values

        result = np.asarray(values, dtype=dtype)

        if (copy and na_value is lib.no_default) or (
            not copy and using_copy_on_write()
        ):
            if np.shares_memory(self._values[:2], result[:2]):
                # Take slices to improve performance of check
                if using_copy_on_write() and not copy:
                    result = result.view()
                    result.flags.writeable = False
                else:
                    result = result.copy()

        return result

    @final
    @property
    def empty(self) -> bool:
        return not self.size

    def max(self, axis: AxisInt | None = None, skipna: bool = True, *args, **kwargs):
        """
        Return the maximum value of the Index.

        Parameters
        ----------
        axis : int, optional
            For compatibility with NumPy. Only 0 or None are allowed.
        skipna : bool, default True
            Exclude NA/null values when showing the result.
        *args, **kwargs
            Additional arguments and keywords for compatibility with NumPy.

        Returns
        -------
        scalar
            Maximum value.

        See Also
        --------
        Index.min : Return the minimum value in an Index.
        Series.max : Return the maximum value in a Series.
        DataFrame.max : Return the maximum values in a DataFrame.

        Examples
        --------
        >>> idx = pd.Index([3, 2, 1])
        >>> idx.max()
        3

        >>> idx = pd.Index(['c', 'b', 'a'])
        >>> idx.max()
        'c'

        For a MultiIndex, the maximum is determined lexicographically.

        >>> idx = pd.MultiIndex.from_product([('a', 'b'), (2, 1)])
        >>> idx.max()
        ('b', 2)
        """
        nv.validate_minmax_axis(axis)
        nv.validate_max(args, kwargs)
        return nanops.nanmax(self._values, skipna=skipna)

    @doc(op="max", oppose="min", value="largest")
    def argmax(
        self, axis: AxisInt | None = None, skipna: bool = True, *args, **kwargs
    ) -> int:
        """
        Return int position of the {value} value in the Series.

        If the {op}imum is achieved in multiple locations,
        the first row position is returned.

        Parameters
        ----------
        axis : {{None}}
            Unused. Parameter needed for compatibility with DataFrame.
        skipna : bool, default True
            Exclude NA/null values when showing the result.
        *args, **kwargs
            Additional arguments and keywords for compatibility with NumPy.

        Returns
        -------
        int
            Row position of the {op}imum value.

        See Also
        --------
        Series.arg{op} : Return position of the {op}imum value.
        Series.arg{oppose} : Return position of the {oppose}imum value.
        numpy.ndarray.arg{op} : Equivalent method for numpy arrays.
        Series.idxmax : Return index label of the maximum values.
        Series.idxmin : Return index label of the minimum values.

        Examples
        --------
        Consider dataset containing cereal calories

        >>> s = pd.Series({{'Corn Flakes': 100.0, 'Almond Delight': 110.0,
        ...                'Cinnamon Toast Crunch': 120.0, 'Cocoa Puff': 110.0}})
        >>> s
        Corn Flakes              100.0
        Almond Delight           110.0
        Cinnamon Toast Crunch    120.0
        Cocoa Puff               110.0
        dtype: float64

        >>> s.argmax()
        2
        >>> s.argmin()
        0

        The maximum cereal calories is the third element and
        the minimum cereal calories is the first element,
        since series is zero-indexed.
        """
        delegate = self._values
        nv.validate_minmax_axis(axis)
        skipna = nv.validate_argmax_with_skipna(skipna, args, kwargs)

        if isinstance(delegate, ExtensionArray):
            if not skipna and delegate.isna().any():
                return -1
            else:
                return delegate.argmax()
        else:
            # error: Incompatible return value type (got "Union[int, ndarray]", expected
            # "int")
            return nanops.nanargmax(  # type: ignore[return-value]
                delegate, skipna=skipna
            )

    def min(self, axis: AxisInt | None = None, skipna: bool = True, *args, **kwargs):
        """
        Return the minimum value of the Index.

        Parameters
        ----------
        axis : {None}
            Dummy argument for consistency with Series.
        skipna : bool, default True
            Exclude NA/null values when showing the result.
        *args, **kwargs
            Additional arguments and keywords for compatibility with NumPy.

        Returns
        -------
        scalar
            Minimum value.

        See Also
        --------
        Index.max : Return the maximum value of the object.
        Series.min : Return the minimum value in a Series.
        DataFrame.min : Return the minimum values in a DataFrame.

        Examples
        --------
        >>> idx = pd.Index([3, 2, 1])
        >>> idx.min()
        1

        >>> idx = pd.Index(['c', 'b', 'a'])
        >>> idx.min()
        'a'

        For a MultiIndex, the minimum is determined lexicographically.

        >>> idx = pd.MultiIndex.from_product([('a', 'b'), (2, 1)])
        >>> idx.min()
        ('a', 1)
        """
        nv.validate_minmax_axis(axis)
        nv.validate_min(args, kwargs)
        return nanops.nanmin(self._values, skipna=skipna)

    @doc(argmax, op="min", oppose="max", value="smallest")
    def argmin(
        self, axis: AxisInt | None = None, skipna: bool = True, *args, **kwargs
    ) -> int:
        delegate = self._values
        nv.validate_minmax_axis(axis)
        skipna = nv.validate_argmin_with_skipna(skipna, args, kwargs)

        if isinstance(delegate, ExtensionArray):
            if not skipna and delegate.isna().any():
                return -1
            else:
                return delegate.argmin()
        else:
            # error: Incompatible return value type (got "Union[int, ndarray]", expected
            # "int")
            return nanops.nanargmin(  # type: ignore[return-value]
                delegate, skipna=skipna
            )

    def tolist(self):
        """
        Return a list of the values.

        These are each a scalar type, which is a Python scalar
        (for str, int, float) or a pandas scalar
        (for Timestamp/Timedelta/Interval/Period)

        Returns
        -------
        list

        See Also
        --------
        numpy.ndarray.tolist : Return the array as an a.ndim-levels deep
            nested list of Python scalars.
        """
        return self._values.tolist()

    to_list = tolist

    def __iter__(self) -> Iterator:
        """
        Return an iterator of the values.

        These are each a scalar type, which is a Python scalar
        (for str, int, float) or a pandas scalar
        (for Timestamp/Timedelta/Interval/Period)

        Returns
        -------
        iterator
        """
        # We are explicitly making element iterators.
        if not isinstance(self._values, np.ndarray):
            # Check type instead of dtype to catch DTA/TDA
            return iter(self._values)
        else:
            return map(self._values.item, range(self._values.size))

    @cache_readonly
    def hasnans(self) -> bool:
        """
        Return True if there are any NaNs.

        Enables various performance speedups.

        Returns
        -------
        bool
        """
        # error: Item "bool" of "Union[bool, ndarray[Any, dtype[bool_]], NDFrame]"
        # has no attribute "any"
        return bool(isna(self).any())  # type: ignore[union-attr]

    def isna(self) -> npt.NDArray[np.bool_]:
        return isna(self._values)

    def _reduce(
        self,
        op,
        name: str,
        *,
        axis: Axis = 0,
        skipna: bool = True,
        numeric_only=None,
        filter_type=None,
        **kwds,
    ):
        """
        Perform the reduction type operation if we can.
        """
        func = getattr(self, name, None)
        if func is None:
            raise TypeError(
                f"{type(self).__name__} cannot perform the operation {name}"
            )
        return func(skipna=skipna, **kwds)

    @final
    def _map_values(self, mapper, na_action=None):
        """
        An internal function that maps values using the input
        correspondence (which can be a dict, Series, or function).

        Parameters
        ----------
        mapper : function, dict, or Series
            The input correspondence object
        na_action : {None, 'ignore'}
            If 'ignore', propagate NA values, without passing them to the
            mapping function

        Returns
        -------
        Union[Index, MultiIndex], inferred
            The output of the mapping function applied to the index.
            If the function returns a tuple with more than one element
            a MultiIndex will be returned.
        """
        # we can fastpath dict/Series to an efficient map
        # as we know that we are not going to have to yield
        # python types
        if is_dict_like(mapper):
            if isinstance(mapper, dict) and hasattr(mapper, "__missing__"):
                # If a dictionary subclass defines a default value method,
                # convert mapper to a lookup function (GH #15999).
                dict_with_default = mapper
                mapper = lambda x: dict_with_default[
                    np.nan if isinstance(x, float) and np.isnan(x) else x
                ]
            else:
                # Dictionary does not have a default. Thus it's safe to
                # convert to an Series for efficiency.
                # we specify the keys here to handle the
                # possibility that they are tuples

                # The return value of mapping with an empty mapper is
                # expected to be pd.Series(np.nan, ...). As np.nan is
                # of dtype float64 the return value of this method should
                # be float64 as well
                from pandas import Series

                if len(mapper) == 0:
                    mapper = Series(mapper, dtype=np.float64)
                else:
                    mapper = Series(mapper)

        if isinstance(mapper, ABCSeries):
            if na_action not in (None, "ignore"):
                msg = (
                    "na_action must either be 'ignore' or None, "
                    f"{na_action} was passed"
                )
                raise ValueError(msg)

            if na_action == "ignore":
                mapper = mapper[mapper.index.notna()]

            # Since values were input this means we came from either
            # a dict or a series and mapper should be an index
            if is_categorical_dtype(self.dtype):
                # use the built in categorical series mapper which saves
                # time by mapping the categories instead of all values

                cat = cast("Categorical", self._values)
                return cat.map(mapper)

            values = self._values

            indexer = mapper.index.get_indexer(values)
            new_values = algorithms.take_nd(mapper._values, indexer)

            return new_values

        # we must convert to python types
        if is_extension_array_dtype(self.dtype) and hasattr(self._values, "map"):
            # GH#23179 some EAs do not have `map`
            values = self._values
            if na_action is not None:
                raise NotImplementedError
            map_f = lambda values, f: values.map(f)
        else:
            values = self._values.astype(object)
            if na_action == "ignore":
                map_f = lambda values, f: lib.map_infer_mask(
                    values, f, isna(values).view(np.uint8)
                )
            elif na_action is None:
                map_f = lib.map_infer
            else:
                msg = (
                    "na_action must either be 'ignore' or None, "
                    f"{na_action} was passed"
                )
                raise ValueError(msg)

        # mapper is a function
        new_values = map_f(values, mapper)

        return new_values

    @final
    def value_counts(
        self,
        normalize: bool = False,
        sort: bool = True,
        ascending: bool = False,
        bins=None,
        dropna: bool = True,
    ) -> Series:
        """
        Return a Series containing counts of unique values.

        The resulting object will be in descending order so that the
        first element is the most frequently-occurring element.
        Excludes NA values by default.

        Parameters
        ----------
        normalize : bool, default False
            If True then the object returned will contain the relative
            frequencies of the unique values.
        sort : bool, default True
            Sort by frequencies.
        ascending : bool, default False
            Sort in ascending order.
        bins : int, optional
            Rather than count values, group them into half-open bins,
            a convenience for ``pd.cut``, only works with numeric data.
        dropna : bool, default True
            Don't include counts of NaN.

        Returns
        -------
        Series

        See Also
        --------
        Series.count: Number of non-NA elements in a Series.
        DataFrame.count: Number of non-NA elements in a DataFrame.
        DataFrame.value_counts: Equivalent method on DataFrames.

        Examples
        --------
        >>> index = pd.Index([3, 1, 2, 3, 4, np.nan])
        >>> index.value_counts()
        3.0    2
        1.0    1
        2.0    1
        4.0    1
        Name: count, dtype: int64

        With `normalize` set to `True`, returns the relative frequency by
        dividing all values by the sum of values.

        >>> s = pd.Series([3, 1, 2, 3, 4, np.nan])
        >>> s.value_counts(normalize=True)
        3.0    0.4
        1.0    0.2
        2.0    0.2
        4.0    0.2
        Name: proportion, dtype: float64

        **bins**

        Bins can be useful for going from a continuous variable to a
        categorical variable; instead of counting unique
        apparitions of values, divide the index in the specified
        number of half-open bins.

        >>> s.value_counts(bins=3)
        (0.996, 2.0]    2
        (2.0, 3.0]      2
        (3.0, 4.0]      1
        Name: count, dtype: int64

        **dropna**

        With `dropna` set to `False` we can also see NaN index values.

        >>> s.value_counts(dropna=False)
        3.0    2
        1.0    1
        2.0    1
        4.0    1
        NaN    1
        Name: count, dtype: int64
        """
        return algorithms.value_counts(
            self,
            sort=sort,
            ascending=ascending,
            normalize=normalize,
            bins=bins,
            dropna=dropna,
        )

    def unique(self):
        values = self._values
        if not isinstance(values, np.ndarray):
            # i.e. ExtensionArray
            result = values.unique()
        else:
            result = algorithms.unique1d(values)
        return result

    @final
    def nunique(self, dropna: bool = True) -> int:
        """
        Return number of unique elements in the object.

        Excludes NA values by default.

        Parameters
        ----------
        dropna : bool, default True
            Don't include NaN in the count.

        Returns
        -------
        int

        See Also
        --------
        DataFrame.nunique: Method nunique for DataFrame.
        Series.count: Count non-NA/null observations in the Series.

        Examples
        --------
        >>> s = pd.Series([1, 3, 5, 7, 7])
        >>> s
        0    1
        1    3
        2    5
        3    7
        4    7
        dtype: int64

        >>> s.nunique()
        4
        """
        uniqs = self.unique()
        if dropna:
            uniqs = remove_na_arraylike(uniqs)
        return len(uniqs)

    @property
    def is_unique(self) -> bool:
        """
        Return boolean if values in the object are unique.

        Returns
        -------
        bool
        """
        return self.nunique(dropna=False) == len(self)

    @property
    def is_monotonic_increasing(self) -> bool:
        """
        Return boolean if values in the object are monotonically increasing.

        Returns
        -------
        bool
        """
        from pandas import Index

        return Index(self).is_monotonic_increasing

    @property
    def is_monotonic_decreasing(self) -> bool:
        """
        Return boolean if values in the object are monotonically decreasing.

        Returns
        -------
        bool
        """
        from pandas import Index

        return Index(self).is_monotonic_decreasing

    @final
    def _memory_usage(self, deep: bool = False) -> int:
        """
        Memory usage of the values.

        Parameters
        ----------
        deep : bool, default False
            Introspect the data deeply, interrogate
            `object` dtypes for system-level memory consumption.

        Returns
        -------
        bytes used

        See Also
        --------
        numpy.ndarray.nbytes : Total bytes consumed by the elements of the
            array.

        Notes
        -----
        Memory usage does not include memory consumed by elements that
        are not components of the array if deep=False or if used on PyPy
        """
        if hasattr(self.array, "memory_usage"):
            return self.array.memory_usage(  # pyright: ignore[reportGeneralTypeIssues]
                deep=deep,
            )

        v = self.array.nbytes
        if deep and is_object_dtype(self) and not PYPY:
            values = cast(np.ndarray, self._values)
            v += lib.memory_usage_of_objects(values)
        return v

    @doc(
        algorithms.factorize,
        values="",
        order="",
        size_hint="",
        sort=textwrap.dedent(
            """\
            sort : bool, default False
                Sort `uniques` and shuffle `codes` to maintain the
                relationship.
            """
        ),
    )
    def factorize(
        self,
        sort: bool = False,
        use_na_sentinel: bool = True,
    ) -> tuple[npt.NDArray[np.intp], Index]:
        codes, uniques = algorithms.factorize(
            self._values, sort=sort, use_na_sentinel=use_na_sentinel
        )
        if uniques.dtype == np.float16:
            uniques = uniques.astype(np.float32)

        if isinstance(self, ABCIndex):
            # preserve e.g. MultiIndex
            uniques = self._constructor(uniques)
        else:
            from pandas import Index

            uniques = Index(uniques)
        return codes, uniques

    _shared_docs[
        "searchsorted"
    ] = """
        Find indices where elements should be inserted to maintain order.

        Find the indices into a sorted {klass} `self` such that, if the
        corresponding elements in `value` were inserted before the indices,
        the order of `self` would be preserved.

        .. note::

            The {klass} *must* be monotonically sorted, otherwise
            wrong locations will likely be returned. Pandas does *not*
            check this for you.

        Parameters
        ----------
        value : array-like or scalar
            Values to insert into `self`.
        side : {{'left', 'right'}}, optional
            If 'left', the index of the first suitable location found is given.
            If 'right', return the last such index.  If there is no suitable
            index, return either 0 or N (where N is the length of `self`).
        sorter : 1-D array-like, optional
            Optional array of integer indices that sort `self` into ascending
            order. They are typically the result of ``np.argsort``.

        Returns
        -------
        int or array of int
            A scalar or array of insertion points with the
            same shape as `value`.

        See Also
        --------
        sort_values : Sort by the values along either axis.
        numpy.searchsorted : Similar method from NumPy.

        Notes
        -----
        Binary search is used to find the required insertion points.

        Examples
        --------
        >>> ser = pd.Series([1, 2, 3])
        >>> ser
        0    1
        1    2
        2    3
        dtype: int64

        >>> ser.searchsorted(4)
        3

        >>> ser.searchsorted([0, 4])
        array([0, 3])

        >>> ser.searchsorted([1, 3], side='left')
        array([0, 2])

        >>> ser.searchsorted([1, 3], side='right')
        array([1, 3])

        >>> ser = pd.Series(pd.to_datetime(['3/11/2000', '3/12/2000', '3/13/2000']))
        >>> ser
        0   2000-03-11
        1   2000-03-12
        2   2000-03-13
        dtype: datetime64[ns]

        >>> ser.searchsorted('3/14/2000')
        3

        >>> ser = pd.Categorical(
        ...     ['apple', 'bread', 'bread', 'cheese', 'milk'], ordered=True
        ... )
        >>> ser
        ['apple', 'bread', 'bread', 'cheese', 'milk']
        Categories (4, object): ['apple' < 'bread' < 'cheese' < 'milk']

        >>> ser.searchsorted('bread')
        1

        >>> ser.searchsorted(['bread'], side='right')
        array([3])

        If the values are not monotonically sorted, wrong locations
        may be returned:

        >>> ser = pd.Series([2, 1, 3])
        >>> ser
        0    2
        1    1
        2    3
        dtype: int64

        >>> ser.searchsorted(1)  # doctest: +SKIP
        0  # wrong result, correct would be 1
        """

    # This overload is needed so that the call to searchsorted in
    # pandas.core.resample.TimeGrouper._get_period_bins picks the correct result

    @overload
    # The following ignore is also present in numpy/__init__.pyi
    # Possibly a mypy bug??
    # error: Overloaded function signatures 1 and 2 overlap with incompatible
    # return types  [misc]
    def searchsorted(  # type: ignore[misc]
        self,
        value: ScalarLike_co,
        side: Literal["left", "right"] = ...,
        sorter: NumpySorter = ...,
    ) -> np.intp:
        ...

    @overload
    def searchsorted(
        self,
        value: npt.ArrayLike | ExtensionArray,
        side: Literal["left", "right"] = ...,
        sorter: NumpySorter = ...,
    ) -> npt.NDArray[np.intp]:
        ...

    @doc(_shared_docs["searchsorted"], klass="Index")
    def searchsorted(
        self,
        value: NumpyValueArrayLike | ExtensionArray,
        side: Literal["left", "right"] = "left",
        sorter: NumpySorter = None,
    ) -> npt.NDArray[np.intp] | np.intp:
        if isinstance(value, ABCDataFrame):
            msg = (
                "Value must be 1-D array-like or scalar, "
                f"{type(value).__name__} is not supported"
            )
            raise ValueError(msg)

        values = self._values
        if not isinstance(values, np.ndarray):
            # Going through EA.searchsorted directly improves performance GH#38083
            return values.searchsorted(value, side=side, sorter=sorter)

        return algorithms.searchsorted(
            values,
            value,
            side=side,
            sorter=sorter,
        )

    def drop_duplicates(self, *, keep: DropKeep = "first"):
        duplicated = self._duplicated(keep=keep)
        # error: Value of type "IndexOpsMixin" is not indexable
        return self[~duplicated]  # type: ignore[index]

    @final
    def _duplicated(self, keep: DropKeep = "first") -> npt.NDArray[np.bool_]:
        return algorithms.duplicated(self._values, keep=keep)

    def _arith_method(self, other, op):
        res_name = ops.get_op_result_name(self, other)

        lvalues = self._values
        rvalues = extract_array(other, extract_numpy=True, extract_range=True)
        rvalues = ops.maybe_prepare_scalar_for_op(rvalues, lvalues.shape)
        rvalues = ensure_wrapped_if_datetimelike(rvalues)

        with np.errstate(all="ignore"):
            result = ops.arithmetic_op(lvalues, rvalues, op)

        return self._construct_result(result, name=res_name)

    def _construct_result(self, result, name):
        """
        Construct an appropriately-wrapped result from the ArrayLike result
        of an arithmetic-like operation.
        """
        raise AbstractMethodError(self)